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Abstract

The g-girth-thickness θ(g,G) of a graph G is the smallest number of planar subgraphs of girth at
least g whose union is G. In this paper, we calculate the 4-girth-thickness θ(4, G) of the complete
m-partite graph G when each part has an even number of vertices.

Keywords: thickness, planar decomposition, complete multipartite graph, girth
Mathematics Subject Classification : 05C10
DOI: 10.5614/ejgta.2019.7.1.14

1. Introduction

The thickness θ(G) of a graph G is the smallest number of planar subgraphs whose union is G.
Equivalently, it is the smallest number of parts used in any edge partition of E(G) such that each
set of edges in the same part induces a planar subgraph.

This parameter was introduced by Tutte [20] in the 60s. The problem to calculate the thickness
of a graph G is an NP-hard problem [16] and a few of exact results can be found in the literature,
for example, if G is a complete graph [2, 5, 6], a hypercube [15], or a complete multipartite graph
for some particular values [21, 22]. Even for the complete bipartite graph there are only partial
results [7, 13].

Some generalizations of the thickness for complete graphs have been studied, for instance, the
outerthickness θo, defined similarly but with outerplanar instead of planar [12], the S-thickness θS ,
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considering the thickness on a surface S instead of the plane [4], and the k-degree-thickness θk
taking a restriction on the planar subgraphs: each planar subgraph has maximum degree at most k
[9].

The thickness has applications in the design of circuits [1], in the Ringel’s earth-moon problem
[14], and to bound the achromatic numbers of planar graphs [3], etc. See the survey [17].

In [19], the author introduced the g-girth-thickness θ(g,G) of a graph G as the minimum num-
ber of planar subgraphs of girth at least g whose union isG, a generalization of the thickness owing
to the fact that the g-girth-thickness is the usual thickness when g = 3 and also the arboricity num-
ber when g = ∞ because the girth of a graph is the size of its shortest cycle or∞ if it is acyclic.
See also [11].

In this paper, we obtain the 4-girth-thickness θ(4, Kn1,n2,...,nm) of the complete m-partite graph
Kn1,n2,...,nm when ni is even for all i ∈ {1, 2, . . . ,m}.

2. Calculating θ(4,Kn1,n2,...,nm)

Given a simple graph G, we define a new graph G ./ G in the following way: If G has
vertex set V = {w1, w2, . . . , wn}, the graph G ./ G has as vertex set two copies of V , namely,
{u1, u2, . . . , un, v1, v2, . . . , vn} and two vertices xiyj are adjacent if wiwj is an edge of G, for the
symbols x, y ∈ {u, v}. For instance, if w1w2 is an edge of a graph G, the graph G ./ G has the
edges u1u2, v1v2, u1v2 and v1u2. See Figure 1.

w1

w2

u1 v1

v2u2

G
G ./ G

Figure 1. An edge of G produces four edges in G ./ G.

On the other hand, an acyclic graph of n vertices has at most n− 1 edges and a planar graph of
n vertices and girth g < ∞ has at most g

g−2(n − 2) edges, see [8]. Therefore, a planar graph of n
vertices and girth at least 4 has at most 2(n− 2) edges for n ≥ 4 and at most n− 1, otherwise. In
consequence, the 4-girth-thickness θ(4, G) of a graph G is at least

⌈
|E(G)|
2(n−2)

⌉
for n ≥ 4 and at least⌈

|E(G)|
n−1

⌉
, otherwise.

Lemma 2.1. If G is a tree of order n then G ./ G is a bipartite planar graph of size 2(2n− 2).

Proof. By induction over n. The basis is given in Figure 1 for n = 2. Now, take a tree G with
n + 1 vertices. Since it has at least a leaf, we say, the vertex w1 incident to w2 then we delete
w1 from G and by induction hypothesis, H ./ H is a bipartite planar of size 2(2n − 2) edges for
H = G \ {w1}. Since H is connected, the vertex labeled w2 has at least a neighbour, we say, the
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vertex labeled w3, then u2v3v2 is a path in H ./ H and the edge u2v2 /∈ E(H ./ H). Add the
paths u2v1v2 and u2u1v2 to H ./ H such that both of them are “parallel” to u2v3v2 and identify the
vertices u2 as a single vertex as well as the vertices v2. This proves that G ./ G is planar. To verify
that is bipartite, given a proper coloring of H ./ H with two colors, we extend the coloring putting
the same color of v3 to v1 and u1. Then the resulting coloring is proper. Due to the fact that we add
four edges, H ./ H has 2(2n− 2) + 4 = 2(2(n+ 1)− 2) edges and the lemma follows.

Now, we recall that the arboricity number or∞-girth-thickness θ(∞, G) of a graph G equals
(see [18])

max

{⌈
|E(H)|
|V (H)| − 1

⌉
: H is an induced subgraph of G

}
.

We have the following theorem.

Theorem 2.1. If G is a simple graph of n ≥ 2 vertices and e edges, then⌈
e

n− 1

⌉
≤ θ(4, G ./ G) ≤ θ(∞, G).

Proof. Since G ./ G has 2n ≥ 4 vertices, 4e edges and

|E(G ./ G)|
2(|V (G ./ G)| − 2)

=
4e

2(2n− 2)
=

e

n− 1
,

it follows the lower bound ⌈
e

n− 1

⌉
≤ θ(4, G ./ G).

To verify the upper bound, take an acyclic edge partition {F1, F2, . . . , Fθ(∞,G)} of E(G). There-
fore, {F1 ./ F1, F2 ./ F2, . . . , Fθ(∞,G) ./ Fθ(∞,G)} is an edge partition of E(G ./ G) (where
Fi ./ Fi := E(〈Fi〉 ./ 〈Fi〉) and 〈Fi〉 is the induced subgraph of the edge set Fi for all i ∈
{1, 2, . . . , θ(∞, G)}). Indeed, an edge xjyj′ ∈ E(G ./ G) is in Fi ./ Fi if and only if wjw′j ∈
E(G) is in Fi. By Lemma 2.1, the result follows.

Corollary 2.1. If G is a simple graph of n ≥ 2 vertices and e edges with θ(∞, G) =
⌈

e
n−1

⌉
, then

θ(4, G ./ G) =

⌈
e

n− 1

⌉
.

Next, we estimate the arboricity number of the complete m-partite graph.

Lemma 2.2. If Kn1,n2,...,nm is the complete m-partite graph then θ(∞, G) =
⌈

e
n−1

⌉
where n =

n1 + n2 + . . .+ nm and e = n1n2 + n1n3 + . . .+ nm−1nm.

Proof. By induction over n. The basis is trivial for K1,1. Let G = Kn1,n2,...,nm with n > 2 and
H = G \ {u} a proper induced subgraph of G for any vertex u. By the induction hypothesis,
θ(∞, H) = max

{⌈
|E(F )|
|V (F )|−1

⌉
: F ≤ H

}
=
⌈
|E(H)|
(n−1)−1

⌉
, where F ≤ H indicates that F is an
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induced subgraph ofH . Since u is an arbitrary vertex and by the hereditary property of the induced
subgraphs, we only need to show that

|E(H)|
n− 2

≤ e

n− 1

because

max

{⌈
|E(F )|
|V (F )| − 1

⌉
: F ≤ G

}
= max

{⌈
e

n− 1

⌉
,

⌈
|E(H)|
n− 2

⌉
: H = G \ {u}, u ∈ V (G)

}
.

We prove it in the following way. Without loss of generality, u is a vertex in a part of size nm.
Since

n1+ n1n2+ . . . +n1nm+
n2+ . . . +n2nm+

...
nm−1nm

≤

n2
1+ n1n2+ . . . +n1nm+

n2n1+ n2
2+ . . . +n2nm+

...
nm−1n1+ nm−1n2+ . . . +nm−1nm

then e+ n1 + n2 + . . .+ nm−1 ≤ n(n1 + n2 + . . .+ nm−1) and

en− e− n(n1 + n2 + . . .+ nm−1) + (n1 + n2 + . . .+ nm−1) ≤ en− 2e

(n− 1)(e− (n1 + n2 + . . .+ nm−1)) ≤ e(n− 2)

|E(H)|
n− 2

≤ e

n− 1

and the result follows.

Now, we can prove our main theorem.

Theorem 2.2. If G = K2n1,2n2,...,2nm is the complete m-partite graph then θ(4, G) =
⌈

e
n−1

⌉
where

n = n1 + n2 + . . .+ nm and e = n1n2 + n1n3 + . . .+ nm−1nm.

Proof. We need to show that G = Kn1,n2,...,nm ./ Kn1,n2,...,nm . Let (W1,W2, . . . ,Wm) be an m-
partition of Kn1,n2,...,nm . The graph Kn1,n2,...,nm ./ Kn1,n2,...,nm has the partition (U1 ∪ V1, U2 ∪
V2, . . . , Um∪Vm) where Ui and Vi are copies of Wi for i ∈ {1, 2, . . . ,m}. Take two vertices xi and
yj in different parts, without loss of generality, U1 ∪ V1 and U2 ∪ V2. If the vertex xi is in U1 and
yj is in U2 then they are adjacent because wiwjis an edge of Kn1,n2,...,nm is m-complete. Similarly
for xi ∈ V1 and yj ∈ V2. If xi is in U1 and yj is in V2, then also they are adjacent because wiwj is
an edge of Kn1,n2,...,nm . By Corollary 2.1 and Lemma 2.2, the theorem follows.

Due to the fact that θ(4, G) = θ(3, G) = θ(G) for any triangle-free graph G, we obtain an
alternative proof for the thickness of the complete bipartite graph K2n1,2n2 that is given in [7].

Corollary 2.2. If G = K2n1,2n2 is the complete bipartite graph then θ(G) =
⌈

e
n−1

⌉
where n =

n1 + n2 and e = n1n2.
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