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Abstract

In this paper, we propose a method for constructing new graphs from a given graph G so that
the resulting graphs have the partition dimension at most one larger than the partition dimension
of the graph G. In particular, we employ this method to construct a family of graphs with partition
dimension 3.
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1. Introduction

Let G(V,E) be a (not necessarily connected) graph. Let x, y ∈ V (G), the distance d(x, y)
between vertices x and y is the length of a shortest path connecting x to y in G. If there is no such
a path, then define d(u, v) = ∞. In this case, the vertices x and y are in different components of
G. Let A ⊆ V (G). The distance d(x,A) from vertex x to A in G is defined as

d(x,A) = min{d(x, y) : y ∈ A}.

Let Λ = {A1, A2, . . . , Ak} be an ordered k-partition of V (G). Then, Ai is called a partition class
with respect to Λ. If there exists Ai for some i such that d(x,Ai) = ∞ then we say that there
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is no representation of x with respect to Λ. If d(x,Ai) < ∞ for all Ai ∈ Λ, then define the
representation r(x|Λ) of x with respect to Λ as

r(x|Λ) = (d(x,A1), d(x,A2), . . . , d(x,Ak)).

The partition Λ is called a resolving partition of G if each vertex has a representation and all the
representations are different. The partition dimension of G is the smallest integer k in which the
graph G possesses a resolving partition of G with k partition classes, and it is denoted by pd(G)
for a connected G or pdd(G) for a disconnected graph. In case of a disconnected graph G, we say
that pdd(G) =∞ if there is no resolving k-partition of G for any integer k ≥ 1.

The study of the partition dimension of connected graphs was introduced by Chartrand et al.
[5] with aims of finding a new way/method in attacking the problem of determining the metric di-
mension in graphs. In the metric dimension problem, we focus on finding the minimum cardinality
of a resolving set for a connected graph G. A set W ⊆ V (G) is called a resolving set of G if for
any two distinct vertices x and y, there exists w ∈ W such that d(x,w) 6= d(y, w). Further results
for the metric dimension of graphs can be seen in [1, 2, 3, 4, 14, 15]. In 2015, the notion of the
partition dimension of a graph was generalized by Haryeni et al. [12, 13] so that the notion can be
applied to all graphs (connected as well as disconnected graphs).

Many results in finding the partition dimension for graphs have been obtained by various au-
thors. Chartrand et al. [6] characterized all connected graphs of order n (≥ 3) with partition
dimension either 2, n or n − 1. Furthermore, all connected graphs of order n (≥ 9) with the
partition dimension n − 2 were characterized by Tomescu [17]. Up to now, the characterization
of all connected graphs on n vertices with partition dimension k is still an open problem for any
k ∈ [3, n− 3]. For particular classes of graphs, their partition dimensions have been obtained, for
instances the class of unicylic graphs was obtained by Fernau et al. [8], Cayley digraphs by Fehr
et al. [7] and circulant graphs by Grigorious et al. [9]. Moreover, Yero et al. studied the partition
dimension of the Cartesian product and the strong product between two connected graphs [19, 18].
Rodrı́guez-Velázquez et al.[16] determined the partition dimension for the corona product of two
graphs.

For a disconnected graph G =
⋃m

i=1 Gi, Haryeni et al. [12] derived the upper and lower bounds
of the partition dimension of G (if it is finite), namely

max{pd(Gi) : 1 ≤ i ≤ m} ≤ pdd(G) ≤ min{|V (Gi)| : 1 ≤ i ≤ m}.

In the same paper, some conditions for a disconnected graph H containing a linear forest with
partition dimension 3 have been derived. The partition dimensions of some classes of disconnected
graphs with homogeneous components, namely a disjoint union of stars, a disjoint union of double
stars and a disjoint union of some cycles were also studied in [13]. Further results on the partition
dimension of disconnected graphs with two components can be seen in [10]. Recently in [11],
Haryeni et al. obtained certain families of graphs containing cycles with partition dimension 3.

In this paper, we continue investigating the partition dimension of general (disconnected and
connected) graphs. We propose a method for constructing a new graph H from the previous graph
G. The new graph H will have partition dimension at most one higher than the partition dimension
of G. The previous graph G can be either disconnected or connected. Moreover, by this method,
we could construct a big family of connected graphs with partition dimension 3.
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2. Main Results

Haryeni et al. (2017) showed the following three results which are useful to prove our main
theorems.

Theorem 2.1. [12] Let G =
⋃m

i=1Gi. If pdd(G) < ∞, then max{pd(Gi) : 1 ≤ i ≤ m} ≤
pdd(G) ≤ min{|V (Gi)| : 1 ≤ i ≤ m}.

Definition 2.1. [12] For m ≥ 1, let G =
⋃m

i=1Gi and Λ = {A1, A2, . . . , Ak} be a resolving
partition of G. For any integer t ≥ 1, a vertex v is called t-distance if d(v, Aj) = 0 or t for any
Aj ∈ Λ. Such a partition Λ is called connected if every subgraph induced by Aj ∩ V (Gi) is
connected for every j ∈ [1, k] and i ∈ [1,m].

Lemma 2.1. [10] For k ∈ [3, n], any connected k-partition of Pn or Cn is a resolving partition.

Let G be a (not necessarily connected) graph and Λ = {A1, A2, . . . , Ak} be a minimum resolv-
ing partition of G. Two vertices x, y ∈ Ai for any i ∈ [1, k] are called independent with respect
to Λ if there exist two distinct integers other than i, say j and l, such that d(x,Aj) − d(y, Aj) 6=
d(x,Al)− d(y, Al). Otherwise, they are called dependent vertices. Furthermore, G is called inde-
pendent if there exists a minimum resolving partition of G such that any two distinct vertices in
the same class partition are independent. Otherwise, G is called a dependent graph.

For instance, it is clear that a cycle Cm with the vertex set V (Cm) = {vi : i ∈ [1,m]} is
an independent graph for all m ≥ 3, since we can define a minimum resolving 3-partition Λ =
{A1, A2, A3} of Cm where Ai = {vj : j ∈ [b (i−1)m

3
+ 1c, b im

3
c]} for all i ∈ [1, 3] such that any two

vertices of Cm are independent vertices with respect to Λ. Other examples of independent graphs
are the complete graph Km and the disjoint union of stars (m+1)K1,m for all m ≥ 3. On the other
hand, a path Pm and tK1,m are dependent graphs for any m ≥ 3 and t ∈ [1, n].

Now, consider the graph G consisting of two components with pdd(G) = 4 in Figure 1. If we
consider the minimum resolving partition Λ1 = {A1, A2, A3, A4} of G where A1 = {v1, v2, v3, v4,
v7, v9, v14, v17}, A2 = {v5, v8, v10, v12, v13, v15, v18}, A3 = {v6, v16} and A4 = {v11, v19}, then
we can see that vertices v1 and v4 are dependent since r(v1|Λ1) = (0, 1, 1, 3) and r(v4|Λ1) =
(0, 2, 2, 4). However, we can define another minimum resolving partition of G, namely Λ2 =
{B1, B2, B3, B4} where B1 = {v1, v2, v9, v14, v17}, B2 = {v3, v4, v7, v15, v18}, B3 = {v5, v8, v10,
v12, v19} and B4 = {v6, v11, v13, v16} so that any two vertices of G with respect to Λ2 are indepen-
dent. Therefore, G is independent.

Now we introduce the method to extend any graph so that the partition dimension of the result-
ing graph is the same as the one of the previous graph. Let G be a graph and A = (a1, a2, . . . , ak) be
an ordered subset of vertices of G. A hair graph of G with respect to A, denoted by G[(a1, a2, . . . ,
ak); (n1, n2, . . . , nk)], is the graph obtained from G by attaching a path Pni

with ni (≥ 2) vertices
to vertex ai for all i ∈ [1, k]. Furthermore, the set of all hair graphs obtained from the graph G are
denoted by Hair(G).

In Figure 2 we give two different hair graphs of a cycle C6, namely (a) C6[(a1, a2, a3, a5),
(2, 3, 2, 3)] and (b) C6[(a1, a2, a3, a4, a5, a6), (2, 2, 2, 2, 2, 2)], and two different hair graphs of a
path P5, namely (c) P5[(b2, b3, b4); (2, 2, 2)] and (d) P5[(b2, b3, b4); (2, 3, 4)].

We present the upper bound of the partition dimension of the hair graphs, as follows.
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Figure 1. An independent graph G with a minimum resolving partition Λ2 = {{v1, v2, v9, v14, v17}, {v3, v4, v7,
v15, v18}, {v5, v8, v10, v12, v19}, {v6, v11, v13, v16}}.

Figure 2. Some hair graphs: (a) C6[(a1, a2, a3, a5); (2, 3, 2, 3)], (b) C6[(a1, a2, a3, a4, a5, a6); (2, 2, 2, 2, 2, 2)], (c)
P5[(b2, b3, b4); (2, 2, 2)] and (d) P5[(b2, b3, b4); (2, 3, 4)].

Theorem 2.2. For an integer t ≥ 1, let G =
⋃t

i=1Gi where Gi is a connected graph of order
mi ≥ 3 for any i and pdd(G) <∞. For any H ∈ Hair(G) then

pdd(H) ≤
{

pdd(G), if G is independent,
pdd(G) + 1, if G is dependent.

Proof. Let V (G) = {vi,p : i ∈ [1, t], p ∈ [1,mi]} and Λ = {A1, A2, . . . , Ak} be a minimum
resolving partition of G. Let H ∈ Hair(G), namely the graph obtained by identifying an endpoint
of a path Pni,p

to the vertex vi,p ∈ V (G). Let VN = {vai,p : i ∈ [1, t], p ∈ [1,mi], a ∈ [1, ni,p − 1]}
be the set of all the new vertices of H . Now, we distinguish two cases.

Case 1. G is an independent graph. Thus, we can assume that G is an independent graph with
respect to Λ. Define a new partition Λ1 = {A′1, A′2, . . . , A′k} of H where A′l = Al ∪ {vai,p : vi,p ∈
Al, a ≥ 1} for all l ∈ [1, k]. To prove that Λ1 is a resolving partition of H, we will show that
any two distinct vertices x, y ∈ V (H) in A′q for some q ∈ [1, k] have distinct representations with
respect to Λ1. We consider three subcases.

Subcase 1.1. x, y 6∈ VN . Then, r(x|Λ1) = r(x|Λ) 6= r(y|Λ) = r(y|Λ1).
Subcase 1.2. x 6∈ VN and y ∈ VN . We consider two subcases.
Subcase 1.2.1. x = vi,j and y = vai,j for some a ≥ 1. Then, d(x,A′s) < d(x,A′s)+a = d(y, A′s)

for all s 6= q. Therefore, r(x|Λ1) 6= r(y|Λ1).
Subcase 1.2.2. x = vi,j and y = vab,c where i 6= b and a ≥ 1. Since G is independent, the two

vertices vi,j, vb,c ∈ V (G) are independent with respect to Λ. By Subcase 1.1, we obtain that vi,j
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and vb,c are also independent in H with respect to Λ1. Therefore, there exist two distinct integers
s1, s2 ∈ [1, k] \ {q} such that d(vi,j, A

′
s1

) − d(vb,c, A
′
s1

) 6= d(vi,j, A
′
s2

) − d(vb,c, A
′
s2

). This is easy
to see that d(y, A′l) = d(vb,c, A

′
l) + a for all l 6= q and a ≥ 1. Now, we suppose for the contrary

that r(x|Λ1) = r(y|Λ1). This implies that d(x,A′s) = d(y, A′s) for all s ∈ [1, k]. However,

d(x,A′s1)− d(vb,c, A
′
s1

)− a = d(x,A′s1)− d(y, A′s1)

= d(x,A′s2)− d(y, A′s2)

= d(vi,j, A
′
s2

)− d(vb,c, A
′
s2

)− a,

or d(vi,j, A
′
s1

) − d(vb,c, A
′
s1

) = d(vi,j, A
′
s2

) − d(vb,c, A
′
s2

), a contradiction. Therefore, r(x|Λ1) 6=
r(y|Λ1).

Subcase 1.3. x, y ∈ VN . We consider two subcases.
Subcase 1.3.1. x = va1i,j and y = va2i,j where a1, a2 ≥ 1 and a1 6= a2. Then, d(va1i,j, A

′
s) =

d(vi,j, A
′
s) + a1 = d(vi,j, As) + a1 6= d(vi,j, As) + a2 = d(vi,j, A

′
s) + a2 = d(va2i,j, A

′
s) for all s 6= q.

Therefore, r(x|Λ1) 6= r(y|Λ1).
Subcase 1.3.2. x = va1i,j and y = va2b,c where i 6= b and a1, a2 ≥ 1. Similarly to Subcase

1.2.2, vi,j, vb,c ∈ V (G) are independent vertices with respect to Λ1, d(x,A′l) = d(vi,j, A
′
l) + a1

and d(y, A′l) = d(vb,c, A
′
l) + a2 for all l 6= q. Therefore, there exist two distinct integers s1, s2 ∈

[1, k]\{q} such that d(vi,j, A
′
s1

)−d(vb,c, A
′
s1

) 6= d(vi,j, A
′
s2

)−d(vb,c, A
′
s2

). For the contrary, assume
that r(x|Λ1) = r(y|Λ1), and so that d(x,A′s) = d(y, A′s) for all s ∈ [1, k]. Thus, we have

[d(vi,j, A
′
s1

) + a1]− [d(vb,c, A
′
s1

) + a2] = d(x,A′s1)− d(y, A′s1)

= d(x,A′s2)− d(y, A′s2)

= [d(vi,j, A
′
s2

) + a1]− [d(vb,c, A
′
s2

) + a2],

or d(vi,j, A
′
s1

) − d(vb,c, A
′
s1

) = d(vi,j, A
′
s2

) − d(vb,c, A
′
s2

), a contradiction. Therefore, r(x|Λ1) 6=
r(y|Λ1).

Case 2. G is a dependent graph. Define a new partition Λ2 = {B′1, B′2, . . . , B′k, B′k+1} of H
where B′i = Ai for all i ∈ [1, k] and B′k+1 = VN . We will verify that Λ2 is a resolving partition of
H. We consider any two distinct vertices x, y ∈ V (H) in B′q for some q ∈ [1, k+1]. We distinguish
two subcases.

Subcase 2.1 x, y 6∈ VN . Since Λ is a resolving partition of G, there exists s ∈ [1, k] \ {q} such
that d(x,As) 6= d(y, As). By the definition of the partition Λ2 of H, we have d(x,B′p) = d(x,Ap)
and d(y,B′p) = d(y, Ap) for all p 6= k + 1. Therefore, d(x,B′s) = d(x,As) 6= d(y, As) = d(y,B′s)
and so that r(x|Λ2) 6= r(y|Λ2).

Subcase 2.2. x, y ∈ VN and thus q = k + 1. We consider two subcases.
Subcase 2.2.1. x = va1i,j and y = va2i,j where a1, a2 ≥ 1 and a1 6= a2. Note that for any vertex

vai,j ∈ B′k+1 in V (H) and vi,j ∈ Al in V (G) for a ≥ 1 and l ∈ [1, k], d(vai,j, B
′
s) = d(vi,j, B

′
s) +

a = d(vi,j, As) + a for all s ∈ [1, k] \ {l}. Therefore, we have d(x,B′s) = d(vi,j, B
′
s) + a1 =

d(vi,j, As) + a1 6= d(vi,j, As) + a2 = d(vi,j, B
′
s) + a2 = d(y,B′s). Thus, r(x|Λ2) 6= r(y|Λ2).

Subcase 2.2.2. x = va1i,j and y = va2b,c where i 6= b and a1, a2 ≥ 1. Let vi,j ∈ B′s and vb,c ∈ B′p
for some s, p ∈ [1, k]. If s 6= p, then clearly x and y are resolved by both B′s and B′p. Otherwise,
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assume that s = p. Note that d(x,B′l) = d(vi,j, B
′
l) + a1 and d(y,B′l) = d(vb,c, B

′
l) + a2 for all

l 6∈ {s, k+1}. It is easy to see that for a1 6= a2, we have d(x,B′s) 6= d(y,B′s). On the other hand, if
a1 = a2, then d(x,B′t) 6= d(y,B′t) for which d(vi,j, At) 6= d(vb,c, At) with respect to Λ. Therefore,
r(x|Λ2) 6= r(y|Λ2).

The upper bound of Theorem 2.2 is tight. For the case of independent graphs, the bound
is achieved by the graph H ∼= G[(v1, v2, v12, v13, v14); (4, 4, 3, 2, 2)] depicted in Figure 3. This
graph is a hair graph of G in Figure 1. The partition Λ′ = {B′1, B′2, B′3, B′4} where B′1 =
{v1, v2, v9, v14, v17, v20, v21, v23, v24, v25, v29}, B′2 = {v3, v4, v7, v15, v18, v22}, B′3 = {v5, v8, v10,
v12, v19, v26, v27} and B′4 = {v6, v11, v13, v16, v28} is a minimum resolving partition of H.

Figure 3. The graph G[(v1, v2, v4, v12, v13, v14); (3, 4, 2, 3, 2, 2)] where G is depicted in Figure 1.

Note that for m ≥ 3, the graphs Cm and Pm are independent and dependent graphs, respec-
tively. The upper bound of Theorem 2.2 is also true for the hair graphs of Cm and Pm, as follows.

Corollary 2.1. If H ∈ Hair(Cm) for any m ≥ 3, then pd(H) = 3.

Corollary 2.2. If H ∈ Hair(Pm) and H 6∼= Pn for any n ≥ m, then pd(H) = 3.

Let G be any dependent graph other than a path with pdd(G) = k. If G has a vertex v which is
adjacent to k leaves and the hair graph H ∈ Hair(G) has k + 1 leaves, then pdd(H) = k + 1. Fur-
thermore, the upper bound of the partition dimension of H ∈ Hair(G) of Theorem 2.2 can be im-
proved. Consider a dependent graph G depicted in Figure 4. Let Λ1 = {A1, A2, A3} be a resolving
partition of G where A1 = {v1, v4, v10, v11, v12, v13, v14}, A2 = {v2, v5, v15, v16, v17, v18} and A3 =
{v3, v6, v7, v8, v9, v19}. By the definition of partition Λ1, we have r(v1|Λ1) = (0, 2, 2), r(v2|Λ1) =
(1, 0, 2), r(v3|Λ1) = (1, 2, 0), r(v12|Λ1) = (0, 3, 3), r(v16|Λ1) = (2, 0, 3) and r(v8|Λ1) = (2, 3, 0).
Now, let H = G[(v1, v2, v3); (2, 2, 2)] and let v′1, v

′
2, v
′
3 be the new vertices of H which are ad-

jacent to v1, v2 and v3, respectively. If we use the same method as in the proof of Theorem 2.2
to show that pdd(H) ≤ pdd(G), then we have a partition Λ′1 = {A′1, A′2, A′3} of V (H) where
A′i = Ai ∪ {v′i} for each 1 ≤ i ≤ 3. Therefore, we obtain that r(v′1|Λ′1) = (0, 3, 3) = d(v12|Λ′1),
r(v′2|Λ′1) = (2, 0, 3) = r(v16|Λ′1), and r(v′3|Λ′1) = (2, 3, 0) = r(v8|Λ′1). This implies that Λ′1 is not
a resolving partition of G′.

However, we can define another minimum resolving partition of G, namely Λ2 = {B1, B2,
B3} where B1 = {v1, v4, v11, v12, v13, v14}, B2 = {v2, v5, v9, v15, v16, v17} and B3 = {v3, v6, v7,
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v8, v10, v18, v19}. By using the partition Λ2 of G, we can define the new partition of H using a sim-
ilar method as in the proof of Theorem 2.2 so that pdd(H) ≤ pdd(G), namely Λ′2 = {B′1, B′2, B′3}
of G′ where B′i = Bi ∪ {v′i} for each 1 ≤ i ≤ 3. From the partition Λ′2, we can easily verify that
r(x|Λ′2) 6= r(y|Λ′2) for any two distinct vertices x, y ∈ V (H).

Figure 4. A dependent graph G.

By those facts, we have the following conjecture.

Conjecture 1. Let G be a dependent graph of order n ≥ 2 and pdd(G) <∞. Let A = (b1, b2, . . . , bk)
be an ordered leaves of G and H ′ = G[(b1, b2, . . . , bk); (n1, n2, . . . , nk)]. Then, pdd(H ′) ≤ pdd(G).

In the following results, we give some independent graphs consisting of two components with
certain partition dimensions.

Theorem 2.3. For n ≥ 3, the graph C3∪C2n is an independent graph with a resolving 3-partition.

Proof. For n ≥ 3, let G = C3 ∪ C2n where V (G) = V (C3) ∪ V (C2n) = {vi : i ∈ [1, 3]} ∪ {uj :
j ∈ [1, 2n]}. Certainly, pdd(G) ≥ 3. We define a 3-partition Λ = {A1, A2, A3} of G such that:

A1 =
{
v1, uj : j ∈

[
1, 2

⌈n
6

⌉]}
,

A2 =

{
v2, uj : j ∈

[
2
⌈n

6

⌉
+ 1, 2

⌈n
6

⌉
+ 2

⌈
n− 2

6

⌉]}
,

A3 =

{
v3, uj : j ∈

[
2
⌈n

6

⌉
+ 2

⌈
n− 2

6

⌉
+ 1, 2n

]}
.

By using the definition of the partition Λ, clearly that each vi is 1-distance vertex in Ai for
i ∈ [1, 3]. Note that the cardinality of the partition class Ai is even for each i ∈ [1, 3] in C2n. Hence
clearly that C2n does not contain any t-distance vertex with respect to Λ. Since Λ is a connected
partition in C2n, then Λ is a resolving partition of C2n by Lemma 2.1. Therefore, Λ is a resolving
partition of G.

Now, we will show that any two vertices in G are independent with respect to Λ. Since each
vertex vi ∈ V (C3) is 1-distance vertex and every vertex uj ∈ V (C2n) is not a t-distance vertex
for any t, we only need to consider any two distinct vertices ua, ub ∈ Ai for some i ∈ [1, 3].
By the definition of the partition Λ, for p ∈ [1, 2dn

6
e], q ∈ [2dn

6
e + 1, 2dn

6
e + 2dn−2

6
e] and r ∈

[2dn
6
e+ 2dn−2

6
e+ 1, 2n], we have
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d(up, Ak) =


0, if k = 1,
min{2dn

6
e+ 1− p, p + 2n− (2dn

6
e+ 2dn−2

6
e) }, if k = 2,

min{p, 2dn
6
e+ 2dn−2

6
e+ 1− p}, if k = 3,

d(uq, Ak) =


0, if k = 2,
min{q − 2dn

6
e, 2n− q + 1}, if k = 1,

2dn
6
e+ 2dn−2

6
e+ 1− q, if k = 3,

d(ur, Ak) =


0, if k = 3,
2n− r + 1, if k = 1,
r − 2dn

6
e − 2dn−2

6
e, if k = 2.

Note that for a vertex up ∈ A1 where p ∈ [1, 2dn
6
e], we have the following facts.

1. p+2n− (2dn
6
e+2dn−2

6
e) < 2dn

6
e+1−p if and only if (2n ≡ 2 mod 3 or 2n ≡ 1 mod 3)

and p = 1, so that d(u1, A2) = 1 + 2n− (2dn
6
e+ 2dn−2

6
e).

2. 2dn
6
e+2dn−2

6
e+1−p < p if and only if 2n ≡ 2 mod 3 and p = 2dn

6
e, so that d(u2dn

6
e, A3) =

2dn
6
e+ 2dn−2

6
e+ 1− 2dn

6
e = 2dn−2

6
e+ 1.

On the other hand, for a vertex uq ∈ A2 where q ∈ [2dn
6
e + 1, 2dn

6
e + 2dn−2

6
e], then 2n −

q + 1 < q − 2dn
6
e if and only if 2n ≡ 1 mod 3 and q = 2dn

6
e + 2dn−2

6
e. This implies that

d(u2dn
6
e+2dn−2

6
e, A1) = 2n− (2dn

6
e+ 2dn−2

6
e) + 1 = 2n− 2dn

6
e − 2dn−2

6
e+ 1.

By the above facts, we consider three cases.
Case 1. ua, ub ∈ A1 where a, b ∈ [1, 2dn

6
e]. If (2n ≡ 2 mod 3 or 2n ≡ 1 mod 3), a = 1 and

b ∈ [2, 2dn
6
e − 1], then d(ua, A2)− d(ub, A2) = (1 + 2n− (2dn

6
e+ 2dn−2

6
e))− (2dn

6
e+ 1− b) =

2n− 4dn
6
e− 2dn−2

6
e+ b = 2(n− 2dn

6
e− dn−2

6
e) + b 6= 1− b = a− b = d(ua, A3)− d(ub, A3). If

2n ≡ 2 mod 3, a = 2dn
6
e and b ∈ [2, 2dn

6
e − 2], then d(ua, A2)− d(ub, A2) = (2dn

6
e+ 1− a)−

(2dn
6
e+ 1− b) = −a + b = −2dn

6
e+ b 6= (2dn−2

6
e+ 1)− b = d(ua, A3)− d(ub, A3). Otherwise,

d(ua, A2)−d(ub, A2) = (2dn
6
e+1−a)−(2dn

6
e+1−b) = −a+b 6= a−b = d(ua, A3)−d(ub, A3).

Hence, any two vertices in A1 are independent with respect to Λ.
Case 2. ua, ub ∈ A2 where a, b ∈ [2dn

6
e + 1, 2dn

6
e + 2dn−2

6
e]. If 2n ≡ 1 mod 3, a =

2dn
6
e+2dn−2

6
e and b ∈ [2dn

6
e+1, 2dn

6
e+2dn−2

6
e−1], then d(ua, A1)−d(ub, A1) = (2n−2dn

6
e−

2dn−2
6
e+1)− (b−2dn

6
e) = 2n−2dn−2

6
e+1−b = 2(n−dn−2

6
e)+1−b 6= −2dn

6
e−2dn−2

6
e+b =

−a+b = (2dn
6
e+2dn−2

6
e+1−a)− (2dn

6
e+2dn−2

6
e+1−b) = d(ua, A3)−d(ub, A3). Otherwise,

d(ua, A1) − d(ub, A1) = (a − 2dn
6
e) − (b − 2dn

6
e) = a − b 6= −a + b = (2dn

6
e + 2dn−2

6
e + 1 −

a) − (2dn
6
e + 2dn−2

6
e + 1 − b) = d(ua, A3) − d(ub, A3). Therefore, any two vertices in A2 are

independent with respect to Λ.
Case 3. ua, ub ∈ A3 where a, b ∈ [2dn

6
e + 2dn−2

6
e + 1, 2n]. Then d(ua, A1) − d(ub, A1) =

(2n− a+ 1)− (2n− b+ 1) = −a+ b 6= a− b = (a− 2dn
6
e− 2dn−2

6
e)− (b− 2dn

6
e− 2dn−2

6
e) =

d(ua, A2)− d(ub, A2). Thus, any two vertices in A3 are independent with respect to Λ.

By Theorems 2.2 and 2.3, we have the following corollary.

Corollary 2.3. If H ∈ Hair(C3 ∪ C2n) for any n ≥ 3, then pdd(H) = 3.

Theorem 2.4. For n ≥ m ≥ 4, the graph Km ∪ Cn is an independent graph with a resolving
m-partition.
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Proof. For n ≥ m ≥ 4, let G = Km∪Cn and V (G) = V (Km)∪V (Cn) = {vi : i ∈ [1,m]}∪{uj :
j ∈ [1, n]}. Then, pdd(G) ≥ m. Let us define a partition Λ = {A1, A2, . . . , Am} of G such that

Ai = {vi} ∪
{
uj : j ∈

[⌊
(i− 1)n

m

⌋
+ 1,

⌊
in

m

⌋]}
, for each i ∈ [1,m].

We will show that Λ is a resolving partition of G. This is easy to see that each vertex vi ∈ Km

is 1-distance vertex with respect to Λ. Now, consider a subgraph Cn of G. Since Λ is a connected
partition of Cn, then the partition Λ is a resolving partition of Cn by Lemma 2.1. Note that for any
vertex x ∈ V (Cn) in Ai for some i ∈ [1,m], d(x,Aj) = d(x,Ak) at most for two different integers
j, k ∈ [1,m]. Since m ≥ 4, Cn does not contain any t-distance vertex with respect to Λ. By these
two facts, we can conclude that Λ is a resolving partition of G = Km ∪ Cn.

Furthermore, we will show that any two vertices x, y ∈ V (G) in Ak for some k ∈ [1,m] are
independent vertices. For x = vi and y = uj where i ∈ [1,m] and j ∈ [1, n], clearly that x and y
are independent vertices. Now, we suppose for two distinct vertices x = uj and y = ul in Ak. We
consider three cases.

Case 1. x = uj and y = ul in A1 where j, l ∈ [1, b n
m
c]. Note that for a vertex uj ∈ A1

where j ∈ [1, b n
m
c], then d(uj, A2) = b n

m
c + 1 − j and d(uj, Am) = j. Therefore, we have

d(x,A2) − d(y, A2) = −j + l 6= j − l = d(x,Am) − d(y, Am), so that any two distinct vertices
x, y ∈ A1 are independent vertices with respect to the partition Λ.

Case 2. x = uj and y = ul in Ak where j, l ∈ [b (i−1)n
m
c + 1, b in

m
c] and i ∈ [2,m − 1]. Note

that for a vertex uj ∈ Ak where j ∈ [b (i−1)n
m
c + 1, b in

m
c] and k ∈ [2,m − 1], then d(uj, Ai+1) =

b in
m
c+1−j and d(uj, Ai−1) = j−b (i−1)n

m
c. Therefore, we have d(x,Ai+1)−d(y, Ai+1) = −j+l 6=

j − l = d(x,Ai−1)− d(y, Ai−1), so that any two distinct vertices x, y ∈ Ak for k ∈ [1,m− 1] are
independent vertices with respect to the partition Λ.

Case 3. x = uj and y = ul in Am where j, l ∈ [b (m−1)n
m
c+1, n]. Note that for a vertex uj ∈ Am

where j ∈ [b (m−1)n
m
c + 1, n], we have d(uj, A1) = n − j + 1 and d(uj, Am−1) = j − b (m−1)n

m
c.

Therefore, we have d(x,A1)− d(y, A1) = −j + l 6= j− l = d(x,Am−1)− d(y, Am−1), so that any
two distinct vertices x, y ∈ Am are independent with respect to the partition Λ.

By Theorems 2.2 and 2.4, we obtain the following corollary.

Corollary 2.4. For all n ≥ m ≥ 4 and H ∈ Hair(Km ∪ Cn), pdd(H) ≤ m.

The upper bound of Corollary 2.4 is satisfied for the hair graph H = (Km∪Cn)[(v1, u1, u2, . . . ,
un); (n1, n2, . . . , nn, nn+1)] where v1 ∈ V (Km) and ui ∈ V (Cn) for i ∈ [1, n].

Now, for m ≥ 3, let G = Cm ∪ Cm+3 where

V (G) = V (Cm) ∪ V (Cm+3)

= {vi : i ∈ [1,m]} ∪ {uj : j ∈ [1,m + 3]} and
E(G) = E(Cm) ∪ E(Cm+3)

= {vivi+1, v1vm : i ∈ [1,m− 1]} ∪ {ujuj+1, u1um+3 : j ∈ [1,m + 2]}.
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Let F ⊂ E(Cm+3) where F = {ujuj+1 : j ∈ [1,m + 2], j 6= bm
3
c + 1 and j 6= b2m

3
c + 2}.

Furthermore, we define three new sets of edges E1, E2 and E3 of G where

E1 =
{
vjuj, vjuj+1 : 1 ≤ j ≤

⌊m
3

⌋}
,

E2 =

{
vjuj+1, vjuj+2 :

⌊m
3

⌋
+ 1 ≤ j ≤

⌊
2m

3

⌋}
,

E3 =

{
vjuj+2, vjuj+3 :

⌊
2m

3

⌋
+ 1 ≤ j ≤ m

}
.

By the above notations, let G′ = G∪E1 ∪E2 ∪E3, G ⊆ G′′ ⊆ G′, F ′ ⊆ F and I = G−F ′. Note
that G′′ and I are connected graphs. Then, we have the following result.

Theorem 2.5. The graphs G,G′′ and I are independent graphs with resolving 3-partition.

Proof. Note that V (G) = V (G′′) = V (I) = V (Cm) ∪ V (Cm+3) = {vi : i ∈ [1,m]} ∪ {uj :
j ∈ [1,m + 3]}. To show that each of G,G′′ and I is independent, define a minimum resolving
partition for each of these graphs satisfying that any two vertices in the same partition class are
independent. Clearly that pdd(G), pd(G′′), pd(I) ≥ 3. Now, let Λ = {A1, A2, A3} be a partition
of G or G′′ or I where

A1 =
{
vi, uj : i ∈

[
1,
⌊m

3

⌋]
, j ∈

[
1,
⌊m

3

⌋
+ 1
]}

,

A2 =

{
vi, uj : i ∈

[⌊m
3

⌋
+ 1,

⌊
2m

3

⌋]
, j ∈

[⌊m
3

⌋
+ 2,

⌊
2m

3

⌋
+ 2

]}
,

A3 =

{
vi, uj : i ∈

[⌊
2m

3

⌋
+ 1,m

]
, j ∈

[⌊
2m

3

⌋
+ 3,m + 3

]}
.

From the definition of partition Λ, we have the representations of vertices of G or G′′ or I with
respect to Λ as follows.

r(vi|Λ) =


(0, bm

3
c+ 1− i, i), if i ∈ [1, bm

3
c],

(i− bm
3
c, 0, b2m

3
c+ 1− i), if i ∈ [bm

3
c+ 1, b2m

3
c],

(m− i + 1, i− b2m
3
c, 0), if i ∈ [b2m

3
c+ 1,m],

r(uj|Λ) =


(0, bm

3
c+ 2− j, j), if j ∈ [1, bm

3
c+ 1],

(j − bm
3
c − 1, 0, b2m

3
c+ 3− j), if j ∈ [bm

3
c+ 2, b2m

3
c+ 2],

(m− j + 4, j − b2m
3
c − 2, 0), if j ∈ [b2m

3
c+ 3,m + 3].

Let x and y be any two vertices of G,G′′ or I in the same partition class of Λ. If (x = va and y = vb)
or (x = ua and y = ub) in Ap for some p ∈ [1, 3], clearly d(x,Aq) 6= d(y, Aq) for each q 6= p and
a 6= b. Therefore, r(x|Λ) 6= r(y|Λ) for any two vertices x, y ∈ V (Cm) or x, y ∈ V (Cm+3). Now,
we consider that x ∈ V (Cm) and y ∈ V (Cm+3). For x = vi and y = uj in A1 where i ∈ [1, bm

3
c]

and j ∈ [1, bm
3
c+1], if i = j, then d(x,A2) = bm

3
c+1−i = bm

3
c+1−j < bm

3
c+2−j = d(y, A2).

Otherwise, d(x,A3) = i 6= j = d(y, A3). For x = vi and y = uj in A2 where i ∈ [bm
3
c+ 1, b2m

3
c]

and j ∈ [bm
3
c + 2, b2m

3
c + 2], if i − bm

3
c = j − bm

3
c − 1, then d(x,A3) = b2m

3
c + 1 − i =
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b2m
3
c + 2 − j < b2m

3
c + 3 − j = d(y, A3). Otherwise, d(x,A1) = i − bm

3
c 6= j − bm

3
c − 1 =

d(y, A1). For x = vi and y = uj in A3 where i ∈ [b2m
3
c + 1,m] and j ∈ [b2m

3
c + 3,m + 3], if

i − b2m
3
c = j − b2m

3
c − 2, then d(x,A1) = m − i + 1 = m − j + 3 < m − j + 4 = d(y, A1).

Otherwise, d(x,A2) = i − b2m
3
c 6= j − b2m

3
c − 2 = d(y, A2). This implies that Λ is a resolving

partition of each graph G,G′′ or I.
Moreover, we will show that every two vertices x and y of G, or G′′ or I in Ap for some p ∈

[1, 3] are independent. Note for (x = va and y = vb where 1 ≤ a < b ≤ m) or (x = ua and y = ub

where 1 ≤ a < b ≤ m+3), then d(x,Aq)−d(y, Aq) = a−b 6= −(a−b) = d(x,Ar)−d(y, Ar) for
some q 6= r not equal to p. Therefore, two vertices x, y ∈ Cm or x, y ∈ V (Cm+3) are independent.
Now, we suppose for x ∈ V (Cm) and y ∈ V (Cm+3) in Ap for some p ∈ [1, 3]. If x = va and
y = ub in A1 where a ∈ [1, bm

3
c] and b ∈ [1, bm

3
c+1], then d(x,A2)−d(y, A2) = (bm

3
c+1−a)−

(bm
3
c + 2 − b) = −a + b − 1 6= a − b = d(x,A3) − d(y, A3). If x = va and y = ub in A2 where

a ∈ [bm
3
c+1, b2m

3
c] and b ∈ [bm

3
c+2, b2m

3
c+2], then d(x,A1)−d(y, A1) = (a−bm

3
c)−(b−bm

3
c−

1) = a− b+ 1 6= −a+ b− 2 = (b2m
3
c+ 1− a)− (b2m

3
c+ 3− b) = d(x,A3)− d(y, A3). If x = va

and y = ub in A3 where a ∈ [b2m
3
c+ 1,m] and b ∈ [b2m

3
c+ 3,m+ 3], then d(x,A1)− d(y, A1) =

(m−a+1)−(m−b+4) = −a+b−3 6= a−b+2 = (a−b2m
3
c)−(b−b2m

3
c−2) = d(x,A2)−d(y, A2).

This concludes the proof.

In Figure 5 we give some independent graphs satisfying Theorem 2.5. These graphs are ob-
tained from the graph C5 ∪ C8.

Figure 5. Independent graphs with resolving 3-partitions.

By Theorems 2.2 and 2.5, we have the following result.

Corollary 2.5. If H1 ∈ Hair(G), H2 ∈ Hair(G′′) and H3 ∈ Hair(I), then pdd(H1) = pd(H2) =
pd(H3) = 3.
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