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Abstract

Let k ≥ 2 be an integer and G be a connected graph of order at least 3. A twin k-edge coloring of
G is a proper edge coloring of G that uses colors from Zk and that induces a proper vertex coloring
on G where the color of a vertex v is the sum (in Zk) of the colors of the edges incident with v.
The smallest integer k for which G has a twin k-edge coloring is the twin chromatic index of G
and is denoted by χ′t(G). In this paper, we study the twin edge colorings in m-ary trees for m ≥ 2;
in particular, the twin chromatic indices of full m-ary trees that are not stars, r-regular trees for
even r ≥ 2, and generalized star graphs that are not paths nor stars are completely determined.
Moreover, our results confirm the conjecture that χ′t(G) ≤ ∆(G) + 2 for every connected graph G
(except C5) of order at least 3, for all trees of order at least 3.
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1. Introduction

Let G = (V,E) be a simple graph. A proper vertex coloring of G is a function from V to a
given set of colors such that adjacent vertices are colored differently. On the other hand, a proper
edge coloring ofG is a function fromE to a given set of colors such that adjacent edges are colored
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differently. The minimum number of colors needed in a proper vertex coloring and a proper edge
coloring of G are the chromatic number and chromatic index of G and are denoted by χ(G) and
χ′(G), respectively. Thus χ(G) ≤ ∆(G) + 1 and χ′(G) ≥ ∆(G), where ∆(G) is the maximum
degree of G.

A relatively new kind of graph coloring that has been studied in literature is the twin edge
colorings of graphs. This concept was introduced by Chartrand [9] and was initially studied in
[2, 3, 4].

Definition 1.1. For a connected graph G of order at least 3, a proper k-edge coloring c : E(G)→
Zk for some integer k ≥ 2 is called a twin k-edge coloring of G if the induced vertex coloring
c′ : V (G)→ Zk defined by

c′(v) =
∑
e∈Ev

c(e) in Zk,

where Ev is the set of edges of G incident with v, is proper as well. The minimum k for which G
has a twin k-edge coloring is the twin chromatic index of G, denoted by χ′t(G).

Since a twin edge coloring of G is a proper edge coloring of G, χ′t(G) ≥ ∆(G). It has been
shown in [2] that every connected graph of order at least 3 has a twin edge coloring.

In [2], Andrews et.al obtained the twin chromatic indices of paths, cycles, complete graphs,
and complete bipartite graphs. Their results are summarized in Theorem 1.2.

Theorem 1.2 ([2]). If n, a, b are integers with n ≥ 3, 1 ≤ a ≤ b and b ≥ 2, then

1. χ′t(Pn) = 3,

2. χ′t(Cn) =


3, if n ≡ 0 (mod 3),
4, if n 6≡ 0 (mod 3) and n 6= 5,
5, if n = 5,

3. χ′t(Kn) =

{
n, if n is odd,
n+ 1, if n is even,

4. χ′t(Ka,b) =


b, if b ≥ a+ 2 and a ≥ 2,
b+ 1, if (a = 1 and b 6≡ 1 (mod 4)) or (b = a+ 1 ≥ 3),
b+ 2, if (a = 1 and b ≡ 1 (mod 4)) or (b = a ≥ 2).

Based on the results stated in Theorem 1.2, Andrews et.al [3] formulated Conjecture 1.3 and
verified it for permutation graphs of 5-cycle, grids and prisms, and trees with maximum degree at
most 6. Likewise, in [4], Conjecture 1.3 was also verified for several types of trees such as brooms,
double stars and some regular trees (see Theorem 1.4). Also, the twin chromatic indices of most
of the graphs discussed in [3, 4] are determined.

Conjecture 1.3 ([3]). If G is a connected graph of order at least 3 that is not a 5-cycle, then
χ′t(G) ≤ ∆(G) + 2.
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Theorem 1.4 ([4]). Let T be a tree of order at least 3. Then the following statements hold:

1. If T is a broom that is not a star, then T has a twin (∆(T )+1)-edge coloring and so χ′t(T ) ≤
∆(T ) + 1;

2. If T is a regular double star, then

χ′t(T ) =

{
∆(T ) + 1, if ∆(T ) 6≡ 1 (mod 4),
∆(T ) + 2, if ∆(T ) ≡ 1 (mod 4);

3. If T is an irregular double star, then T has a twin (∆(T ) + 1)-edge coloring and so χ′t(T ) ≤
∆(T ) + 1;

4. For each integer r ≥ 3, the star K1,r has a twin (r + 2)-edge coloring; and
5. If T is a regular tree of order at least 6 such that ∆(T ) ≡ 1 (mod 4), then χ′t(T ) = ∆(T )+2.

In recent years, several studies on twin edge colorings have been conducted. Some of these
studies are the works of Lakshmi and Kowsalya [5], Rajarajachozhan and Sampathkumar [6],
Yang et.al [8], Anantharaman [1], and Tolentino et.al [7]. In [5] and [6], Lakshmi and Kowsalya
determined the twin chromatic index of wheel graphs while Rajarajachozhan and Sampathkumar
investigated the twin chromatic indices of the square graphs P 2

n , where n ≥ 4, and C2
n, where

n ≥ 6 and the twin chromatic index of the Cartesian product Cm�Pn, where m,n ≥ 3. In [8],
Yang et.al determined the twin chromatic indices of direct product of paths. Recently, in [1] and
[7], Anantharaman computed the twin chromatic indices of the total graphs of paths and cycles,
and constructed special graphs whose twin chromatic indices are ∆ + 2 while Tolentino et.al
determined the twin chromatic indices of some graphs with maximum degree 3 such as circulant
graphs Cn(1, n

2
), where n ≥ 8 and n ≡ 0 (mod 4), and some generalized Petersen graphs.

A rooted tree T is a tree in which one vertex of T is assigned as the root. Suppose T is a rooted
tree and let v0 be the root of T . If v is a vertex in T other than the root, an ancestor of v is a vertex
z 6= v of T that is in the unique path from v0 to v and the parent of v is the unique ancestor u of v
that is adjacent with v. If u is the parent of v, then v is a child of u. The descendants of a vertex
w of T are the vertices of T that have w as an ancestor. A vertex of T is called an internal vertex
if it has at least one child. A height in T is the distance between a leaf w and v0. A rooted tree is
called an m-ary tree if every internal vertex has at most m children and is called a full m-ary tree
if every internal vertex has exactly m children. For an integer k ≥ 1 and a vertex v of T that has a
child, we call v a k-ancestor vertex of T if max{d(v, y) : y is a descendant of v} is equal to k.

In the remaining sections, given an m-ary tree T , we will use c to denote an edge coloring with
colors Zm+2, unless stated otherwise; also, we will use c′ to denote the vertex coloring induced
by c on T . Moreover, when constructing an edge coloring c, we will denote by c(Ev) the set
{c(e) : e ∈ Ev} where the edge colors have been assigned so that c(e1) 6= c(e2) for any distinct
e1, e2 ∈ Ev.

In this paper, we determine the twin chromatic indices of some m-ary trees as well as an upper
bound for the twin chromatic index of all trees of order at least 3, including those that were not
discussed in [2, 3, 4]. More specifically, in sections 2 and 3, we discuss results on the twin edge
colorings in full m-ary trees that are not stars where m ≥ 2 and in m-ary trees that are not stars
with degrees equal to m, m ≥ 3, respectively. As a consequence, Conjecture 1.3 is verified for all
trees of order at least 3.
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2. Full m-ary Trees

In this section, we show that for an integerm ≥ 2, the twin chromatic index of a fullm-ary tree
T that is not a star nor a double star is m + 2 = ∆(T ) + 1. Moreover, for an odd integer m ≥ 3,
the twin chromatic index of a full m-ary tree which is a double star is determined. The following
observations will be useful.

Observation 2.1 ([2]). If a connected graph G contains two adjacent vertices of degree ∆(G),
then χ′t(G) ≥ 1 + ∆(G). In particular, if G is a connected r-regular graph for some integer r ≥ 2,
then χ′t(G) ≥ 1 + r.

Observation 2.2. If G is a connected graph that contains two vertices u and v such that

1. deg(u) = deg(v) = ∆(G);
2. both u and v are adjacent with exactly ∆(G)− 1 leaves in G; and
3. u and v are adjacent with a common vertex w in G,

then χ′t(G) ≥ ∆(G) + 1.

Proof. We just need to show that χ′t(G) 6= ∆(G). Suppose on the contrary that χ′t(G) = ∆(G);
that is, G has a twin ∆(G)-edge coloring c. Now, let u, v, and w be vertices in G that satisfy
conditions (1) − (3). Then, c(Eu) = c(Ev) = Z∆(G) and so c′(u) = c′(v) = a where a = 0

if ∆(G) is odd and a = ∆(G)
2

, otherwise. Since c is a proper edge coloring, c(uw) 6= c(vw).
Therefore, c(ux) = a or c(vx) = a for some leaf x. Then c′(x) = a, and we get a contradiction.
Hence χ′t(G) 6= ∆(G).

Note that if T is a full m-ary tree that is not a star, then ∆(T ) = m + 1. Moreover, for every
full m-ary tree T that is not a star nor a double star, T has at least two vertices with degree equal
to ∆(T ). For the rest of the paper, we shall denote by v0 the root of a rooted tree.

Lemma 2.3. If m ≥ 2 is even and T is a full m-ary tree which is not a star, then χ′t(T ) ≥ m+ 2.

Proof. Since T is a full m-ary tree which is not a star, then ∆(T ) = m + 1. Therefore, χ′t(T ) ≥
m+ 1. Let v0 be the root of T . We now consider the following cases:

Case 1. Suppose T is a double star. Then there are exactly two adjacent vertices u = v0

and v of T with degrees m and m + 1, respectively. Now, suppose T has a twin (m + 1)-edge
coloring c : E(T ) → Zm+1. Since deg(v) = m + 1, we must have c(Ev) = Zm+1. If c(uv) 6= 0,
then c(vx) = 0 for some leaf x ∈ N(v). Then c′(v) = c′(x) = 0. Thus c(uv) = 0. Since
deg(u) = m, a 6∈ c(Eu) for some a ∈ Z∗m+1. Then we have c′(u) = −a, where −a ∈ Z∗m+1,
−a 6= a. Hence c(uw) = −a for some child w of u and so c′(w) = −a and c′ becomes improper.
Hence, χ′t(T ) ≥ m+ 2.

Case 2. Suppose T has a maximum height h = 2 and T is not a double star. Then there exist
two children u and v of v0 in T such that u and v have exactly m children with deg(u) = deg(v) =
m+ 1. Therefore, by Observation 2.2, χ′t(T ) ≥ ∆(T ) + 1 = m+ 2.

Case 3. Suppose T has a maximum height h ≥ 3. Then there exist two adjacent vertices u and
v of T such that deg(u) = deg(v) = m+ 1. Therefore, by Observation 2.1, χ′t(T ) ≥ ∆(T ) + 1 =
m+ 2.
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Lemma 2.4. If m ≥ 2 is even and T is a full m-ary tree which is not a star, then χ′t(T ) = m+ 2.

Proof. By Lemma 2.3, we have χ′t(T ) ≥ m+ 2 and so we only need to show that χ′t(T ) ≤ m+ 2,
that is, T has a twin (m+2)-edge coloring. We show this by construction, that is, we will construct
an (m+ 2)-edge coloring c : E(T )→ Zm+2 of T . Let v0 be the root of T and b = m+2

2
.

First, we let c(Ev0) = Z∗m+2\{b} so that c′(v0) = 0 and c(v0z) 6= 0 for any child z of v0. In
this construction, we will completely define c(Ev) whenever c(Eu) is known for any child v of u
such that c(uv) will not be changed. We continue this until all edges of T are colored. To do that,
we will consider the following cases:

Case 1. Suppose c(uv) 6∈ { b
2
, 3b

2
}. In this case, we define c(Ev) = Zm+2\{b − c(uv)} so that

c′(v) = b− (b− c(uv)) = c(uv).
Case 2. Suppose c(uv) ∈ { b

2
, 3b

2
}. In this case, m ≡ 2 (mod 4) and b

2
, 3b

2
∈ Zm+2. Let

c(Ev) = Zm+2\{−c(uv)} so that c′(v) = b− (−c(uv)) = −c(uv).
Figure 1 shows examples of the coloring of Ev in a full 6-ary tree using the colors in Z8.

Figure 1. Possible colorings of Ev in a full 6-ary tree

From the construction of c, it follows that c is a proper (m+ 2)-edge coloring of T . Moreover,
if v is the parent of a leaf w in T , then c′(w) = c(vw) ∈ c(Ev)\{c(uv)}, so c′(w) 6= c′(v). Now, let
u and v be two adjacent internal vertices in T where u is the parent of v. If u = v0, then c′(u) = 0
and c(uv) 6= 0; since c′(v) = ±c(uv) from the consctruction, c′(v) 6= c′(u).

Now, let u 6= v0 and let c′(u) = a. If a 6∈ { b
2
, 3b

2
}, then c(uv) 6= a. So if c(uv) 6∈ { b

2
, 3b

2
}, then

c′(v) = c(uv) 6= a. On the other hand, if c(uv) ∈ { b
2
, 3b

2
}, then c′(v) = −c(uv) 6= a. Now, if

a ∈ { b
2
, 3b

2
}, then −a ∈ { b

2
, 3b

2
} and c(uv) 6∈ { b

2
, 3b

2
}. Therefore, c′(v) = c(uv) 6= a. Then for any

adjacent internal vertices u and v in T , c′(u) 6= c′(v). Therefore, c′ is also proper and so c is a twin
(m+ 2) edge coloring of T . Hence χ′t(T ) ≤ m+ 2.

Recall that a tree T is said to be r-regular or simply regular, for an integer r ≥ 2, if each vertex
of T that is not a leaf has degree r. Otherwise, T is an irregular tree.
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Lemma 2.5. If m ≥ 3 is odd and T is a full m-ary tree which is a double star, then

χ′t(T ) =

{
m+ 1, if m+ 1 ≡ 0 (mod 4),
m+ 2, if m+ 1 6≡ 0 (mod 4).

Proof. Here, T is an irregular double star. Since ∆(T ) = m+ 1, χ′t(T ) ≥ m+ 1 and by Theorem
1.4.3, χ′t(T ) ≤ ∆(T ) + 1 = m + 2. Let u and v be the vertices of T with degrees m and m + 1
respectively.

Case 1. Suppose m + 1 ≡ 0 (mod 4). We define a proper (m + 1)-edge coloring c : E(T ) →
Zm+1 by c(Ev) = Zm+1 such that c(uv) = b, where b = m+1

2
and c(Eu) = Zm+1\{ b2}. Then we

have c′(v) = b and c′(u) = b
2

and so c′(v) 6= c′(u). Moreover, c(vx) 6= b and c(uy) 6= b
2

for any
child x, y of v, u respectively. Therefore, c′ is proper. Hence c is a twin (m + 1)-edge coloring of
T and so χ′t(T ) = m+ 1.

Case 2. Suppose m + 1 6≡ 0 (mod 4). We just need to show that χ′t(T ) 6= m + 1. Suppose on
the contrary that T has a twin (m + 1)-edge coloring c : E(T ) → Zm+1. Since deg(v) = m + 1,
we must have c(Ev) = Zm+1 and so c′(v) = b, where b = m+1

2
. Thus, we must have c(uv) = b;

otherwise c(vx) = b and so c′(x) = b for some child x of v which contradicts the fact that c′ is
proper. Since deg(u) = m, 0 ∈ c(Eu); otherwise c′(u) = b and c′ becomes improper. Therefore,
c(Eu) = Zm+1\{d} for some d ∈ Z∗m+1\{b}. Then c′(u) = b − d 6= d since b is odd. But
c(uy) = b − d for some child y 6= v of u and so c′(y) = b − d and c′ becomes improper. Hence
χ′t(T ) 6= m+ 1 and so χ′t(T ) = m+ 2.

We will now determine the twin chromatic index of fullm-ary trees that are not stars nor double
stars, where m ≥ 3 is odd. First, we consider algorithm 1.
Algorithm 1. To construct a twin (m + 2)-edge coloring of a full m-ary tree T that is not a
star (m ≥ 3 is odd)

1. Let c(Ev0) = Z∗m+2\{m+ 1} such that c(v0z) = 1, for some v0z ∈ E(T ) with deg(z) 6= 1.
2. If each edge of T has been assigned a color, then we are done. Else, choose a vertex v ∈
V (T ) with the parent u such that c(Eu) is completely determined, but not c(Ev).
We define c(Ev) such that c(uv) will not be changed. Unless stated otherwise, we assign the
colors to the edges arbitrarily.
Let A = {0, c(uv),−c(uv),−c′(u)} ⊂ Zm+2 and suppose v is k-ancestor, k ≥ 1.

3. If k ≥ 3:
(a) if c(uv) 6= 0, let c(Ev) = Zm+2\{a} for some a 6∈ A such that c(vy) = −a and

c(vw) = 0 for some children y and w of v, where deg(y) 6= 1 and w is not 1-ancestor;
(b) if c(uv) = 0, let c(Ev) = Zm+2\{c′(u)} such that c(vw) = −c′(u) for some child w of

v with deg(w) 6= 1;
4. If k = 2:

(a) if c(uv) 6= 0, let c(Ev) = Z∗m+2;
(b) if c(uv) = 0, follow #3.b;

5. If k = 1:
(a) if c′(u) = 0, let c(Ev) = Zm+2\{−c(uv)};
(b) if c′(u) 6= 0, let c(Ev) = Z∗m+2;
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We show in the proof of Lemma 2.6 that Algorithm 1 produces a twin (m + 2)-edge coloring
for any full m-ary tree T that is not a star nor a double star if m ≥ 3 is odd.

Lemma 2.6. If m ≥ 3 is odd and T is a full m-ary tree which is not a star nor a double star, then
χ′t(T ) = m+ 2.

Proof. Using similar arguments in Cases 2 and 3 of Lemma 2.3, we have χ′t(T ) ≥ m + 2. Then
we just need to show that χ′t(T ) ≤ m+ 2, that is, T has a twin (m+ 2)-edge coloring. We do this
by proving that Algorithm 1 produces a twin (m+ 2)-edge coloring for T . Let v0 be the root of T .
Let c : E(T )→ Zm+2 be an (m+ 2)-edge coloring of T obtained by applying Algorithm 1.

In Steps 1 through 5, c(e) 6= c(e′) for any adjacent edges e and e′ in T and so c is proper. In
Step 1, c′(v0) = 1 and if there is a child z of v0 that is a leaf, then c′(z) 6= 1 and so c′(v0) 6= c′(z).

In Step 3, c′(v) 6= 0 since 0 ∈ c(Ev). Now, since u is (k + 1)-ancestor, k ≥ 3, c(Eu) is also
determined in Step 3 before c(Ev) or in Step 1 if u = v0. Therefore, for any vertex v of T , where
v is k-ancestor, k ≥ 3, c′(v) 6= 0. If c(uv) 6= 0, then c′(v) = −a 6= c′(u). If c(uv) = 0, then
c′(v) = −c′(u) 6= 0 and so c′(u) 6= c′(v).

In Step 4, c′(u) 6= 0 since c(Eu) is determined in Step 3 or Step 1. If c(uv) 6= 0, then c′(v) = 0
and so c′(u) 6= c′(v). If c(uv) = 0, then c′(v) = −c′(u) 6= 0 and so c′(u) 6= c′(v). In any case,
c(vw) 6= 0 for any child w of v.

Therefore, in Step 5, all possible values for c(uv) and c′(u) are considered. Now, if c′(u) = 0,
then c′(v) = c(uv) and so c′(u) 6= c′(v); if c′(u) 6= 0, then c′(v) = 0 and so c′(u) 6= c′(v).

Moreover, in Steps 3 through 5, c′(z) 6= c′(v) whenever z is a child of v that is a leaf. Therefore,
c′(u) 6= c′(v) for any adjacent vertices u and v of T and so c′ is proper. Hence, c is a twin (m+ 2)-
edge coloring for T .

In summary, we have the following theorem.

Theorem 2.7. Let m ≥ 2 and T be a full m-ary tree that is not a star. Then χ′t(T ) = m + 1 if T
is a double star and m ≡ −1 (mod 4) and χ′t(T ) = m+ 2, otherwise.

Therefore, χ′t(T ) = ∆(T ) + 1 for every full m-ary tree T that is not a star nor a double star,
where m ≥ 2. We will now work on the twin edge colorings in m-ary trees that are not full in the
next section.

3. Non Full m-ary Trees

In the following discussion, we let S ⊂ Zn and S ′ = {s ∈ S | −s 6∈ S}. Also, for an m-ary
tree T with ∆(T ) = m, we fix the root v0 of T so that deg(v0) = m. If m is even, we let b = m+2

2
.
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Figure 2. A twin 5-edge coloring of a 3-ary tree produced by Algorithm 1

Algorithm 2. To construct a twin (m + 2)-edge coloring of a tree T that is not a star with
∆(T ) = m (m ≥ 3 is odd)

1. Let c(Ev0) = Z∗m+2\{m+ 1} such that c(v0z) = 1 for some v0z ∈ E(T ) with deg(z) 6= 1.
2. If each edge of T has been assigned a color, then we are done. Else, choose a vertex v ∈
V (T ) with the parent u such that c(Eu) is completely determined, but not c(Ev).
We define c(Ev) such that c(uv) will not be changed. We define c(Ev) to be a set S ⊂ Zm+2

with |S| = |Ev|, such that conditions in each case are satisfied. Note that this set may not be
unique. If deg(v) = 2, we just define the color of the uncolored edge vw ∈ Ev.
Let A = {0, c(uv),−c(uv), c′(u)} ⊂ Zm+2 and suppose v is k-ancestor, k ≥ 1.

3. If k ≥ 3:
(a) if deg(v) is odd:

i. if c(uv) 6= 0 and c′(u) 6= −c(uv), let 0 6∈ S and S ′ = {a} for some a ∈ Zm+2 \A,
such that c(vw) = a for some child w of v with deg(w) 6= 1;

ii. if c(uv) = 0 and c′(u) 6= 0, let S ′ = ∅;
(b) if deg(v) > 2 is even:
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i. if c(uv) 6= 0 and c′(u) 6= −c(uv), let 0 ∈ S, S ′ = {a} for some a ∈ Zm+2 \ A,
c(vy) = 0 and c(vw) = a for some children y andw of v, where y is not 1-ancestor
and deg(w) 6= 1;

ii. if c(uv) = 0 and c′(u) 6= 0, let S ′ = {−c′(u)}, such that c(vw) = −c′(u) for some
child w of v with deg(w) 6= 1;

(c) if deg(v) = 2:
i. if c(uv) = 0 and c′(u) 6= 0, let c(vw) = −c′(u);

ii. if c(uv) 6= 0 and c′(u) 6∈ {0,−c(uv)}, let c(vw) = −c(uv);
iii. if c(uv) 6= 0 and c′(u) = 0, let c(vw) = −2c(uv);

4. If k = 2:
(a) if deg(v) is odd, follow #3.a;
(b) if deg(v) is even:

i. if c(uv) 6= 0 and c′(u) 6= 0, let 0 6∈ S and S ′ = ∅;
ii. if c(uv) 6= 0 and c′(u) = 0, let0 6∈ S and S ′ = {−2c(uv), c(uv)};

iii. if c(uv) = 0 and c′(u) 6= 0, let S ′ = {−c′(u)}, such that c(vw) = −c′(u) for some
child w of v with deg(w) 6= 1;

5. If k = 1:
(a) if deg(v) is odd:

i. if c(uv) = c′(u) 6= 0, let 0 ∈ S and S ′ = {−2c(uv), c(uv)};
ii. if c(uv) 6= 0 and c′(u) 6= c(uv), let 0 6∈ S and S ′ = {c(uv)};

(b) if deg(v) is even:
i. if c(uv) 6= 0 and c′(u) 6= 0, let 0 6∈ S and S ′ = ∅;

ii. if c(uv) 6= 0 and c′(u) = 0, let 0 ∈ S and S ′ = {c(uv)};

Figure 3. A twin 5-edge coloring of a 3-ary tree produced by Algorithm 2

We will prove in the following lemma that, for an odd integer m ≥ 3, Algorithm 2 produces a
twin (m+ 2)-edge coloring of a tree T that is not a star and with ∆(T ) = m.

Lemma 3.1. If m ≥ 3 is odd and T is a tree which is not a star with ∆(T ) = m, then Algorithm
2 produces a twin (m+ 2)-edge coloring of T . Therefore, χ′t(T ) ≤ m+ 2.
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Table 1. Values for c(vw) and c′(v) produced by Algorithm 2

Cases
c(vw), w is a child of v c′(v)

# c(uv) c′(u)
1 NA NA 6∈ {0,m+ 1} c′(v0) = 1

3.a.i 6= 0 6= −c(uv) 6∈ {0,−a, c(uv)} a
3.a.ii 0 6= 0 6= 0 0
3.b.i 6= 0 6= −c(uv) 6∈ {−a, c(uv)} a
3.b.ii 0 6= 0 6∈ {0, c′(u)} −c′(u)
3.c.i 0 6= 0 −c′(u) −c′(u)
3.c.ii 6= 0 6∈ {0,−c(uv)} −c(uv) 0
3.c.iii 6= 0 0 −2c(uv) −c(uv)
4.b.i 6= 0 6= 0 6∈ {0, c(uv)} 0
4.b.ii 6= 0 0 6∈ {0, 2c(uv), c(uv),−c(uv)} −c(uv)
4.b.iii 0 6= 0 6∈ {0, c′(u)} −c′(u)
5.a.i 6= 0 c(uv) 6∈ {2c(uv), c(uv),−c(uv)} −c(uv)
5.a.ii 6= 0 6= c(uv) 6∈ {0, c(uv),−c(uv)} c(uv)
5.b.i 6= 0 6= 0 6∈ {0, c(uv)} 0
5.b.ii 6= 0 0 6∈ {c(uv),−c(uv)} c(uv)

Proof. Let c : E(T )→ Zm+2 be an (m+ 2)-edge coloring of T produced by Algorithm 2. Then c
is a proper edge coloring from the construction. We need to show that c′ is also proper.

In Step 1, c′(v0) = 1 and if there is a child z of v0 that is a leaf, then c′(z) 6= 1 and so
c′(v0) 6= c′(z). Moreover, we obtain the cases (c(uv), c′(u)) = (d, 1), where d ∈ Z∗m+2\{m + 1}
from Step 1 and all these cases are considered in Steps 3 to 5.

Now, in Step 3, by considering all the cases obtained from Step 1, we obtain new cases
(c(uv), c′(u)) = (0, d), (d, 0), (d, e), where d 6= 0, e 6= 0 and e 6= −d. These new cases are
also considered in Step 3 and do not produce the cases (c(uv), c′(u)) = (0, 0) nor (d,−d), d 6= 0.
Observe that only the cases considered in Step 3 should be considered in Step 4. Moreover, for any
vertex v that is a 1-ancestor, the case that c(uv) = 0 will not occur. Therefore, all possible cases
for the value of (c(uv), c′(u)) are considered in Steps 3 to 5.

In Steps 1, 3, 4, 5, we obtain the values for c(vw) and c′(v) which are presented in Table 3.
As shown in the table, for any vertex v of T that is a k-ancestor, k ≥ 1, c′(v) 6= c′(u) if u is
the parent of v. Moreover, in Steps 3 to 5, c′(z) 6= c′(v) whenever z is a child of v that is a leaf.
Therefore, c′(u) 6= c′(v) for any adjacent vertices u and v of T and so c′ is proper. Hence, c is a
twin (m+ 2)-edge coloring of T .
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Algorithm 3. To construct a twin (m+ 2)-edge coloring of a tree T with ∆(T ) = m (m ≥ 4 is
even)

1. Let c(Ev0) = Z∗m+2\{r}, where r 6∈ {0, b}, such that c(v0z) = b − r for some v0z ∈ E(T )
with deg(z) 6= 1 if b− r ∈ c(Ev0).

2. If each edge of T has been assigned a color, then we are done. Else, choose a vertex v ∈
V (T ) with the parent u such that c(Eu) is completely determined, but not c(Ev).
We define c(Ev) such that c(uv) will not be changed. We define c(Ev) to be a set S ⊂ Zm+2

with |S| = |Ev|, such that conditions in each case are satisfied. Note that this set may not be
unique. If deg(v) = 2, we just define the color of the uncolored edge vw ∈ Ev.
LetA = Z∗m+2\{b, b2 ,

3b
2
} and suppose v is k-ancestor, k ≥ 1. Note that ifm+2 6≡ 0 (mod 4),

then b
2
, 3b

2
6∈ Zm+2.

3. If k ≥ 3:
(a) if deg(v) is odd:

i. if c(uv) ∈ Z∗m+2\{b} and c′(u) 6= c(uv), let 0, b 6∈ S and S ′ = {c(uv)};
ii. if c(uv) ∈ Z∗m+2\{b} and c′(u) = c(uv), let 0, b 6∈ S and S ′ = {r}, for some

r 6∈ {0, b, c(uv),−c(uv)} such that c(vw) = r for some childw of v with deg(w) 6=
1;

iii. if c(uv) ∈ {0, b} and c′(u) 6∈ {0, b}, let b+ c(uv) 6∈ S and S ′ = ∅;
(b) if deg(v) > 2 is even:

i. if c(uv) ∈ A and c′(u) 6= c(uv), let b ∈ S, 0 6∈ S, and S ′ = {c(uv)− b};
ii. if c(uv) ∈ A and c′(u) = c(uv), let b ∈ S, 0 6∈ S, and S ′ = {−c(uv) − b}, such

that c(vw) = −c(uv) for some child w of v with deg(w) 6= 1;
iii. if c(uv) ∈ {0, b} and c′(u) 6∈ {0, b}, let b+c(uv) 6∈ S and S ′ = {−c′(u)−c(uv)},

such that c(vw) = −c′(u) for some child w of v with deg(w) 6= 1 if −c′(u) ∈ S;
iv. if c(uv) ∈ { b

2
, 3b

2
} and c′(u) 6= c(uv), let 0 ∈ S, b 6∈ S and S ′ = {c(uv)}, such

that c(vy) = 0 for some child y of v that is not 1-ancestor;
v. if c(uv) ∈ { b

2
, 3b

2
} and c′(u) = c(uv), let 0 ∈ S, b 6∈ S, and S ′ = {r} ⊂ A, such

that c(vy) = 0 and c(vw) = r for some children y and w of v, where y is not
1-ancestor and deg(w) 6= 1;

(c) if deg(v) = 2:
i. if c(uv) 6∈ {0, b} and c′(u) 6= c(uv), let c(vw) = 0;

ii. if c(uv) = c′(u) ∈ A, let c(vw) = b;
iii. if c(uv) ∈ {0, b} and c′(u) 6∈ {0, b}, let c(vw) = −c′(u)− c(uv);
iv. if c(uv) ∈ { b

2
, 3b

2
} and c′(u) = c(uv), let c(vw) = −c(uv);

4. If k = 2:
(a) if deg(v) is odd, follow #3.a;
(b) if deg(v) > 2 is even:

i. if c(uv) 6∈ { b
2
, 3b

2
}, follow #3.b;

ii. if c(uv) ∈ { b
2
, 3b

2
} and c′(u) 6= 0, let 0, b 6∈ S and S ′ = ∅;

iii. if c(uv) ∈ { b
2
, 3b

2
} and c′(u) = 0, let b ∈ S, 0 6∈ S and S ′ = {c(uv)};

(c) if deg(v) = 2:
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i. if c(uv) 6∈ {0, b} and c′(u) 6= 0, let c(vw) = −c(uv);
ii. if c(uv) 6∈ {0, b} and c′(u) = 0, let c(vw) = b;

iii. if c(uv) ∈ {0, b} and c′(u) 6∈ {0, b}, let c(vw) = −c′(u)− c(uv);
5. If k = 1:

(a) if deg(v) is odd:
i. if c(uv) = c′(u) ∈ A, let 0, b ∈ S, b+ c(uv) 6∈ S, and S ′ = {c(uv)};

ii. if c(uv) 6∈ {0, b} and c′(u) 6= c(uv), let 0, b 6∈ S and S ′ = {c(uv)};
iii. if c(uv) 6= b with c′(u) 6∈ {0, b}, let S ′ = ∅;
iv. if c(uv) ∈ { b

2
, 3b

2
} with c′(u) = c(uv), let 0, b ∈ S and S ′ = {c(uv)};

(b) if deg(v) is even:
i. if c(uv) ∈ A and c′(u) 6= 0, let 0, b 6∈ S and S ′ = ∅;

ii. if c(uv) ∈ A and c′(u) = 0, let 0 ∈ S, b 6∈ S and S ′ = {c(uv)};
iii. if c(uv) = b and c′(u) 6∈ {0, b}, let 0 ∈ S and S ′ = ∅;
iv. if c(uv) ∈ { b

2
, 3b

2
} and c′(u) 6= c(uv), let 0 ∈ S, b 6∈ S and S ′ = {c(uv)};

v. if c(uv) ∈ { b
2
, 3b

2
} and c′(u) = c(uv), let b ∈ S, 0 6∈ S and S ′ = {c(uv)};

Figure 4. A twin 6-edge coloring of a 4-ary tree produced by Algorithm 3

We will prove in Lemma 3.2 that Algorithm 3 is valid.

Lemma 3.2. If m ≥ 4 is even and T is a tree which is not a star with ∆(T ) = m, then Algorithm
3 produces a twin (m+ 2)-edge coloring of T . Therefore, χ′t(T ) ≤ m+ 2.
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Proof. Let c : E(T )→ Zm+2 be an (m+ 2)-edge coloring of T produced by Algorithm 3. Then c
is a proper edge coloring from the construction. We need to show that c′ is also proper.

In Step 1, c′(v0) = 0 and if there is a child z of v0 that is a leaf, then c′(z) 6= 0 and so
c′(v0) 6= c′(z). Moreover, we obtain the cases (c(uv), c′(u)) = (d, 0), where d ∈ Z∗m+2\{b} from
#1 and all these cases are considered in Steps 3 to 5.

We will now refer to Table 3 for the possible values of (c(uv), c′(u)) that should be considered
in Steps 3, 4 and 5. The only cases that are not covered in Steps 3 and 4 are (c(uv), c′(u)) =
(f, b + f) and (f, f) where f = 0 or b. But these cases will not arise in Steps 3 and 4. In case of
step 5, the following case is also not covered: (c(uv), c′(u)) = (0, d), d 6= 0, b. It can be checked
that the case (c(vw), c′(v)) = (0, d), d 6= 0, b will not occur in Steps 1, 3, and 4 if w is 1-ancestor.

Now, Table 3 also shows that for any vertex v of T , where v is k-ancestor, k ≥ 1, c′(v) 6= c′(u)
(u is the parent of v). Moreover, in #3−#5, c′(z) 6= c′(v) whenever z is a child of v that is a leaf.
Therefore, c′(u) 6= c′(v) for any adjacent vertices u and v of T and so c′ is proper. Hence, c is a
twin (m+ 2)-edge coloring of T .

Theorem 3.3. If T is a tree of order at least 3, then χ′t(T ) ≤ ∆(T ) + 2.

Proof. If T is a path, then by Theorem 1.2.1, χ′t(T ) = 3 = ∆(T ) + 1. If T is a star, then by
Theorem 1.2.4, χ′t(T ) = ∆(T ) + 1 or ∆(T ) + 2. Moreover, if T is not a path nor a star, then by
Lemmas 3.1 and 3.2, χ′t(T ) ≤ ∆(T ) + 2.

Theorem 3.4. Let T be a tree that is not a star with ∆(T ) ≥ 4. If there exists v ∈ V (T ) such that
deg(v) = ∆(T ) and v is adjacent to a leaf in T , then T has a twin (∆(T ) + 1)-edge coloring and
χ′t(T ) ≤ ∆(T ) + 1.

Proof. Suppose there exist u, v ∈ V (T ) such that deg(v) = ∆(T ), u is a leaf and u ∈ NT (v). Let
T ∗ be the tree obtained from T by removing the edge uv. We can take T ∗ as a full (∆(T )− 1)-ary
tree that is not a star and with root v. By Theorem 3.3, χ′t(T

∗) = (r − 1) + 2 = r + 1. Moreover,
by Algorithm 1, T ∗ has a twin (r + 1)-edge coloring c∗ with induced vertex coloring c∗′ such that
c∗
′
(v) 6= 0 and c∗(vw) 6= 0 for each w ∈ NT ∗(v). Define the edge coloring c of T by c(e) = c∗(e)

if e ∈ E(T ∗) and c(uv) = 0. Therefore, c is a twin (r + 1)-edge coloring of T .

Let us now determine the twin chromatic indices of some m-ary trees T that are not full with
∆(T ) = m. We first show in the next theorem that for an even integer r ≥ 2, the twin chromatic
index of an r-regular tree that is not a star nor a double star is r + 1.

Theorem 3.5. If r ≥ 2 is even and T is an r-regular tree that is not a star nor a double star, then
χ′t(T ) = r + 1.

Proof. If r = 2, then T is a path Pn, n ≥ 5 and so by Theorem 1.2, χ′t(T ) = 3 = r + 1. We
now assume that r ≥ 4. By Observations 2.1 and 2.2, χ′t(T ) ≥ r + 1 and so we just need to show
that T has a twin (r + 1)-edge coloring. Let u, v ∈ V (T ) such that u is a leaf and u ∈ NT (v).
Then deg(v) = r. Let T ∗ be the tree obtained from T by removing the edge uv. We can take
T ∗ as a full (r − 1)-ary tree that is not a star nor a double star and with root v. By Theorem 2.6,
χ′t(T

∗) = (r − 1) + 2 = r + 1. Moreover, by Algorithm 1, T ∗ has a twin (r + 1)-edge coloring
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Table 2. Values for c(vw) and c′(v) produced by Algorithm 3

Cases
c(vw), w is a child of v c′(v)

# c(uv) c′(u)
1 NA NA 6= 0 b− r

3.a.i 6∈ {0, b} 6= c(uv) 6∈ {0, b,±c(uv)} c(uv)
3.a.ii 6∈ {0, b} c(uv) 6∈ {0, b,−r, c(uv)} r
3.a.iii ∈ {0, b} 6∈ {0, b} 6∈ {0, b} c(uv)
3.b.i ∈ A 6= c(uv) 6∈ {0, b− c(uv), c(uv)} c(uv)
3.b.ii ∈ A c(uv) 6∈ {0, b+ c(uv), c(uv)} −c(uv)
3.b.iii ∈ {0, b} 6∈ {0, b} 6∈ {0, b, c′(u) + c(uv)} −c′(u)

3.b.iv ∈ { b
2
, 3b

2
} 6= c(uv) 6∈ {b,±c(uv)} c(uv)

3.b.v ∈ { b
2

3b
2
} c(uv) 6∈ {b,−r, c(uv)} r

3.c.i 6∈ {0, b} 6= c(uv) 0 c(uv)
3.c.ii ∈ A c(uv) b b+ c(uv)
3.c.iii ∈ {0, b} 6∈ {0, b} −c′(u)− c(uv) −c′(u)

3.c.iv ∈ { b
2
, 3b

2
} c(uv) −c(uv) 0

4.b.ii ∈ { b
2
, 3b

2
} 6= 0 6∈ {0, b, c(uv)} 0

4.b.iii ∈ { b
2
, 3b

2
} 0 6∈ {0,±c(uv)} −c(uv)

4.c.i 6∈ {0, b} 6= 0 −c(uv) 0
4.c.ii 6∈ {0, b} 0 b b+ c(uv)
4.c.iii ∈ {0, b} 6∈ {0, b} −c′(u)− c(uv) −c′(u)
5.a.i ∈ A c(uv) 6∈ {±c(uv), b± c(uv)} b+ c(uv)
5.a.ii 6∈ {0, b} 6= c(uv) 6∈ {0, b,±c(uv)} c(uv)
5.a.iii b 6∈ {0, b} 6∈ {0, b} b

5.a.iv ∈ { b
2
, 3b

2
} c(uv) 6∈ {±c(uv)} −c(uv)

5.b.i ∈ A 6= 0 6∈ {0, b, c(uv)} 0
5.b.ii ∈ A 0 6∈ {b,±c(uv)} c(uv)
5.b.iii b 6∈ {0, b} 6= b b

5.b.iv ∈ { b
2
, 3b

2
} 6= c(uv) 6= {b,±c(uv)} c(uv)

5.b.v ∈ { b
2
, 3b

2
} c(uv) 6∈ {0,±c(uv)} −c(uv)
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c∗ with induced vertex coloring c∗′ such that c∗′(v) 6= 0 and c∗(vw) 6= 0 for each w ∈ NT ∗(v).
Define the edge coloring c of T by c(e) = c∗(e) if e ∈ E(T ∗) and c(uv) = 0. Therefore, c is a
twin (r + 1)-edge coloring of T .

Let K1,m be a star graph with V (K1,m) = {vi : i ∈ {0, 1, . . . ,m}} and E(K1,m) = {ei =
v0vi : 1 ≤ i ≤ m}. A generalized star graph S(n1, n2, . . . , nm) is a tree obtained from the star
graphK1,m by replacing each edge ei ofK1,m with Pni

, ni ≥ 2 such that V (Pni
) = {vi0, . . . , vini−1},

E(Pni
) = {eij = vijv

i
j+1 : 0 ≤ j ≤ ni − 2} and v0 = vi0, 1 ≤ i ≤ m. The generalized star graph

S(2, 4, 3, 3, 5, 2) is shown in Figure 5. We determine the chromatic indices of all generalized star
graphs that are not paths nor stars.

Figure 5. The generalized star graph

Theorem 3.6. Let G = S(n1, n2, n3) be a generalized star graph such that ni > 3 for at least one
i ∈ {1, 2, 3}. If ni 6≡ 0 (mod 3) for some ni > 3 and ni 6≡ 1 (mod 3) for at least two i ∈ {1, 2, 3},
then χ′t(G) = 3. Otherwise, χ′t(G) = 4.

Proof. Case 1. Suppose ni 6≡ 0 (mod 3) for some ni > 3 and ni 6≡ 1 (mod 3) for at least two
i ∈ {1, 2, 3}. Without loss of generality, let us assume that n1 > 3 and n1 6≡ 0 (mod 3). Moreover,
we take n1 ≡ 1 (mod 3) if such an ni exists. Therefore, n2, n3 6≡ 1 (mod 3). We will construct
a 3-edge coloring c : E(G) → Z3. First, define c(Ev0) = Z3 such that c(e1

0) = 0. Therefore,
c′(v0) = 0 6= c′(vi1) in each path Pni

if ni = 2 and c′(vi1) 6= c(ei1) = c′(vi2) in each path Pni
if

ni = 3.
Let c(e1

j) = j mod 3 for all 1 ≤ j ≤ n1 − 2. Since n1 6≡ 0 (mod 3), c(e1
n1−3) 6= 0 and so

c′(v1
n1−2) 6= c(e1

n1−2) = c′(v1
n1−1).

In each path Pnl
with nl > 2 if any, with c(el0) 6= 0, we let c(elj) = c(el0) ∗ (1 − j)mod 3 for

1 ≤ j ≤ nl − 2. Note that nl 6≡ 1 (mod 3) and so nl − 3 6≡ 1 (mod 3). Then c(elnl−3) 6= 0 and so
c′(vlnl−2) 6= c(elnl−2) = c′(vlnl−1).

From the construction, we observe that c is a proper edge coloring. Now, for each path Pni
,

i ∈ {1, 2, 3}, we have c′(v0) 6= c′(vi1) and c′(vini−2) 6= c′(vini−1). Moreover, for each path Pnq with
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nq ≥ 4 and 0 ≤ j ≤ nq − 4, we have c(eqj) 6= c(eqj+2) and so c′(vqj+1) 6= c′(vqj+2). Hence, c′ is also
proper and so c is a twin 3-edge coloring of G.

Case 2. Suppose ni ≡ 0 (mod 3) for all ni > 3 or ni ≡ 1 (mod 3) for at least two i ∈ {1, 2, 3}.
We will show that χ′t(G) 6= 3, that is, G has no twin 3-edge coloring. Suppose on the contrary that
G has a twin 3-edge coloring c. Then, we must have c(Ev0) = Z3, c′(v0) = 0 and c(ek0) = 0 for
some path Pnk

, where nk > 3. If nk ≡ 0 (mod 3), then we must have c(ekj ) = (j ∗ a)mod 3 where
a = 1 or 2, for 1 ≤ j ≤ nk−2. Since nk ≡ 0 (mod 3), nk−3 ≡ 0 (mod 3). Therefore, c(eknk−3) = 0
and so c′(vknk−2) = a = c′(vknk−1) which contradicts the assumption that c′ is proper. Hence, we
must not let c(ek0) = 0 for any path Pnk

, where nk > 3 and nk ≡ 0 (mod 3); moreover, this implies
that χ′t(G) 6= 3 whenever ni ≡ 0 (mod 3) for all ni > 3. Now, suppose that ni ≡ 1 (mod 3) for
at least two i ∈ {1, 2, 3}. If χ′t(G) = 3, then c(el0) 6= 0 for some path Pnl

, where nl ≡ 1 (mod 3)
and so we must have c(elj) = c(el0) ∗ (1 − j)mod 3 for 1 ≤ j ≤ nl − 2. Since nl ≡ 1 (mod 3),
nl − 3 ≡ 1 (mod 3). Therefore, c(elnl−3) = 0 and so c′(vlnl−2) = −c(el0) = c′(vlnl−1) which
contradicts the assumption that c′ is proper. Hence, χ′t(G) 6= 3.

It remains to show that G has a twin 4-edge coloring c : E(G) → Z4. Let c(Ev0) = Z∗4, such
that c(ek0) = 2 for some path Pnk

, where nk 6= 2 so that c′(v0) = 2 and c′(vl1) 6= 2 in each path Pnl

with nl = 2 (if any). For each path Pni
(ni ≥ 3) and for each j ∈ {1, . . . , ni − 2}, we let

c(eij) =


a, if j ≡ 1 (mod 3),
b, if j ≡ 2 (mod 3),
c(ei0), if j ≡ 0 (mod 3),

where a and b are the two distinct elements of Z∗4\{c(ei0)}. Then c is proper edge coloring. Now,
for any path Pni

, i ∈ {1, 2, 3}, c′(vi1) 6= 2 and c′(vini−2) 6= c′(vini−1). Moreover, (using the same
argument in Case 1), for each path Pnq with nq ≥ 4 and 1 ≤ j ≤ nq−3, we have c′(vqj ) 6= c′(vqj+1).
Hence, c′ is also proper and so c is a twin 4-edge coloring of G.

Theorem 3.7. Let m ≥ 4 and G = S(n1, n2, . . . , nm) be a generalized star graph. If ni > 3 for
at least one i ∈ {1, . . . ,m}, then χ′t(G) = m.

Proof. Since ∆(G) = m, χ′t(G) ≥ m. We need to show that G has a twin m-edge coloring. We
will construct an m-edge coloring c : E(G)→ Zm in G. Let c(Ev0) = Zm such that;

• if m is odd, c(ek0) = 0 for some path Pnk
, where nk > 3; and

• if m is even, c(ek0) = m
2

for some path Pnk
, where nk 6= 2 and c(el0) = 0 for some path Pnl

,
where nl 6= 3;

so that c′(v0) 6= c′(vi1) for each path Pni
, ni = 2 (if any). Moreover, this coloring assures us that

c′(vi1) 6= c′(vi2) whatever the color of ei1 for each path Pni
, ni = 3 (if any).

For the path Pni
with ni > 3, c(ei0) = 0 and for each j ∈ {1, . . . , ni − 2}, we let

c(eij) =

{
j mod 3, if j 6≡ 0 (mod 3),
3, otherwise.
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For each path Pni
with ni 6= 2 and c(ei0) 6= 0 and for each j ∈ {1, . . . , ni − 2}, we let

c(eij) =


a, if j ≡ 1 (mod 3),
b, if j ≡ 2 (mod 3),
c(ei0), if j ≡ 0 (mod 3),

where a and b are two distinct elements of Z∗m\{c(ei0)} for which c(ei0) + a 6≡ c′(v0) (mod m).
In any case, c is a proper edge coloring. Now, for any path Pnq in G, we have c′(vq1) 6= c′(vq0)

and if nq 6= 2, c(eqnq−3) 6= 0 and so c′(vqnq−2) 6= c′(vqnq−1). Moreover, for any path Pnq with nq ≥ 4
and 0 ≤ j ≤ nq − 4, we have c(eqj) 6= c(eqj+2) and so c′(vqj+1) 6= c′(vqj+2). Hence, c′ is also proper
and so c is a twin m-edge coloring of G.

Theorem 3.8. Let m ≥ 3 and G = S(n1, n2, . . . , nm) be a generalized star graph that is not a
star with ni ≤ 3 for all i ∈ {1, 2, . . .m}. Then

χ′t(G)) =

{
m, if m is even and nj = 2 for some j,
m+ 1, otherwise.

Proof. Case 1. Suppose that nj = 2 for some j ∈ {1, . . . ,m} and m is even. We show that G has
a twin m-edge coloring c : E(G) → Zm. Without loss of generality, we suppose that n1 = 3 and
n2 = 2. Let c(Ev0) = Zm such that c(e1

0) = m
2

and c(e2
0) = 0. Then c′(v0) = m

2
and for each leaf

z ∈ N(v0), c′(z) 6= m
2

. Now, let c(e1
1) = 1 and let c(eq1) = 0 for each q 6= 1 with nq = 3 so that

c′(v0) 6= c′(vi1) and c′(vi1) 6= c′(vi2) for each path Pni
, ni = 3. Hence c is a twin m-edge coloring.

Case 2. Suppose m is odd. Then G has no twin m-edge coloring since whenever 0 is assigned
to any of the m adjacent edges, the coloring will induce an improper vertex coloring as shown in
Figure 6. We now show that G has twin (m + 1)-edge coloring c : E(G) → Zm+1. Let n1 = 3.
Let c(Ev0) = Z∗m+1 such that c(e1

0) = m+1
2

so that c′(v0) = m+1
2

and for each leaf z ∈ N(v0),
c′(z) 6= m+1

2
. Now, let c(e1

1) = 1 and let c(el1) = 0 for each path Pnl
, nl = 3, l 6= 1, so that

c′(vi0) 6= c′(vi1) and c′(vi1) 6= c′(vi2) for each path Pni
, ni = 3. Hence c is a twin (m + 1)-edge

coloring.

Figure 6. Some improper vertex colorings in G

Case 3. Suppose m is even and ni = 3 for all i ∈ {1, 2, . . .m}. Using a similar argument in
Case 2 shown in Figure 6.a, we conclude that χ′t(G) 6= m. To complete the proof, we will construct

147



www.ejgta.org

On twin edge colorings in m-ary trees | J. Tolentino et al.

a twin (m + 1)-edge coloring c : E(G) → Zm+1. Define c by c(Ev0) = Z∗m+1 and for each path
Pni

in G, let c(i1) = 0. Then, c is a proper edge coloring. Moreover, 0 = c′(v0) 6= c′(vi1) and
c′(vi1) 6= c′(vi2) = 0 for each path Pni

in G. Hence, c′ is also proper and so c is a twin (m+ 1)-edge
coloring of G.

We summarize Theorems 3.6, 3.7, and 3.8 in the following theorem.

Theorem 3.9. Let G = S(n1, . . . , nm) be a generalized star graph that is not a star.

1. Let m = 3. Then χ′t(G) = 4 if any of the following holds:
(a) each ni ≤ 3,
(b) ni ≡ 1 (mod 3) for at least two i,
(c) at least one ni > 3 and nj ≡ 0 (mod 3) whenever nj > 3.

Otherwise, χ′t(G) = 3.
2. Let m ≥ 4. Then χ′t(G) = m + 1 if either (m is odd and each ni ≤ 3) or (m is even and

each ni = 3); otherwise, χ′t(G) = m.

Therefore by Theorems 1.2.1, 1.2.4 and the results in sections 2 and 3, Conjecture 1.3 is already
verified for all trees. We learned that in Theorem 3.5 that for every r-regular tree T that is not a star
nor a double star, r ≥ 2 is even, the twin chromatic index of T is r + 1. Moreover, in Theorems
3.6, 3.7 and 3.8, we saw that for a generalized star graph G = S(n1, . . . , nm) that is not a path nor
a star, the twin chromatic index of G is either m or m+ 1.
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