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Abstract

The Steiner n-antipodal graph of a graph G on p vertices, denoted by SAn(G), has the same vertex
set as G and any n(2  n  p) vertices are mutually adjacent in SAn(G) if and only if they are
n-antipodal in G. When G is disconnected, any n vertices are mutually adjacent in SAn(G) if not
all of them are in the same component. SAn(G) coincides with the antipodal graph A(G) when
n = 2. The least positive integer n such that SAn(G) ⇠= H , for a pair of graphs G and H on
p vertices, is called the Steiner A-completion number of G over H. When H = Kp, the Steiner
A-completion number of G over H is called the Steiner antipodal number of G. In this article, we
obtain the Steiner antipodal number of some families of graphs and for any tree. For every positive
integer k, there exists a tree having Steiner antipodal number k and there exists a unicyclic graph
having Steiner antipodal number k. Also we show that the notion of the Steiner antipodal number
of graphs is independent of the Steiner radial number, the domination number and the chromatic
number of graphs.
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1. Introduction

This paper considers finite simple undirected graphs. Let G be a graph on p vertices and S a
set of vertices of G. The Steiner distance of S in G, denoted by dG(S), is defined as the minimum
number of edges in a connected subgraph of G that contains S. Such a subgraph is essentially a
tree and is called a Steiner tree for S in G [5]. The Steiner n-eccentricity en(v) of a vertex v in a
graph G is defined as en(v) = max{dG(S) : S ✓ V (G) with v 2 S and |S| = n}. The n-radius
radn(G) of G is described as the smallest Steiner n-eccentricity among the vertices of G and the
n-diameter diamn(G) of G is the largest Steiner n-eccentricity. The notion of Steiner distance was
further evolved in [11].

KM. Kathiresan et al. [10] initiated the concept of Steiner radial number of a graph G. The idea
of antipodal graph was introduced by Singleton [13] and was further developed by R. Aravamudhan
and B. Rajendran [1, 2] and E. Prisner [12].

Based on the above literature, we introduce a new concept called Steiner antipodal number
of a graph. Any n vertices of a graph G are said to be n-antipodal to each other if the Steiner
distance between them is equal to the n-diameter of the graph G. The Steiner n-antipodal graph of
a graph G, denoted by SAn(G), has the vertex set as in G and n (2  n  p) vertices are mutually
adjacent in SAn(G) if and only if they are n-antipodal in G. If G is not connected, any n vertices
are mutually adjacent in SAn(G) if not all of them are in the same component. For the edge set
of SAn(G), draw Kn corresponding to each set of n-antipodal vertices. SAn(G) coincides with
A(G) by taking n = 2.

Take the graph G which is given in Figure 1. If we let n = 4, we get that diam4(G) = 4 and
that S1 = {v1, v2, v4, v5}, S2 = {v1, v2, v4, v6}, S3 = {v1, v3, v4, v5} and S4 = {v1, v3, v4, v6}
are the sets of 4-antipodal vertices of graph G. The Steiner 4-antipodal graph of G is given in Fig. 1.
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Figure 1. The graph G and its Steiner 4-antipodal graph.

Consider two graphs G and H on p vertices, and H is called a Steiner A-completion of G if
there exists a positive integer n such that SAn(G) ⇠= H . The positive integer n is said to be Steiner
A-completion number of G over H if n is the least positive integer such that SAn(G) ⇠= H. For
instance, the Steiner A-completion number of bistar Bp1,p2 over Kp1+p2+2�e is p1+p2+1. If there
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is no such n such that SAn(G) ⇠= H, then the Steiner A-completion number of G over H is 1.

The Steiner A-completion number of G over H is need not be equal to the Steiner A-completion
number of H over G. For the graphs G and H shown in Figure 2, the Steiner A-completion number
of G over H is 3 but the Steiner A-completion number of H over G is 1.s ss

s ss
H

s ss
s ss

G

Figure 2. A pair of graphs (G,H) so that Steiner A-completion of G over H is not equal to
Steiner A-completion of H over G.

When H = Kp, the Steiner A-completion number of G over H is called the Steiner antipodal
number of G. In other words, the Steiner antipodal number aS(G) of a graph G is the least positive
integer n such that the Steiner n-antipodal graph of G is complete.

The iterations of radial graph and eccentric graph have been studied to analyze the periodicity
of the graph [9, 12]. The iterations of line graph and k

th power Gk of a graph G are observed to be
complete after certain stage. The Steiner antipodal number of a graph is also one kind of iteration
on the number of vertices deals with at a time.

In [7], a subset S of V (G) of a graph G is said to be a dominating set if every vertex in V � S

is a neighbour of some vertex of S. For a graph G, V (G) itself is a dominating set. The domination
number is the minimum cardinality of a dominating set in G. The notion of the domination number
was introduced to find the minimal dominating set with minimum cardinality. Likewise, if S is
taken as the set of all vertices of G, then SAp(G) ⇠= Kp. The concept of Steiner antipodal number
of G is introduced to find the minimum cardinality so that SAn(G) ⇠= Kp. We determines the
Steiner antipodal number of some families of graphs and for any tree. For every positive integer
k, there exists a tree having Steiner antipodal number k and there exists a unicyclic graph having
Steiner antipodal number k. Also for any pair of positive integers a and b, we prove the existence
of a graph such that rS(G) = a, aS(G) = b;�(G) = a, aS(G) = b and �(G) = a, aS(G) = b. We
follow [4] for graph theoretic terminology.

2. Main Results

Observation 2.1. For any connected graph G on p vertices, 2  aS(G)  p, which pursues from
the definition.

The sharpness of this observation is given in Theorem 2.2 and Proposition 2.2.

Lemma 2.1. If G is a graph with aS(G) = n, then radn(G) = diamn(G).

Proof. If radn(G) 6= diamn(G), then SAn(G) has isolated vertices whose eccentricity is less than
diamn(G). Hence the result follows.
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The converse of the above lemma needs not be true. For the graph G given in Figure 3,
rad3(G) = diam3(G) but aS(G) = 5.r

r

r

r

rr
Figure 3. A graph G with rad3(G) = diam3(G), but aS(G) = 5.

Proposition 2.1. For any graph G, rS(G)  aS(G).

Proof. Suppose aS(G) = n. Then, n is the least positive integer such that SAn(G) ⇠= Kp. There-
fore by Lemma 2.1, radn(G) = diamn(G). Hence, SRn(G) ⇠= SAn(G) ⇠= Kp. So, by the
definition, rS(G)  n = aS(G).

Proposition 2.2. For any star graph K1,p�1 with p vertices, aS(K1,p�1) = p.

Proof. Let v1 be the vertex of degree p � 1 and v2, v3, . . . , vp be the pendant vertices of K1,p�1.

For any n, 2  n  p� 1, en(v1) = n� 1 and en(vi) = n, 2  i  p� 1. Hence the n-diameter of
K1,p�1 is n, for 2  n  p� 1. If n < p, the vertex v1 is an isolated vertex of Steiner n-antipodal
graph of K1,p�1. Hence aS(K1,p�1) = p.

Proposition 2.3. For any tree T on p vertices with m( 6= p� 1) pendant vertices, aS(T ) = m+ 2.

Proof. Consider a tree T with m pendant vertices x1, x2, . . . , xm and the remaining vertices are
v1, v2, . . . , vp�m. Then em+1(xi) = em+1(vi) = p � 1 for all i. Hence (m + 1)-diameter of T is
p�1. If vivj is a non-pendant edge in T, then the set {vi, vj}[X, where X ✓ {x1, x2, . . . , xm} with
|X| = m�1, has Steiner distance less than p�1. Therefore, vi is not adjacent to vj in Steiner (m+
1)-antipodal graph of T. Since (m+ 2)-diameter of T is p� 1 and any set {vi, vj, x1, x2, . . . , xm}
has Steiner distance p � 1 for 1  i, j  p � m, the Steiner (m + 2)-antipodal graph of T is
Kp.

Corollary 2.1. For every positive integer k � 2, there exists a tree having Steiner antipodal
number k.

Proof. The result follows from Proposition 2.3 and Proposition 2.2.

Proposition 2.4. Let S be the set of all full degree vertices of a graph G. Then, aS(G) is p� |S|+1
when G�S is disconnected and p� |S| when G�S is connected with at least one pendant vertex.

Proof. When G� S is disconnected, V (G)� S is a (p� |S|)-element set having Steiner distance
p� |S| as hV (G)�Si is disconnected and h(V (G)�S)[ {v}i is connected for each v 2 S. Also
every (p� |S|)-element set containing at least one element of S has Steiner distance p� |S|� 1.
Therefore, radp�|S|(G) = p � |S| � 1 and diamp�|S|(G) = p � |S| and hence by Lemma 2.1,
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SAp�|S|(G) 6⇠= Kp. But every (p � |S| + 1)-element set has the Steiner distance p � |S|. Hence
aS(G) = p� |S|+ 1.

Now suppose that G � S is connected with at least one pendant vertex. Let v be a pendant
vertex in G � S, adjacent to v

0 say. As (p � |S| � 1)-element set not containing v
0 is of Steiner

distance p � |S| � 1, ep�|S|�1(u) = p � |S| � 1 for every u( 6= v
0) 2 V (G) � S. Since S is

the collection of full degree vertices, ep�|S|�1(u) = p � |S| � 2 for every u 2 S. Therefore
radp�|S|�1(G) 6= diamp�|S|�1(G) and hence by Lemma 2.1, aS(G) > p � |S| � 1. As G � S is
connected with p � |S| vertices, every (p � |S|)-element set has the Steiner distance p � |S| � 1
and hence aS(G) = p� |S|.

Theorem 2.2. For a graph G, aS(G) = 2 if and only if G is either complete or totally disconnected.

Proof. When G is complete (respectively a totally disconnected graph), 2-diameter is 1 (respec-
tively 1) and any pair of vertices has Steiner distance 1 (respectively 1). Thus aS(G) = 2.

Assume aS(G) = 2 and G is not totally disconnected. If G has at least two components in
which one of them is having at least two vertices x and y with xy 2 E(G), then by the definition,
xy /2 SA2(G). Therefore G is connected. If G is not complete, then xy /2 E(G) for some vertices
x and y in G. Therefore d(x, y) � 2. Hence diam2(G) � 2 and every adjacent vertices of G are
non-adjacent in SA2(G). Hence the result follows.

Proposition 2.5. If a graph G is disconnected but not totally disconnected, then aS(G) = 3.

Proof. Since G is not totally disconnected, G has a component C with at least two vertices. By
Theorem 2.2, aS(G) > 2. From, the set of all 3-element sets with exactly two elements in C, every
vertex of v in C is adjacent to all the remaining vertices of V (G) in SA3(G). Also from the set
of all 3-element sets with exactly one element in C, every vertex of u /2 C is adjacent to all the
remaining vertices of V (G) in SA3(G). Therefore, SA3(G) is complete and hence aS(G) = 3.

Theorem 2.3. For every positive integer k � 2, there exists an unicyclic graph having Steiner
antipodal number k.

Proof. Let G be a cycle of length p = 2m with vertices v1, v2, . . . , v2m�1 and v2m. For each
vertex vi, en(vi) = p �

⌃
p
n

⌥
and hence n-diameter is p �

⌃
p
n

⌥
, 2  n  2m. In particular,

em+1(v1) = 2m�
⌃

2m
m+1

⌥
= 2m� 2 and n-diameter is 2m� 2.

Consider the set {v1, v3, v5, . . . , v2m�1, u} where u 2 {v2, v4, v6, . . . , v2m}. For u = vi, i 2
{2, 4, 6, . . . , 2m � 2}, v1v2 · · · vi�1vivi+1 · · · v2m�1 is a Steiner tree with Steiner distance 2m � 2
and for u = v2m, v3v5v7 · · · v2m�1v2mv1 is a Steiner tree with Steiner distance 2m� 2. Hence v1 is
adjacent to vi for all 2  i  2m in Steiner (m+ 1)-antipodal graph of G.

Proceeding in this way, each vertex v2i+1, 1  i  m � 1 is adjacent to all the remaining
vertices in Steiner (m + 1)-antipodal graph of G. By considering the set {v2, v4, v6, . . . , v2m, u}
where u 2 {v1, v3, v5, . . . , v2m�1}, each vertex v2i, 1  i  m is adjacent to all the remaining
vertices in Steiner (m + 1)-antipodal graph of G. Hence the Steiner (m + 1)-antipodal graph
of G is Kp. For n  m, there does not exist a set with n elements containing v1 and v2 with
Steiner distance p�

⌃
p
n

⌥
. Hence Steiner n-antipodal graph is not complete for n  m. Therefore,

aS(G) = m+ 1. Also aS(K3) = 2.
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Proposition 2.6. If G is a graph with aS(G) = n, then Kp is the only Steiner m-antipodal graph
of G for m � n.

Proof. For a graph G, let aS(G) = n and d be the n-diameter of G. By Lemma 2.1, radn(G) =
diamn(G). Therefore, en(v) = d for all v 2 V (G). Suppose en+1(v) > d+ 1 for some v 2 V (G).
Since en(v) = d, there is a set S having v whose Steiner distance is the maximum distance d.
en+1(v) > d + 1 implies that there exists a vertex v

0 in G such that d(v0, S) > 1. Let u be the
vertex in S such that d(v0, u) = d(v0, S). Therefore, the Steiner distance of the set (S�{u})

S
{v0}

is greater than d. Hence, en(v0) > d which is a contradiction to en(v0) = d. Hence, en+1(v) is either
d or d + 1. This implies that diamn+1(G) = d or d + 1. The result follows if diamn+1(G) = d.

Suppose diamn+1(G) = d + 1. Let v1 and v2 be two non-adjacent vertices in the Steiner (n + 1)-
antipodal graph of G. Then every set S with n+ 1 elements containing v1 and v2 have the Steiner
distance less than d+ 1. This implies that dG(S)  d and hence dG(S � {v2})  d� 1, for every
set S with n + 1 elements containing v1 and v2. Since all the n-element sets S � {v2} containing
v1 are such that dG(S � {v2})  d � 1, en(v1)  d � 1 which is a contradiction to the fact that
en(v) = d. Hence the result follows.

Theorem 2.4. For any pair of positive integers a, b � 3 with a  b, there exists a graph whose
Steiner radial number is a and Steiner antipodal number is b.

Proof. Let {u1, u2, . . . , up1} and {v1, v2, . . . , vp2} be a partition of the vetex set of Kp1,p2 , where
p1 = a � 1, p2 = b � 1 and p1 � 2. When n  p1, en(ui) = n, 1  i  p1 and en(vi) = n, 1 
i  p2. Hence radn(Kp1,p2) = n = diamn(Kp1,p2). In the Steiner n-radial (n-antipodal) graph of
G, ui is not adjacent to vj, since all the n-element sets containing ui and vj have only the Steiner
distance n� 1. Consequently, rS(Kp1,p2) > p1.

When p1 < n  p2, en(ui) = n � 1, 1  i  p1 and en(vi) = n, 1  i  p2. Hence
radn(Kp1,p2) = n�1 and diamn(Kp1,p2) = n. In Steiner (p1+1)-radial graph of G, ui is adjacent
to uj for 1  i, j  p1, ui is adjacent to vj for all 1  i  p1, 1  j  p2 and vi is adjacent to vj

for all 1  i, j  p2, since each of the sets {u1, u2, . . . , up1 , vj} and {vi, vj, u2, u3, . . . , up1} have
the Steiner distance p1 respectively. Thus Steiner (p1 + 1) - radial graph of Kp1,p2 is Kp1+p2 . Also
by Lemma 2.1, aS(G) > n.

When n > p2, en(ui) = n � 1, 1  i  p1 and en(vi) = n � 1, 1  i  p2. Therefore,
diamn(G) = n� 1. Since every n-element sets must contain at least one ui and vj, it is of Steiner
distance n � 1. Hence the Steiner n-antipodal graph of G is complete. Since p1 + 1 is the least
positive integer such that the Steiner (p1 + 1)-radial graph of G is complete and p2 + 1 is the least
positive integer such that the Steiner (p2 + 1)-antipodal graph of G is complete, rS(Kp1,p2) =
p1 + 1 = a and aS(Kp1,p2) = p2 + 1 = b.

Proposition 2.7. For any pair of positive integers a, b � 2, there exists a graph G such that
�(G) = a and aS(G) = b.

Proof. Consider the complete a-partite graph G = Kn1,n2,...,na with ni = b � 1, 1  i  a.

Suppose that a > 2 and b > 2. Since each partition of G should have different colours, �(G) = a.

If n  b�1, en(v) = n for each vertex v 2 V (G). Hence diamn(G) = n. As b > 2, each partition
has at least two vertices. Also any n-element set S having at least two vertices of a partition is of
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Steiner distance n � 1. Therefore no two vertices in the same partition are adjacent in SAn(G).
If n > b � 1, then en(v) = n � 1 for each vertex v 2 V (G) and hence diamn(G) = n � 1. As
every n-element set must contain vertices from different partitions, its Steiner distance is n � 1
and hence SAn(G) is complete. Therefore, aS(G) = b. By Proposition 2.2, aS(K1,b�1) = b. Also
�(K1,b�1) = 2. For the graph Ka with a � 2,�(Ka) = a and aS(Ka) = 2.

Theorem 2.5. For any pair of positive integers a and b ( 6= 1), there exists a graph G such that
�(G) = a and aS(G) = b.

Proof. Let G be a graph obtained by identifying a pendant vertex of the path on 3a � 2 vertices
and a pendant vertex of the star graph on b � 1 vertices. Let v1, v2, . . . , v3a�2 be the vertices of
the path and u1, u2, . . . , ub�1 be the vertices of the star graph in which ub�1 is the full degree
vertex and ub�2 be identified with v3a�2. Then �(G) = a as the set {v2, v5, v8, . . . , v3a�4, ub�1} is a
minimal dominating set with minimum cardinality. Since G has b� 2 number of pendant vertices,
by Proposition 2.3, aS(G) = b. For the graph H = aK2, a copies of K2 where a � 2, �(H) = a

and aS(H) = 3. For the totally disconnected graph Ka, a � 2, �(Ka) = a and aS(Ka) = 2.

A graph G is called n-connected if G has at least n + 1 vertices and it is not possible to
disconnect G by removing n � 1 or fewer vertices. The connectivity of G, denoted k(G), is
defined to be n if G is n-connected but not (n+ 1)-connected [6].

In [3], the Harary graph Hm,n on n vertices with connectivity m was constructed based on the
parities of m and n.

Case 1. m is even.
Let m = 2r. Then H2r,n is constructed as follows. It has vertices 0, 1, . . . , n� 1 and two

vertices i and j are joined if i� r  j  i+ r (where addition is taken modulo n).
Case 2. m is odd, n is even.

Let m = 2r + 1. Then H2r+1,n is constructed by first drawing H2r,n and then adding edges
joining vertex i to vertex i+ (n2 ) for 1  i  n

2 .

Case 3. m is odd, n is odd.
Let m = 2r + 1. Then H2r+1,n is constructed by first drawing H2r,n and then adding edges

joining vertex 0 to vertices (n�1)
2 and (n+1)

2 and vertex i to vertex i+ (n+1)
2 for 1  i  (n�1)

2 .

Theorem 2.6. Let n � 3 be any positive integer and m be any positive integer less than n such
that

m �

8
<

:

2n
3 , n ⌘ 0, 3(mod 6);
2n�2

3 , n ⌘ 1, 4(mod 6);
2n+2

3 , n ⌘ 2, 5(mod 6).

Then the Steiner antipodal number of the Harary graph Hm,n is n�m+ 1.

Proof. Let G = Hm,n. Let v1, v2, . . . , vn be the vertices of G. By the choice of m, every vertex of
Hm,n is adjacent to at least one of v1, vm+1 and vn�m+1.

Let m and n be even. Construct the set S which contains v1 and all its non-neighbouring
vertices. Then |S| = n � m and dG(S) = n � m. If one of the vertices in S other than v1 is
adjacent to v1, then its Steiner distance is less than or equal to n�m. Hence en�m(v1) = n�m.
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Similarly en�m(vi) = n�m, for 2  i  n. Hence diamn�m(G) = n�m. But SAn�m(G) 6⇠= Kn,

since there is no set with n � m elements containing v1 and vm+1 with Steiner distance n � m.

Whenever a set with n �m + 1 elements is taken, its induced subgraph definitely have a Steiner
tree with Steiner distance n�m and hence aS(Hm,n) = n�m+ 1.

Let m be odd and n be even. In this case, construct a set S which includes the vertex v1 and
all its non-neighbouring vertices. Then |S| = n�m and dG(S) = n�m. By the same argument,
en�m(vi) = n�m, for 1  i  n and hence diamn�m(G) = n�m. But SAn�m(G) 6⇠= Kn, since
there is no set with n � m elements containing v1 and vn

2+1 with Steiner distance n � m. Also
every set with n�m+ 1 elements has a Steiner tree in its induced subgraph and hence its Steiner
distance is n�m+ 1. Therefore aS(Hm,n) = n�m+ 1.

By the same argument given in the first case, it can be shown that aS(Hm,n) = n�m+1 when
m is even and n is odd.

Let m and n be odd. Construct the set S which contains v1 and all its non-neighbouring
vertices. Let S1 = S [ {u} where u 2 V (G) � S. Then |S1| = n � m and dG(S1) = n �
m � 1. As all the (n � m)-element sets containing v1 has the Steiner distance less than or equal
to n � m � 1, en�m�1(v1) = n � m � 1. Construct the set Si, 2  i  n which contains vi and
all its non-neighbouring vertices. Then |Si| = n � m and dG(Si) = n � m. Also for each vi,

all the (n �m)-element sets containing vi have the Steiner distance less than or equal to n �m.

Therefore en�m(vi) = n�m for 2  i  n, and hence radn�m(G) 6= diamn�m(G). Therefore by
Lemma 2.1, aS(G) > n�m. Since the induced subgraph of every (n�m+ 1)-element set has a
Steiner tree with Steiner distance n�m, so aS(G) = n�m+ 1.

Conjecture 1. For any pair of positive integers k and m( 6= 1), there exists a graph which is
k-connected whose Steiner antipodal number is m.
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