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Abstract

In this article, we propose a new type of square matrix associated with an undirected graph by
trading off the natural embedded symmetry in them. The proposed matrix is defined using the
neighbourhood sets of the vertices, called as neighbourhood matrix "M (G). The proposed matrix
also exhibits a bijection between the product of the two graph matrices, namely the adjacency
matrix and the graph Laplacian. Alternatively, we define this matrix by using the breadth-first
search traversals from every vertex, and the subgraph induced by the first two levels in the level
decomposition from that vertex. The two levels in the level decomposition of the graph give us
more information about the neighbours along with the neighbours-of-neighbour of a vertex. This
insight is required and is found useful in studying the impact of broadcasting on social networks,
in particular, and complex networks, in general. We establish several properties of N M (G).
Additionally, we also show how to reconstruct a graph G, given an N'M (G). The proposed matrix
also solves many graph-theoretic problems using less time complexity in comparison to the existing
algorithms.!
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1. Introduction

In the study of complex and social networks, one of the interesting and challenging problems
is to study the impact of a change that occurs to a node. In the literature, such studies are carried
out to analyse the network’s behavioural changes both locally as well as globally, [12]. One such
problem is to reconstruct a graph when partial information is known and to predict the dynamical
changes occurring in a network. To tackle this problem, we were determined to approach it by
studying graphs through their matrices.

Matrices play a vital role in the study of graphs and their representations. Among all the
graph matrices, adjacency matrix and Laplacian matrix has received extensive attention due to
their symmetric nature and the ability to exhibit various properties [2, 6, 9]. In the literature, many
other types of matrices have been associated with a graph [1, 3, 7, 9, 10]. The spectral studies on
graph matrices have also received extensive attention in the literature [8, 11, 13]. For an undirected
graph, most of the matrices are symmetric and not of help to solve our problem. Further, in [4], the
authors discuss the product of two graphs and its representation using the product of the adjacency
matrices of the graphs. Also, powers of adjacency matrix and square of distance matrix has also
been studied in the literature [3]. However, there is no literature dealing with the product of two
types of matrices of a graph.

In this paper, we handle one such problem involved in defining, analysing and correlating the
product of graph matrices with the graph and several of its properties. To this end, we propose a
novel representative matrix for a graph referred to as N'M(G). We first define this matrix by using
the notion of the neighbourhood of a vertex in a graph and then endorse its relationship with the
product of two different types of graph matrices. We make sure that the matrix that we are defining
in this paper is not always symmetric, and this helps us in proving many network properties quite
easily.

The organisation of this paper is as follows: In section 2, we present all the basic definitions,
notations and properties required. In section 3, we introduce the novel concept of M (G) and
discuss several of its properties. In section 4, we discover some interesting characterisations of
the graph using the N M (G). We conclude the paper in section 5 with some insight on the future
scope.

2. Definitions and Notations

Throughout this paper, we consider only undirected, unweighed simple graphs. For all basic
notations and definitions of graph theory, we follow the books by J.A. Bondy and U.S.R. Murty [5]
and D.B. West [14]. In this section, we present all the required notations and define the N M (G).
Let G(V, E) be a graph with vertex set V' (G) and edge set E(G). Foravertex v € V(G), let Ng(v)
denote the set of all neighbours of v and Ng[v] = {v} U Ng(v), denote the closed neighbourhood
of v. The degree of a vertex v is given by deg(v) or | Ng(v)|. Let Ag (or A) denote the adjacency
matrix of the graph G. Let the degree matrix D(G) (or D ) be the diagonal matrix with the
degree of the vertices as its diagonal elements. Let C'(G) be the Laplacian matrix obtained by
C(G) = D(G) — Ag.
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Definition 1. Given a graph G, the product of the adjacency matrix and the degree matrix, denoted
by AD = |ad,;], is defined as

ady; — {|Na<j>|, if (i.5) € E(G),

B 0, otherwise.

Similarly, the product of the degree matrix and the adjacency matrix, denoted by DA = [da;;], is
defined as

das; = {’NG@')L if (i,§) € B(G),

B 0, otherwise.

Remark 2.1. From the above definitions it follows immediately that (AD)T = DA.

Remark 2.2. If G is regular or contains regular-components then by the definition, AD matrix is
symmetric. Hence by above remark AD and D A becomes equal.

Definition 2. Given a graph G, the square of the adjacency matrix A% = [a?j], is defined as

)

2 |Na(d)], ifi=j
|Na(i) N Na(j)|, ifi#j.

It is well known that the 75" entries of the square of adjacency matrix denotes the number of
walks of length 2 between 7 and ;.

We now extend the above notion of product of graph matrices to obtain a new class of matrix
and establish its properties.

3. NM(G) and its properties
Now we introduce the idea of A'M(G) and describe its properties

Definition 3. Given a graph G, the neighbourhood matrix, denoted by NM(G) = [nmy;] is
defined as

nmi; = § [Na())\ Na(@)|, i (i,)) € E(G),
—[Ne(i) " Ne(i)l,  if(i,) & E(G).
Example 3.1. A graph G and its corresponding N’ M (G) representation are given in Figure 1. In

this example, the neighbourhood set of each vertex of G is given by N (1)= {2,6}, N (2)={1.,5},
Ne(3)={4}, N¢(4)={3.5}, N¢(5)={2,4,6,7}, Nc:(6)={1,5,7}, N(7)={5.6}.

Proposition 3.1. The N M(G) can also be defined by using the product of adjacency matrix and
Laplacian matrix of a graph G.
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(7) 2 2 0 0 -2 3 -1

2 =2 0 -1 4 -2 -1

0 0 -1 2 —1 0 0

(6)—(5)—4) NM@=[myl=| 0 -1 1 -2 4 -1 -1
-2 2 -1 2 —4 2 1
2 -2 0 -1 3 -3 1

QQQ 1 -1 0 -1 3 2 -2

(a) a graph G (b) N'M corresponding to G

Figure 1. A graph G and its N M(G).

Proof. Consider the definition of product of two matrices

AxC(G) = Ax (D(G)— A)

= AD— A?
= lady] — [a}]]
= lady] — [af}]
0 — [Na(9)], if i = j,
= { INa(4) \ Ne(i)l, if (i, 7) € E(G),

0 —[Ne(i) " Na(j)|, i (i, 7) ¢ E(G).
Note that the last equality represents the A’ M (G). Hence the proof. [

Proposition 3.2. Given a graph G, the N M(G) can be obtained from adjacency matrix and vice
versa.

Proof. By Proposition 3.1, it is immediate that the matrix A’ M(G) can be constructed from the
adjacency matrix.

Given N M(G), if i # j,nm;; > 0 implies that by the definition, nm;; = |Ng(j) \ Ne(7)| and
that (¢, j) € E(G). Similarly, if nm;; < 0 this implies either i = j or (¢,j) ¢ E(G).

1, if nmy; >0,

Therefore, we can now define a;; = L]

0, otherwise.

Example 3.2. From the N M(G) in Figure 1(b), constructing the adjacency matrix as defined in
the above proposition, we get the matrix A as shown in Figure 2. It is immediate that A is the
required adjacency matrix.

An alternative interpretation or a way of defining the A'M (G) is to consider the breadth first
traversal starting at a vertex 7. By inspection of the first two levels in this level decomposition,
we can obtain the respective i row of the N'M(G). We prove this equivalence in the following
proposition.
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01 0 0 0 1 0
1 0 0 0 1 0 0
000 0 1 0 0 0
A = [ay] 00 1 0 1 0 0
0 1 0 1 0 1 1
1 0 0 0 1 0 1
00 0 0 1 1 0

Figure 2. Adjacency matrix of G constructed from N’ M(G)

Proposition 3.3. Given a graph G, the entries of any row of an N M(G) corresponds to the
subgraph induced by first two levels of level decomposition of the graph rooted at the vertex cor-
responding to that row.

Proof. Consider any i'" row of the N M(G). By the definition of A" M (G), vertex i is adjacent to
a vertex j if and only if nm;; > 0. This gives us the neighbours of ¢, namely N¢(i), or the first
level of the level decomposition. From the following observations, we obtain the vertices that lie
in the next level.

1. The diagonal entries are always negative and in particular, if nm;; = —c, then the degree of
the vertex is ¢ and that there will be exactly ¢ positive entries in that row.

2. For some positive integer ¢, if nm;; = c then j € N¢(7) and that there exists ¢ — 1 vertices
at distance 2 from 7 through j.

3. If nm;; = —c, then the vertex j belongs to the second level of the decomposition and
moreover, there exists ¢ paths of length two from vertex 7 to j. In other words, there exist ¢
common neighbours between vertex ¢ and j.

4. If an entry, nm;; = 0 then the distance between vertex ¢ and j is at least 3 or the vertex j is
isolated

Combining these observations, one can easily obtain the subgraph induced by two levels of de-
composition of G rooted at the vertex .

On the other hand, from the Breadth first traversal tree rooted at a vertex ¢ and the definition of
N M(G) we can immediately write the corresponding i row entry by examining the vertices and
their position in the first two levels. 0

Analogous to N M(G) we can also define the product matrix MN(G) as follows.

Definition 4. The product of Laplacian matrix and adjacency matrix denoted by MN = [mn;;]
is defined as

—|Ne ()], ifi=1j,
mni; = [Ne(i) \ Ne(j),  if(i,J) € E(G),
—[Na (i) " Na(j)l, i (i,) & E(G).
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Remark 3.1. Note that MN(G) can be obtained by C(G) x A = D(G)A — A2

Remark 3.2. For an undirected simple graph GG, we have

NM)T = (AxC(G))"
= C(G)" x AT
= C(G)x A
= MN.

Proposition 3.4. The N M(G) matrix for any graph G is a singular matrix.

Proof. Let A be the adjacency matrix and C' be the Laplacian matrix of a graph G. It is enough to
prove det(N M) = 0. Since

det(NM(G)) = det(AxC)
= det(A) x det(C)
0.

Since it is well know that det(C') = 0 we get the last equality and hence the claim. [
Proposition 3.5. The row sum of N M(G) for any graph G is zero.
Proof. Consider any *" row in N M(G)

> mmy = =INa@)+ D INe()\Nali)l = > [Ne() N Na(j)] 1)

JENG () J¢Ngli]

> _nmmi = > [INe(G)\No(@)| =11 = > [Na(i) (1 No(j) )

JENG(9) JENG[i]

Consider the level decomposition of the graph GG from the vertex <.

Observe that, > [|Ng(j)\ Ne(i)| — 1] is the number of edges connecting the vertices from
JENG(3)
level 1 to level 2. Similarly, > |Ng(i) N Ng(j)| denote the number of edges connecting the
J¢NGli]
vertices from level 2 to level 1. So, we have

Y INe(D\ Na(@ =1 = > [Na(i) N Na(j) 3)
JENG(3) j¢Nali]

Substitute equation (3) in equation (2) we get the row sum of N M (G) is zero. L]

Remark 3.3. Suppose, given any row of the matrix N’ M(G), the minimum value in the row rep-
resents the degree of the respective vertex. Hence, considering the position of minimum value as
the diagonal position of the row (since nm;; = —|Ng(7)|) enables us to identify the vertex that it
represent.

44



A unique and novel graph matrix | 8. Karunakaran and L. Selvaganesh

5)
06&0
nmyl=(-2 2 -1 2 -4 2 1) G 9

(a) i*" row of A" M matrix (b) A subgraph cor-
responding to the
row matrix

Figure 3. A random row vector of N'M(G) from Example 3.1 and the corresponding rooted subgraph representation

Example 3.3. Consider the row given by Figure 3(a) from the Example 3.1, we see that the mini-
mum value is —4 occurring at 5" position of the row, implying that the row represents vertex 5 in
the example. Further, we also get the row sum of A’ M(G) of this row vector is zero.

In addition, using the row entries and the two level decomposition, we can construct the induced
subgraph rooted at vertex . Here, observe that nms; is —2 implies that there are two paths between
vertices 5 and 1 of length 2. Similar observation leads to the fact that among the vertices {2,4, 6},
vertex 1 is adjacent to two of them while vertex 3 is adjacent to the remaining one from the same
set. To determine the adjacency of the vertex 1 and vertex 3, we trace the corresponding rows in
the N'M matrix, namely nmio, nmi4, nmqg. Figure 3(b) shows the constructed subgraph rooted
at vertex 5 by using the corresponding row entries.

Proposition 3.6. For any 1 < i < n, the i'" column sum of N M(Q) is equal to

> (\NG@\ - \NGU)\)-
i)

JENG(

Proof. By Remark 3.2, we have (MN)T = N M. This implies the column sum of N'M matrix
is equal to the row sum of MN matrix. Therefore, we get

;nmﬁ = Zlmnzj
= —INe@)|+ > INa()\ Na(i)l = > [Nali) N Ne(j)

JENG (@) JENG[i]
= Y INe()\ Ne(j)— > [Na(j)\ Neli)|( By Proposition 3.5)
JENG (i) JENG(3)
= Z <‘NG(i)‘_|NG(j)|)‘
JENG(7)
Hence the proof. O
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4. Graph characterization using neighbourhood matrix N’ M (G)

Note that the matrix A" M (G) is not always symmetric. The next result characterizes the graphs
for which N M (G) will be symmetric.

Proposition 4.1. The matrix N M(G) is symmetric if and only if the graph G is either regular or
contains regular components.

Proof. Let G be a graph with w(G) components, say Gy, G, . . ., G, such that each G, is regular
with degree r,, 1 < z < w(G). By the definition of N'M(G) when i is not adjacent to j then
nm;; = nmj; and when ¢ is adjacent to j, then (¢, j) € E(G,), for some z, 1 < z < w(G), and

nmg; = |[Na(j)| — |Na(i) N Na(j)| = r. — [Na(i) N Na(j)| “4)

nmj; = |Ng(i)] — |Na(i) N Ng(j)| = r. — |[Ng (i) N Na(j)| &)

From (4) and (5) we have nm,;; = nmj;. Therefore the N M (G) is symmetric when the graph G
has regular components.

Conversely, let N'M(G) be symmetric. We know that, N M (G) can be written as AD — A2,
Since sum of symmetric matrices is symmetric and AD = N M + A2, we must have AD to be
symmetric. But from Remark 2.2, it is known that AD is symmetric whenever G is the union of
regular components. ]

Recall that a graph G is said to be a strongly regular graph with parameters (n, k, 11, j12), if G is
a k-regular graph on n vertices in which every pair of adjacent vertices has ©; common neighbours
and every pair of non-adjacent vertices has y1, common neighbours.

Proposition 4.2. If a graph G is strongly regular then the entries of N M(G) contains either two
or three distinct values.

Proof. By the definition of N M (G) it immediate follows that for a strongly regular graph G,

—k, ifi = j,
nmw(G) = k — M1, if (’l,j) S E(G),
—p2, i (2,) & E(G).

where y; = [N (1) N\Ne(j)|, for (i, j) € E(G) and pg = [N (i) Ne(j)], for (i, j) ¢ E(G). This
implies the entries of N M (G) of a strongly regular graph takes values from {—k, k — p1, —po}
or {—k,k — pi}, when k = ps. O
Remark 4.1. Note that the converse of the above proposition need not be true.

Example 4.1. Figure 4(a) is the N M(G) containing only three distinct values as entries, namely,
{—2,0,2}. Figure 4(b) is the corresponding graph of Figure 4(a). Note that the graph is not a
strongly regular graph.

Proposition 4.3. If at least one row of N M(G) has no zero entries then the graph G has diameter
at most 4.
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—2 2 0 0 2 —2 0 0
2 =2 0 0o -2 2 0 0
2 2 00 2 2 0 0} (50 ()
0 0 2 =2 0 0o -2 2

NM(G)i 2 =2 0 0o -2 2 0 0
-2 2 0 0 2 =2 0 0
0 0 2 =2 0 0o -2 2
RN YN ooNo=o
(a) N'M matrix of a graph G (b) Corresponding

Graph G

Figure 4. A graph G and its N'M matrix.

Proof. Let it" row of N’M(G) have no zero entries then by using the two level decomposition
definition we have d¢ (i, j) < 2, forall j € V(G) — {i}, for otherwise, if ds(7, j) = 3 for some j
this implies nm;; = 0. Therefore for any j, k € V(G)—{i} we have d; (i, j) < 2and d(i, k) < 2.

Remark 4.2. Note that the converse of the above proposition need not be true. It is well known that
the cubic graph on 8 verrtices (()3) has diameter 3 but every row of N M (Q)3) contains exactly one
zero. Figure 5(a) and 5(b) represents the cubic graph on 8 vertices and N M (Q3) respectively.

(a) Cube graph Q3 (b) N M matrix corresponding to Q3

Figure 5. The graph Q3 and its N’ M matrix

Proposition 4.4. The N M(G) has no zero entries if and only if the graph G has diameter at most
2.

Proof. Suppose N'M(G) has no zero entries, that is, every row of N'M(G) has no zero entries.
From the proof of Proposition 4.3 it is immediate that for every pair of distinct vertices ¢ and j,
de(i,j) < 2. This implies that diameter(G) < 2. Converse follows directly by the observation
that if diameter of the graph is at most 2, then every entry of the matrix becomes non-zero. 0

Proposition 4.5. The graph G is triangle-free if and only if nm;; = |nm;;| V(i, j) € E(G).

Proof. Graph G is triangle-free if and only if Ng(i) N Ng(j) = 0 for (i,5) € E(G). By the
definition of N M(QG) if i is adjacent to j then nm;; = |Ng(j) \ Na(i)| = |Na(j)| — [Na(i) N
Ne(j)l = [NG(j)|- Now in the i*" row nim; = [N (j)| = [nmy;|. O
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Proposition 4.6. Given a graph G, the number of triangles in G is given by

- Z > (ynmjjy - nmij> :

i jENg(i

Proof. Given a vertex ¢, when ¢ is adjacent to j and there exists at least one common neighbour =,
for ¢ and j, we get a triangle. Therefore, the number of triangles containing the vertex ¢ is given by

NT(i) = 5 > |Ng(i) N Ng(7)|, since a triangle < i, j, z,7 > will be counted twice, one for
JENG (i)
each j,z € N¢(i). Hence,

1
Total number of triangles in the graph = 3 Z NT(i)

= —Z > INg(i) N Ne(j)]

i jENG(i)

= —Z Z <|NG ) —INa(j) — NG(i)’)
)

t JENG(i

= -Z > (\nmﬂ\—nmij)

t JENG(i)

Hence the claim. U

1
Remark 4.3. Tt is well known that number of triangle in a graph is equal to 6tmce(A5) or — Z A3,

where A is the adjacency matrix of the graph and \;, 1 < ¢ < n is the eigenvalue of A. Note that if
we want to count a triangle using the N’ M(G) the computational time involved is very less when

1 1
compared to computing étmce(A?’) or ¢ ST
i=1

Proposition 4.7. Given a graph G, the number of 4 cycles(including induced and non-induced) is

- 3 (|nmjj|2—”mij>+ Z (\””;ﬂ))

1
equal to 1 Z ( | | | |
JENG () JENa(9)

i=1

Proof Given a graph G on n vertices, the number of 4-cycles containing the vertex i is given by
N, N N,

Z (’ a (i) c(J )|) Hence the total number of 4-cycles (both induced and not induced)

2
J=lj#i
can be given by,
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> 3 (|NG(i) N NGU)\)

1y ( > (|NG<¢>2NGU>|>+ 5 (|NG<¢>2NG@>|>>

i=1 \ jeNg(i) JENa(i)
_ 1y [my;| — nm; ||
iz () s ()
i=1 \ jENG() J¢NG(3)
O]
Remark 4.4. Note that in the above proof. E i Z (lnmij ‘) gives a count of the total number
o T4 L= 2
i=1 j¢Ng(i)
1 <& | — y
of induced Cj plus half the number of Ky — {e}. Similarly, 1 Z Z (|7’Lmy’2 nm ]) gives

i=1 jENg(i)
the total number of K, along with half the number of K, — {e} in the graph.

Proposition 4.8. A graph G is Cy-free if and only if nm;; > —1, for every (i,j) ¢ E(G).

Proof. By the definition of N M(G), we can conclude that nm;; > —1 if and only if |[Ng (i) N
Ne(j)| < 1,(4,4) ¢ E(G). This implies that G has no induced C}. O

Recall that the girth of a graph is the length of a shortest cycle contained in the graph.

Proposition 4.9. A graph G has girth at least 5 if and only if nm;; = |nm;;| for every edge
(i,7) € E(G) and nm;; > —1, for every pair (i, j) ¢ E(G).

Proof. By Proposition 4.5, we have that the graph G is Triangle free if and only if nm;; = |nm;|,
for every edge (7, j) € E(G).

Also, by Proposition 4.8 we have that the graph has no induced C} if and only if for every pair
(i,7) ¢ E(G), nm;; > —1. Therefore we can conclude G has girth at least 5. O

5. Conclusion and Future directions

In this paper, we have introduced a new graph matrix (N M(G)) that can be associated with
a graph to reveal more information when compared to the adjacency matrix. We have also sys-
tematically demonstrated the equivalence of the N'M(G) and the product of two other existing
graph matrices, namely adjacency and Laplacian matrices. Further, we have endorsed its relation-
ship with the concept of level decomposition of the graph. Further, we have also substantiated the
usefulness of the N'M (G) by identifying numerous properties with the aid of this matrix. In this
process, we have shown many simple properties, such as counting the number of triangles in a
graph, can be done in minimal time.

In our first attempt to analyse a new graph matrix, we have only studied its correctness and a
few of its properties in this paper. This graph matrix seems to be quite promising and be applicable
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in studying problems relating to domination in graphs and graph isomorphism problem. As an
extension of this current work, our subsequent research article comprises of the study of the N’ M
spectrum.
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