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Abstract

Let T be a tree with vertex set {1,...,n} such that each edge is assigned a nonzero weight. The
squared distance matrix of 7', denoted by A, is the n x n matrix with (i, j)-element d(i, j)?,
where d(i,7) is the sum of the weights of the edges on the (ij)-path. We obtain a formula for
the determinant of A. A formula for A~! is also obtained, under certain conditions. The results
generalize known formulas for the unweighted case.
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1. Introduction

Let GG be a connected graph with vertex set V' (G) = {1, ...,n}. The distance between vertices
i,7 € V(G), denoted d(i, j), is the minimum length (the number of edges) of a path from i to j (or
an ij-path). We set d(i,7) = 0,7 = 1,...,n. The distance matrix D(G), or simply D, is the n X n
matrix with (7, j)-element d;; = d(i, j).

A classical result of Graham and Pollak [7] asserts that if 7" is a tree with n vertices, then the
determinant of the distance matrix D of T"is (—1)""!(n — 1)2"~2. Thus the determinant depends
only on the number of vertices in the tree and not on the tree itself. A formula for the inverse
of the distance matrix of a tree was given by Graham and Lovész [6]. Several extensions and
generalizations of these results have been proved (see, for example [1], [2], [5], [8], [9] and the
references contained therein).
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Let T be a tree with vertex set {1,...,n} and let D be the distance matrix of 7. The squared
distance matrix A is defined to be the Hadamard product D o D, and thus has the (4, j)-element
d(i,7)*. A formula for the determinant of A was proved in [3], while the inverse and the inertia of
A were considered in [4].

In this paper we consider weighted trees. Let T be a tree with vertex set V(T') = {1,...,n}
and edge set E(T) = {ey,...,e,_1}. We assume that each edge is assigned a weight and let the
weight assigned to e; be denoted w;, which is a nonzero real number (not necessarily positive).

Fori,j € V(T),i # j, the distance d(3, j) is defined to be the sum of the weights of the edges
on the (unique) ij-path. We set d(i,i) = 0,7 = 1,...,n. Let D be the n x n distance matrix with

The Laplacian of 7" is the n X n matrix defined as follows. The rows and the columns of L
are indexed by V(7). For i # j, the (7, j)-element is O if 7 and j are not adjacent. If 7 and j are
adjacent, and if the edge joining them is ey, then the (i, j)-element of L is set equal to —1 /wy,. The
diagonal elements of L are defined so that L has zero row (and column) sums.

The paper is organized as follows. In this section we review some basic properties of the
distance matrix of a tree such as formulas for its determinant and inverse. Some preliminary
results are obtained in Section 2. Sections 3 and 4 are devoted to the determinant and the inverse
of A, respectively.

Example. Consider the tree

Olyo?j
ZE

The Laplacian of the tree is given by

1/2 0 —1/2 0 0 0
0 —1/3 1/3 0 0 0
~1/2  1/3  7/6 -1 0

0 0 -1 19/20 —1/5 1/2 -1/
0 0 —-1/5 1/5 0
0 0 1/2 0 —1/2
0 0 —1/4 0 0 1/4

0
0

0 0
4
0
0

o O O

We let Q be the n x (n — 1) vertex-edge incidence matrix of the underlying unweighted tree,
with an orientation assigned to each edge. Thus the rows and the columns of () are indexed by
V(T) and E(T) respectively. If i € V(T),e; € E(T), the (i, j)-element of () is 0 if 7 and e;
are not incident, it is 1(—1) if 7 and e; are incident and ¢ is the initial (terminal) vertex of e;. It
is well-known [1] that () has rank n — 1 and any minor of () is either 0 or £1 (thus () is totally
unimodular).
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Let F' be the n x n diagonal matrix with diagonal elements wy, ..., w,_1. It can be verified
that L = QF~1(Q'.
Lemma 1.1. The following assertions are true:
(i) Q’'DQ = —2F.
(ii) LDL = —2L.

Proof. (i). The result follows from the following observation which is easily verified: If e, = {7, j}
and e, = {k, (} are edges of T', then

d(i, k) 4+ d(j,0) — d(i,0) — d(j, k)

equals 0 if e, and ¢, are distinct, and equals —2w,, if e, = ¢,.
(i1). We have

LDL = QF'Q'DQF'qQ
= QF ' (=2F)F~'Q by (i)

= —2QF Q)
= =2L,
and the proof is complete. ]
Let §; denote the degree of the vertex 7,7 = 1,...,n, and let § be the n x 1 vector with
components dy,...,0,. Weset ; = 2 — 9;,¢ = 1,...,n, and let 7 be the n x 1 vector with

components 7y, ..., T,.

Theorem 1.1. The following assertions are true:
(i) det D = (—1)"1222(%, o) (T, wy).
(ii) If >, w; # 0, then D is nonsingular and

1 1
D'=—--L+ 7.

(iii) DT = (3, w;)1.

Proof. Parts (i) and (i1) are well-known, see for example, [2]. To prove (iii), note that from (i1),

1 1
D1 = 1=
2 Ez Wi ” Zz Wi "
since 1’7 = 2. It follows that D7 = (>, w;)1 and the proof is complete. n
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o1

2. Preliminary results

We now turn to the main results for the case of a weighted tree. Let 7" be a tree with vertex set
V(T)=1{1,...,n} and edge set E(T") = {e1,...,e,_1}. Let wy,...,w,_; be the edge-weights.
Recall that 9; is the degree of vertex ¢ and 7; = 2 — §;. We write j ~ i if vertex j is adjacent to
vertex i. We let d; be the weighted degree of 7, which is defined as

5-211){2]}

J:jevi

Let § be the n x 1 vector with components 51, R 5n.
Let A be the squared distance matrix of 7', which is the n x n matrix with its (i, j)-element
equal to d; or equivalently, d(i, 7). The next result was obtained in [4] for the unweighted case,

Lemma 2.1. AT = DJ.

Proof. Leti € {1,...,n} be fixed. For j # i, let v(j) be the predecessor of j on the ij-path (in
the underlying unoriented tree). Let ¢/ be the edge {7(j), j} and set #7 = §; — w(e’). We have

2Zd<z‘,j>2
= Zdw + > (d(i, 7)) + w(e?))?

J#i
- Zde —|—Zdz7 —1—22(127 w(e’) +Z (e7)? (D
j#i JF#i J#i

Note that

n

> d(i, () =D (6, — Dd(i, )%, )

JF J=1

since vertex j serves as a predecessor of 0; — 1 vertices in paths from ¢. Also note that

Zw(ej)2 =) wep)? 3)

i k=1
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We have
> dli.j)j;
j=1
= ) (d(i,7(j) + w(e)) (w(e’) + 07)

J#i
= S (E) + 3 wle)? + 3 (d6AG) + wle) @)
ji ji ji

Observe that #7 is the sum of the weights of all the edges incident to j, except the edge ¢’, which
is on the ij-path. Thus (d(i,v(j)) + w(e?))6’ equals Y d(i,v(¢))w(e’), where the summation is
over all vertices adjacent to j, except ¢. Therefore it follows that

D iy ())w(e’) = (d(i,1(5)) +w(e))e. (5)
i j#i
From (1)-(5) we get

2> "d(i,g)* =Y d(i,§)%6;+ Yy d(i,j)d;,
i=1 j=1 j=1

which is equivalent to

and the proof is complete. ]

Next we define the edge orientation matrix of 7. We assign an orientation to each edge of 7.
Lete; = (p,q);e; = (1, s) be edges of T. We say that e; and e; are similarly oriented, denoted by
e; = ej, if d(p,r) = d(q, s). Otherwise e; and e; are said to be oppositely oriented, denoted by
e; = e;. For example, in the following diagram e; and e; are similarly oriented.

op —0@q— — —0or —08§

The edge orientation matrix of T is the (n — 1) X (n — 1) matrix H having the rows and the
columns indexed by the edges of T. The (i, j)-element of H, denoted by h(i, ;) is defined to be
1(—1) if the corresponding edges e;,e; of 1" are similarly (oppositely) oriented. The diagonal
elements of /1 are set to be 1. We assume that the same orientation is used while defining the
matrix H and the incidence matrix ().

If the tree 7" has no vertex of degree 2, then we let 7 be the diagonal matrix with diagonal
elements 1/7q,...,1/7,. We state some basic properties of H next, see [3].

Theorem 2.1. Let T' be a directed tree on n vertices, let H and () be the edge orientation matrix
and the vertex-edge incidence matrix of T respectively. Then det H = 2"~2T[""_ 7,. Furthermore,
if T' has no vertex of degree 2, then H is nonsingular and H=' = %Q’ 7Q.
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Let wy,...,w,_1 be the edge-weights. Recall that F' be the diagonal matrix with diagonal
elements wy, ..., w,_ 1.
Also note that,
(FHF);; = { wiw;, - ifei= ¢
—W;Wy, if €; — ¢€;.

Lemma 2.2. Q'AQ = —2FHF.

Proof. Fori,j € {1,...,n—1}, let the edge e; be from p to ¢ and the edge e; be from r to s. Then

/ [ d(p,7)*+d(q,s)* —d(p,s)* —d(q,7)?, ife; = ey
(Q AQ)ij = { d(p, 8)2 + d(q, T’)2 . d(p, T)Q . d(q, 8)27 ife; = 6;- (6)

Let d(r, s) = a. It follows from (6) that

(Q'AQ); = (wi + @) + (0 + @) = (w; + wj + a)® — ® = “2ww;, ife; = e;
v (wi + wj + a)* + a® — (w; + @)? — (w; + @)* =2ww;,  ife; = ey
= —2(FHF);,
and the proof is complete. ]
Let 7 be the diagonal matrix with diagonal elements 7, ..., 7,.

Lemma 2.3. AL = 2D7 — 14'.

Proof. Leti,j € {1,...,n} be fixed. Let vertex j have degree p. Suppose j is adjacent to vertices
uy,...,u, and let ey, ..., e, be the corresponding edges with weights wy,, ..., w,,, respectively.
We consider two cases.
Case 1. 7 = 5. We have

(AL)j; = > d(j, k)l
k=1

= wp, (~we) W] (—wg,)”
= _(w€1+"'+w£p>
== _5j-

1

Since the (j, j)-element of 2D7 — 14" is —5j, the proof is complete in this case.

Case 2. i # j. We assume, without loss of generality, that the ij-path passes through u; (it is
possible that i = ). Let d(i, j) = a. Then d(i,u1) = o — wy,, d(i, uz) = o+ wey, . .., d(i,u,) =
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a + wy,. We have

(AL)y = > d(i k)l

iy )X (—w) - d( ) (—wg, ) + ()0,
(O./ - w€1)2(_w51)_1 + (Oé + w42)2(_w42)_1 +oee At (a + wfp)2(_w€p)_l

+ ®((we,) "+ + (we,) )
= (—2aw, +wp)(—we) " + (20w, + W) (—we,) 4
+ (200, + w?p)(—wgp)_l
= 20 —2a(p—1) = (we, + -+ wy,)
= 2at; — (wg, + -+ +wy,),
which is the (7, j)-element of 2D7 — 14’ and the proof is complete. ]

3. Determinant

Our next objective is to obtain a formula for the determinant of the squared distance matrix.
We first consider the case when the tree has no vertex of degree 2.

Theorem 3.1. Let T be a tree with vertex set V(1) = {1,...,n},edgeset E(T) = {ey,...,en1},

and edge weights wy, . .. ,w,_1. Suppose I' has no vertex of degree 2. Then
1 gn— 9 n n—1 5
det A = ;L= 1} Z - (7)

Proof. We assign an orientation to the edges of the tree and let H and () be, respectively, edge
orientation matrix and the vertex-edge incidence matrix of 7.

Let A; denote the i-th column of A, and let ¢; be the column vector with 1 at the i-th place and
zeros elsewhere, . = 1,...,n. Then

¥ Jsto

Q'AQ QA
[ NO 0 1] (8)
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/
Since det { % } = =+1, it follows from (8) that
1

_ | QAQ QA
det A = [A,IQ 01]

— [ _ZigF Q()Al } by Lemma 2.1
= (det(=2FHF))(-A|Q(—2FHF)'Q'A)
n—1

= (=2)" ' [] wi(det H2MQF 'H'FT'Q A

=1

n—1

= (=12 [] wi(det H)ALQF'Q#QF Q' Ay,

=1

in view of Theorem 2.1.
By Lemma 2.2 we have

Aol
A/ F—l !~ F_l /A _ de 1_51 2
1RQFTQTRQF QA Zi (2d1;7; — 0;) p

A a1
T

It follows from (10) and Lemma 2.1 that

$2
AQF'Q7QF QA = o

Also by Theorem 2.1,
det H = 272 H T;.

i=1
The proof is complete by substituting (11) and (12) in (9).

Corollary 3.1. [3] Let T be an unweighted tree with vertex set V(T') = {1,...

has no vertex of degree 2. Then

det A = (—1)"4" 2 (Qn -1- 22 Tl) ﬁr

7 =1
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Proof. Wesetw; = 1,7 =1,...,n — 1in Theorem 3.1. Then &; = §; =2—7,i=1,...,n. We
have

60 Z(Q—Tz‘)Q
T N T;

. . 1
(3 (2

_ 2{: 4-+-Tii—14ﬂ

= 4Z%+ZTZ~—4TL

7 7

= 4Z%+2—4n

- <2n_1_22%>. (14)

i

The proof is complete by substituting (14) in (7). [

We turn to the case when there is a vertex of degree 2.

Theorem 3.2. Let T be a tree with vertex set V(T) = {1,...,n}, edge set E(T) = {ey,...,e,1},
and edge weights wy, . .., w,_1. Let q be a vertex of degree 2 and let p and r be neighbors of q. Let

e; = (pq),ej = (qr). Then

n—1
det A = (—1)”_122”_5(%+wj)2Hw§HTk. (15)
s=1 k#q
Proof. We assume, without loss of generality, that e; is directed from p to ¢ and ¢; is directed from
gtor.

€ €j
op — oq —— or

Let 2, be the n x 1 unit vector with 1 at the g-th place and zeros elsewhere. Let A, be the ¢-th
column of A. We have

o O'AQ Q'A, OFHF Q'A,
C]ate w1=| KT W)= T W] 6)

in view of Lemma 2.2. It follows from (16) that

ol F' 0 —2H  F'QA,
R R N R e v Sl B

q

Taking determinants of matrices in (17) we get

(18)

_ -1y
(det F~1)*det A = det [ 2H - FTQA, ] :

AQF™ 0
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Note that the ¢-th and the j-th columns of H are identical.
Let H(j|j) denote the submatrix obtained by deleting row j and column j from H.
0 —2H  F'Q'A,
A;QF*1 0
the determinant along column j. Then we get

I } , subtract column ¢ from column j, row ¢ from row j, and then expand

= —((ALQF™)); — (ALQF™");)* det(—2H (j]5))

= —(=2)"*det H(j|j)(—w; — w;)?, (19)

_ -1y
det{ 2H FQAq]

AQF™ 0

Note that H(j|j) is the edge orientation matrix of the tree obtained by deleting vertex ¢ and
replacing edges e; and e; by a single edge directed from p to r in the tree. Hence by Theorem 2.1,

det H(j|j) = 2" ][ - (20)
k#q

It follows from (17),(18) and (19) that

det A = —(det F)*(=1)"2" 22" (] [ 7) (wi + w;)?
k#q
n—1
= (=1)"'2* 0 (w; 4+ wy)? [[w? [[ 7 (21)
s=1 k#q
and the proof is complete. ]

Corollary 3.2. Let T be a tree with vertex set V(T') = {1,...,n}, edge set E(T) = {e1,...,e,_1},
and edge weights wy, . .., w,_1. Suppose T has at least two vertices of degree 2. Then det A = 0.

Proof. The result follows from Theorem 3.2 since 7; = 0 for at least two values of :. [

4. Inverse

We now turn to the inverse of A, when it exists. When the tree has no vertex of degree 2, we
can give a concise formula for the inverse. We first prove some preliminary results.

Lemma 4.1. Let the tree have no vertex of degree 2. Then

A(21 — L76) = (§'76)1. (22)
Proof. By Lemma 2.3, AL = 2D7 — 14'. Hence

AL#0 = 2D6 — (§'76)1. (23)

Since by Lemma 2.1, AT = Db , we obtain the result from (23). [
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For a square matrix A, we denote by cof A, the sum of the cofactors of A.

Lemma 4.2. Let T be a tree with vertex set V(T) = {1,...,n}, edge set E(T) = {e1,...,en_1},

and edge weights wy, . .., w,_1. Suppose I' has no vertex of degree 2. Then
-1 n
cof A = (—1)"" 122~ 3Hw,§HTi. (24)

Proof. By Lemma 2.2, Q’AQ = —2F HF. Taking determinant of both sides and using Cauchy-
Binet formula, we get

cof A = (=2 )”_1(detF)2detH

n—1
= (=2)" 1Hw,§2” QHTZ by Theorem 2.1
k=1 1=1

n—1 n
= (2 [Twi [ [ = (25)
k=1 i=1

and the proof is complete. ]

Corollary 4.1. Let the tree have no vertex of degree 2 and let [ = §'76. If B # 0, then A is
nonsingular and

4
1A '1 = —. 26
3 (26)

Proof. Observe that § = ZT—Z By Theorem 3.1,

i=1

n n—1 n ¢
det A = — H 7 H wiy 27)
=1 =1 =1
If 3 # 0, then A is nonsingular by (27). Note that 1’A~11 = %. The proof is complete using
Lemma 4.2 and (27). [

Theorem 4.1. Let the tree have no vertex of degree 2 and let = §'75. Let n =27 — L#9. If
B # 0, then A is nonsingular and

1 1
ATl = ——L L 2
T +45 (28)
Proof. Let X = ——LTL—|— 4577U Then
AX = 1ALAL—I— —A (29)

311



Squared distance matrix of a weighted tree |  Ravindra B. Bapat

By Lemma 2.3, AL = 2D7 — 15'. Hence
AL?L =2DL — 197 L. (30)
Using Theorem 1.1, we can see that
DL = -2+ 17" (€29)

Finally, by Lemma 4.1, An = . This fact and (29), (30) and (31) lead to

1 1
AX =1--1 5' L+ — 32
5 7'+ =07TL + 1 5 (32)
Since n = 27 — L70, it follows from (32) that AX = I and the proof is complete. ]

We conclude with an example to show that the condition 3 # 0 is necessary in Theorem 4.1.
Example Consider the tree

02
1
03 —— o0l ——05
v

o4

The distance matrix of the tree is given by

0 1 1 y 1
1 0 2 1+~ 2
D=|1 2 0 1+v 2
v 1+~ 1+7v 0 14~

1 p 2 14+ 0

It can be checked that det A = —32+%(y? — 6 — 3). Thus A is singular if y = 3 + 2v/3. Note

52
that §' = [y+3,1,1,7,1], 7 = [~2,1,1,1, 1] and hence, if v = 3 + 21/3, then Z
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