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Abstract

Let T be a tree with vertex set {1, . . . , n} such that each edge is assigned a nonzero weight. The
squared distance matrix of T, denoted by ∆, is the n × n matrix with (i, j)-element d(i, j)2,
where d(i, j) is the sum of the weights of the edges on the (ij)-path. We obtain a formula for
the determinant of ∆. A formula for ∆−1 is also obtained, under certain conditions. The results
generalize known formulas for the unweighted case.
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1. Introduction

Let G be a connected graph with vertex set V (G) = {1, . . . , n}. The distance between vertices
i, j ∈ V (G), denoted d(i, j), is the minimum length (the number of edges) of a path from i to j (or
an ij-path). We set d(i, i) = 0, i = 1, . . . , n. The distance matrix D(G), or simply D, is the n× n
matrix with (i, j)-element dij = d(i, j).

A classical result of Graham and Pollak [7] asserts that if T is a tree with n vertices, then the
determinant of the distance matrix D of T is (−1)n−1(n − 1)2n−2. Thus the determinant depends
only on the number of vertices in the tree and not on the tree itself. A formula for the inverse
of the distance matrix of a tree was given by Graham and Lovász [6]. Several extensions and
generalizations of these results have been proved (see, for example [1], [2], [5], [8], [9] and the
references contained therein).
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Let T be a tree with vertex set {1, . . . , n} and let D be the distance matrix of T. The squared
distance matrix ∆ is defined to be the Hadamard product D ◦ D, and thus has the (i, j)-element
d(i, j)2. A formula for the determinant of ∆ was proved in [3], while the inverse and the inertia of
∆ were considered in [4].

In this paper we consider weighted trees. Let T be a tree with vertex set V (T ) = {1, . . . , n}
and edge set E(T ) = {e1, . . . , en−1}. We assume that each edge is assigned a weight and let the
weight assigned to ei be denoted wi, which is a nonzero real number (not necessarily positive).

For i, j ∈ V (T ), i 6= j, the distance d(i, j) is defined to be the sum of the weights of the edges
on the (unique) ij-path. We set d(i, i) = 0, i = 1, . . . , n. Let D be the n× n distance matrix with
dij = d(i, j).

The Laplacian of T is the n × n matrix defined as follows. The rows and the columns of L
are indexed by V (T ). For i 6= j, the (i, j)-element is 0 if i and j are not adjacent. If i and j are
adjacent, and if the edge joining them is ek, then the (i, j)-element of L is set equal to−1/wk. The
diagonal elements of L are defined so that L has zero row (and column) sums.

The paper is organized as follows. In this section we review some basic properties of the
distance matrix of a tree such as formulas for its determinant and inverse. Some preliminary
results are obtained in Section 2. Sections 3 and 4 are devoted to the determinant and the inverse
of ∆, respectively.

Example. Consider the tree
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BB

BB
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−3
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||
||
||
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||||||||−2
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2 ◦7
The Laplacian of the tree is given by

1/2 0 −1/2 0 0 0 0
0 −1/3 1/3 0 0 0 0

−1/2 1/3 7/6 −1 0 0 0
0 0 −1 19/20 −1/5 1/2 −1/4
0 0 0 −1/5 1/5 0 0
0 0 0 1/2 0 −1/2 0
0 0 0 −1/4 0 0 1/4


.

We let Q be the n × (n − 1) vertex-edge incidence matrix of the underlying unweighted tree,
with an orientation assigned to each edge. Thus the rows and the columns of Q are indexed by
V (T ) and E(T ) respectively. If i ∈ V (T ), ej ∈ E(T ), the (i, j)-element of Q is 0 if i and ej
are not incident, it is 1(−1) if i and ej are incident and i is the initial (terminal) vertex of ej. It
is well-known [1] that Q has rank n − 1 and any minor of Q is either 0 or ±1 (thus Q is totally
unimodular).
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Let F be the n × n diagonal matrix with diagonal elements w1, . . . , wn−1. It can be verified
that L = QF−1Q′.

Lemma 1.1. The following assertions are true:

(i) Q′DQ = −2F.

(ii) LDL = −2L.

Proof. (i). The result follows from the following observation which is easily verified: If ep = {i, j}
and eq = {k, `} are edges of T, then

d(i, k) + d(j, `)− d(i, `)− d(j, k)

equals 0 if ep and eq are distinct, and equals −2wp, if ep = eq.
(ii). We have

LDL = QF−1Q′DQF−1Q′

= QF−1(−2F )F−1Q′ by (i)
= −2QF−1Q′

= −2L,

and the proof is complete.

Let δi denote the degree of the vertex i, i = 1, . . . , n, and let δ be the n × 1 vector with
components δ1, . . . , δn. We set τi = 2 − δi, i = 1, . . . , n, and let τ be the n × 1 vector with
components τ1, . . . , τn.

Theorem 1.1. The following assertions are true:

(i) detD = (−1)n−12n−2(
∑

iwi)(
∏

iwi).

(ii) If
∑

iwi 6= 0, then D is nonsingular and

D−1 = −1

2
L+

1

2
∑

iwi
ττ ′.

(iii) Dτ = (
∑

iwi)1.

Proof. Parts (i) and (ii) are well-known, see for example, [2]. To prove (iii), note that from (ii),

D−11 =
1

2
∑

iwi
ττ ′1 =

1∑
iwi

τ,

since 1′τ = 2. It follows that Dτ = (
∑

iwi)1 and the proof is complete.
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2. Preliminary results

We now turn to the main results for the case of a weighted tree. Let T be a tree with vertex set
V (T ) = {1, . . . , n} and edge set E(T ) = {e1, . . . , en−1}. Let w1, . . . , wn−1 be the edge-weights.
Recall that δi is the degree of vertex i and τi = 2 − δi. We write j ∼ i if vertex j is adjacent to
vertex i. We let δ̂i be the weighted degree of i, which is defined as

δ̂i =
∑
j:j∼i

w({i, j}), i = 1, . . . , n.

Let δ̂ be the n× 1 vector with components δ̂1, . . . , δ̂n.
Let ∆ be the squared distance matrix of T, which is the n × n matrix with its (i, j)-element

equal to d2
ij or equivalently, d(i, j)2. The next result was obtained in [4] for the unweighted case,

Lemma 2.1. ∆τ = Dδ̂.

Proof. Let i ∈ {1, . . . , n} be fixed. For j 6= i, let γ(j) be the predecessor of j on the ij-path (in
the underlying unoriented tree). Let ej be the edge {γ(j), j} and set θj = δ̂j − w(ej). We have

2
n∑
j=1

d(i, j)2

=
n∑
j=1

d(i, j)2 +
∑
j 6=i

(d(i, γ(j)) + w(ej))2

=
n∑
j=1

d(i, j)2 +
∑
j 6=i

d(i, γ(j))2 + 2
∑
j 6=i

d(i, γ(j))w(ej) +
∑
j 6=i

w(ej)2. (1)

Note that ∑
j 6=i

d(i, γ(j))2 =
n∑
j=1

(δj − 1)d(i, j)2, (2)

since vertex j serves as a predecessor of δj − 1 vertices in paths from i. Also note that

∑
j 6=i

w(ej)2 =
n−1∑
k=1

w(ek)
2. (3)
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We have
n∑
j=1

d(i, j)δ̂j

=
∑
j 6=i

(d(i, γ(j) + w(ej))(w(ej) + θj)

=
∑
j 6=i

d(i, γ(j))w(ej) +
∑
j 6=i

w(ej)2 +
∑
j 6=i

(d(i, γ(j)) + w(ej))θj. (4)

Observe that θj is the sum of the weights of all the edges incident to j, except the edge ej, which
is on the ij-path. Thus (d(i, γ(j)) + w(ej))θj equals

∑
d(i, γ(`))w(e`), where the summation is

over all vertices adjacent to j, except i. Therefore it follows that∑
j 6=i

d(i, γ(j))w(ej) =
∑
j 6=i

(d(i, γ(j)) + w(ej))θj. (5)

From (1)-(5) we get

2
n∑
i=1

d(i, j)2 =
n∑
j=1

d(i, j)2δj +
n∑
j=1

d(i, j)δ̂j,

which is equivalent to
n∑
i=1

d(i, j)2τj =
n∑
j=1

d(i, j)δ̂j,

and the proof is complete.

Next we define the edge orientation matrix of T. We assign an orientation to each edge of T.
Let ei = (p, q); ej = (r, s) be edges of T. We say that ei and ej are similarly oriented, denoted by
ei ⇒ ej, if d(p, r) = d(q, s). Otherwise ei and ej are said to be oppositely oriented, denoted by
ei 
 ej. For example, in the following diagram ei and ej are similarly oriented.

◦p // ◦q ___ ◦r // ◦s

The edge orientation matrix of T is the (n − 1) × (n − 1) matrix H having the rows and the
columns indexed by the edges of T. The (i, j)-element of H, denoted by h(i, j) is defined to be
1(−1) if the corresponding edges ei, ej of T are similarly (oppositely) oriented. The diagonal
elements of H are set to be 1. We assume that the same orientation is used while defining the
matrix H and the incidence matrix Q.

If the tree T has no vertex of degree 2, then we let τ̂ be the diagonal matrix with diagonal
elements 1/τ1, . . . , 1/τn. We state some basic properties of H next, see [3].

Theorem 2.1. Let T be a directed tree on n vertices, let H and Q be the edge orientation matrix
and the vertex-edge incidence matrix of T, respectively. Then detH = 2n−2

∏n
i=1 τi. Furthermore,

if T has no vertex of degree 2, then H is nonsingular and H−1 = 1
2
Q′τ̂Q.
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Let w1, . . . , wn−1 be the edge-weights. Recall that F be the diagonal matrix with diagonal
elements w1, . . . , wn−1.

Also note that,

(FHF )ij =

{
wiwj, if ei ⇒ ej;
−wiwj, if ei 
 ej.

Lemma 2.2. Q′∆Q = −2FHF.

Proof. For i, j ∈ {1, . . . , n−1}, let the edge ei be from p to q and the edge ej be from r to s. Then

(Q′∆Q)ij =

{
d(p, r)2 + d(q, s)2 − d(p, s)2 − d(q, r)2, if ei ⇒ ej;
d(p, s)2 + d(q, r)2 − d(p, r)2 − d(q, s)2, if ei 
 ej.

(6)

Let d(r, s) = α. It follows from (6) that

(Q′∆Q)ij =

{
(wi + α)2 + (wj + α)2 − (wi + wj + α)2 − α2 = −2wiwj, if ei ⇒ ej;
(wi + wj + α)2 + α2 − (wi + α)2 − (wj + α)2 = 2wiwj, if ei 
 ej.

= −2(FHF )ij,

and the proof is complete.

Let τ̃ be the diagonal matrix with diagonal elements τ1, . . . , τn.

Lemma 2.3. ∆L = 2Dτ̃ − 1δ̂′.

Proof. Let i, j ∈ {1, . . . , n} be fixed. Let vertex j have degree p. Suppose j is adjacent to vertices
u1, . . . , up and let e`1 , . . . , e`p be the corresponding edges with weights w`1 , . . . , w`p , respectively.
We consider two cases.
Case 1. i = j. We have

(∆L)jj =
n∑
k=1

d(j, k)2`kj

= w2
`1

(−w`1)−1 + · · ·+ w2
`p(−w`p)−1

= −(w`1 + · · ·+ w`p)

= −δ̂j.

Since the (j, j)-element of 2Dτ̃ − 1δ̂′ is −δ̂j, the proof is complete in this case.

Case 2. i 6= j. We assume, without loss of generality, that the ij-path passes through u1 (it is
possible that i = u1). Let d(i, j) = α. Then d(i, u1) = α−w`1 , d(i, u2) = α+w`2 , . . . , d(i, up) =
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α + w`p . We have

(∆L)ij =
n∑
k=1

d(i, k)2`kj

= d(i, u1)2(−w`1)−1 + · · ·+ d(i, up)
2(−w`p)−1 + d(i, j)2`jj

= (α− w`1)2(−w`1)−1 + (α + w`2)
2(−w`2)−1 + · · ·+ (α + w`p)2(−w`p)−1

+ α2((w`1)
−1 + · · ·+ (w`p)−1)

= (−2αw`1 + w2
`1

)(−w`1)−1 + (2αw`2 + w2
`2

)(−w`2)−1 + · · ·
+ (2αw`p + w2

`p)(−w`p)−1

= 2α− 2α(p− 1)− (w`1 + · · ·+ w`p)

= 2ατj − (w`1 + · · ·+ w`p),

which is the (i, j)-element of 2Dτ̃ − 1δ̂′ and the proof is complete.

3. Determinant

Our next objective is to obtain a formula for the determinant of the squared distance matrix.
We first consider the case when the tree has no vertex of degree 2.

Theorem 3.1. Let T be a tree with vertex set V (T ) = {1, . . . , n}, edge setE(T ) = {e1, . . . , en−1},
and edge weights w1, . . . , wn−1. Suppose T has no vertex of degree 2. Then

det ∆ = (−1)n−1 4n−2

2

n∏
i=1

τi

n−1∏
i=1

w2
i

n∑
i=1

δ̂2
i

τi
. (7)

Proof. We assign an orientation to the edges of the tree and let H and Q be, respectively, edge
orientation matrix and the vertex-edge incidence matrix of T.

Let ∆i denote the i-th column of ∆, and let ti be the column vector with 1 at the i-th place and
zeros elsewhere, i = 1, . . . , n. Then[

Q′

t′1

]
∆
[
Q t1

]
=

[
Q′∆Q Q′∆1

∆′1Q 0

]
. (8)
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Since det

[
Q′

t′1

]
= ±1, it follows from (8) that

det ∆ =

[
Q′∆Q Q′∆1

∆′1Q 0

]
=

[
−2FHF Q′∆1

∆′1Q 0

]
by Lemma 2.1

= (det(−2FHF ))(−∆′1Q(−2FHF )−1Q′∆1)

= (−2)n−1

n−1∏
i=1

w2
i (detH)2∆′1QF

−1H−1F−1Q′∆1

= (−1)n−12n
n−1∏
i=1

w2
i (detH)∆′1QF

−1Q′τ̂QF−1Q′∆1, (9)

in view of Theorem 2.1.
By Lemma 2.2 we have

∆′1QF
−1Q′τ̂QF−1Q′∆1 =

∑
i

(2d1iτi − δ̂i)2 1

τi

=
∑
i

(4d2
1iτ

2
i + δ̂2

i − 4d1iτiδ̂i)
1

τi

=
∑
i

4d2
1iτi +

∑
i

δ̂2
i

τi
− 4

∑
i

d1iδ̂i (10)

It follows from (10) and Lemma 2.1 that

∆′1QF
−1Q′τ̂QF−1Q′∆1 =

∑
i

δ̂2
i

τi
. (11)

Also by Theorem 2.1,

detH = 2n−2

n∏
i=1

τi. (12)

The proof is complete by substituting (11) and (12) in (9).

Corollary 3.1. [3] Let T be an unweighted tree with vertex set V (T ) = {1, . . . , n}. Suppose T
has no vertex of degree 2. Then

det ∆ = (−1)n4n−2

(
2n− 1− 2

∑
i

1

τi

)
n∏
i=1

τi. (13)
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Proof. We set wi = 1, i = 1, . . . , n − 1 in Theorem 3.1. Then δ̂i = δi = 2 − τi, i = 1, . . . , n. We
have ∑

i

δi
2

τi
=

∑
i

(2− τi)2

τi

=
∑
i

4 + τ 2
i − 4τi
τi

= 4
∑
i

1

τi
+
∑
i

τi − 4n

= 4
∑
i

1

τi
+ 2− 4n

= −2

(
2n− 1− 2

∑
i

1

τi

)
. (14)

The proof is complete by substituting (14) in (7).

We turn to the case when there is a vertex of degree 2.

Theorem 3.2. Let T be a tree with vertex set V (T ) = {1, . . . , n}, edge setE(T ) = {e1, . . . , en−1},
and edge weights w1, . . . , wn−1. Let q be a vertex of degree 2 and let p and r be neighbors of q. Let
ei = (pq), ej = (qr). Then

det ∆ = (−1)n−122n−5(wi + wj)
2

n−1∏
s=1

w2
s

∏
k 6=q

τk. (15)

Proof. We assume, without loss of generality, that ei is directed from p to q and ej is directed from
q to r.

◦p ei // ◦q
ej // ◦r

Let zq be the n× 1 unit vector with 1 at the q-th place and zeros elsewhere. Let ∆q be the q-th
column of ∆. We have[

Q′

z′q

]
∆
[
Q zq

]
=

[
Q′∆Q Q′∆q

∆′qQ 0

]
=

[
−2FHF Q′∆q

∆′qQ 0

]
, (16)

in view of Lemma 2.2. It follows from (16) that[
F−1 0

0 1

] [
Q′

z′q

]
∆
[
Q zq

] [ F−1 0
0 1

]
=

[
−2H F−1Q′∆q

∆′qQF
−1 0

]
. (17)

Taking determinants of matrices in (17) we get

(detF−1)2 det ∆ = det

[
−2H F−1Q′∆q

∆′qQF
−1 0

]
. (18)

309



www.ejgta.org

Squared distance matrix of a weighted tree | Ravindra B. Bapat

Note that the i-th and the j-th columns of H are identical.
Let H(j|j) denote the submatrix obtained by deleting row j and column j from H.

In
[
−2H F−1Q′∆q

∆′qQF
−1 0

]
, subtract column i from column j, row i from row j, and then expand

the determinant along column j. Then we get

det

[
−2H F−1Q′∆q

∆′qQF
−1 0

]
= −((∆′qQF

−1))j − (∆′qQF
−1)j)

2 det(−2H(j|j))

= −(−2)n−2 detH(j|j)(−wj − wi)2, (19)

Note that H(j|j) is the edge orientation matrix of the tree obtained by deleting vertex q and
replacing edges ei and ej by a single edge directed from p to r in the tree. Hence by Theorem 2.1,

detH(j|j) = 2n−3
∏
k 6=q

τk. (20)

It follows from (17),(18) and (19) that

det ∆ = −(detF )2(−1)n2n−22n−3(
∏
k 6=q

τk)(wi + wj)
2

= (−1)n−122n−5(wi + wj)
2

n−1∏
s=1

w2
s

∏
k 6=q

τk, (21)

and the proof is complete.

Corollary 3.2. Let T be a tree with vertex set V (T ) = {1, . . . , n}, edge setE(T ) = {e1, . . . , en−1},
and edge weights w1, . . . , wn−1. Suppose T has at least two vertices of degree 2. Then det ∆ = 0.

Proof. The result follows from Theorem 3.2 since τi = 0 for at least two values of i.

4. Inverse

We now turn to the inverse of ∆, when it exists. When the tree has no vertex of degree 2, we
can give a concise formula for the inverse. We first prove some preliminary results.

Lemma 4.1. Let the tree have no vertex of degree 2. Then

∆(2τ − Lτ̂ δ̂) = (δ̂′τ̂ δ̂)1. (22)

Proof. By Lemma 2.3, ∆L = 2Dτ̃ − 1δ̂′. Hence

∆Lτ̂ δ̂ = 2Dδ̂ − (δ̂′τ̂ δ̂)1. (23)

Since by Lemma 2.1, ∆τ = Dδ̂, we obtain the result from (23).
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For a square matrix A, we denote by cofA, the sum of the cofactors of A.

Lemma 4.2. Let T be a tree with vertex set V (T ) = {1, . . . , n}, edge set E(T ) = {e1, . . . , en−1},
and edge weights w1, . . . , wn−1. Suppose T has no vertex of degree 2. Then

cof ∆ = (−1)n−122n−3

n−1∏
k=1

w2
k

n∏
i=1

τi. (24)

Proof. By Lemma 2.2, Q′∆Q = −2FHF. Taking determinant of both sides and using Cauchy-
Binet formula, we get

cof ∆ = (−2)n−1(detF )2 detH

= (−2)n−1

n−1∏
k=1

w2
k2
n−2

n∏
i=1

τi by Theorem 2.1

= (−1)n−122n−3

n−1∏
k=1

w2
k

n∏
i=1

τi, (25)

and the proof is complete.

Corollary 4.1. Let the tree have no vertex of degree 2 and let β = δ̂′τ̂ δ̂. If β 6= 0, then ∆ is
nonsingular and

1′∆−11 =
4

β
. (26)

Proof. Observe that β =
n∑
i=1

δ̂2i
τi
. By Theorem 3.1,

det ∆ = (−1)n−1 4n−2

2

n∏
i=1

τi

n−1∏
i=1

w2
i

n∑
i=1

δ̂2
i

τi
. (27)

If β 6= 0, then ∆ is nonsingular by (27). Note that 1′∆−11 = cof ∆
det ∆

. The proof is complete using
Lemma 4.2 and (27).

Theorem 4.1. Let the tree have no vertex of degree 2 and let β = δ̂′τ̂ δ̂. Let η = 2τ − Lτ̂ δ̂. If
β 6= 0, then ∆ is nonsingular and

∆−1 = −1

4
Lτ̂L+

1

4β
ηη′. (28)

Proof. Let X = −1
4
Lτ̂L+ 1

4β
ηη′. Then

∆X = −1

4
∆Lτ̂L+

1

4β
∆ηη′. (29)
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By Lemma 2.3, ∆L = 2Dτ̃ − 1δ̂′. Hence

∆Lτ̂L = 2DL− 1δ̂′τ̂L. (30)

Using Theorem 1.1, we can see that

DL = −2I + 1τ ′. (31)

Finally, by Lemma 4.1, ∆η = β. This fact and (29), (30) and (31) lead to

∆X = I − 1

2
1τ ′ +

1

4
δ̂′τ̂L+

1

4β
1η′. (32)

Since η = 2τ − Lτ̂ δ̂, it follows from (32) that ∆X = I and the proof is complete.

We conclude with an example to show that the condition β 6= 0 is necessary in Theorem 4.1.

Example Consider the tree

◦2
1

◦3 1 ◦1
γ

1 ◦5

◦4

The distance matrix of the tree is given by

D =


0 1 1 γ 1
1 0 2 1 + γ 2
1 2 0 1 + γ 2
γ 1 + γ 1 + γ 0 1 + γ
1 2 2 1 + γ 0

 .

It can be checked that det ∆ = −32γ2(γ2− 6γ − 3). Thus ∆ is singular if γ = 3 + 2
√

3. Note

that δ̂′ = [γ + 3, 1, 1, γ, 1], τ ′ = [−2, 1, 1, 1, 1] and hence, if γ = 3 + 2
√

3, then
4∑
i=1

δ̂2

τi
= 0.
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