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Abstract

The non-commuting graph �(G) of a non–abelian group G is defined as follows. The vertex set
V (�(G)) of �(G) is G \ Z(G) where Z(G) denotes the center of G and two vertices x and y are
adjacent if and only if xy 6= yx. We prove that the rainbow k-connectivity of �(G) is equal to⌃
k
2

⌥
+ 2, for 3  k  |Z(G)|.
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1. Introduction

Let G be a group and Z(G) be the center of G. The non-commuting graph �(G) associated to
G is the graph with vertex set G \ Z(G) and such that two vertices x and y are adjacent whenever
xy 6= yx. The non-commuting graph of a group was first considered by Paul Erdös in 1975, [6].
Subsequently, it was strongly developed in [1].

Let � be a connected graph with the vertex set V (�) and the edge set E(�). Define a coloring
' : E(�) ! {1, 2, . . . , t}, t 2 N, where adjacent edges may be colored the same. Given an edge
coloring of �, a path P is rainbow if no two edges of P are colored the same. An edge-colored
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graph � is rainbow connected if every pair of vertices of � are connected by a rainbow. The rain-

bow connection number rc1(�) of � is defined to be the minimum integer t such that there exists
an edge-coloring of � with t colors that makes � rainbow connected.

From a generalization given by Chartrand, Johns, McKeon and Zhang in 2009 [2], an edge-
colored graph � is called rainbow k–connected if any two distinct vertices of � are connected by
at least k internally disjoint rainbow paths. The rainbow k–connectivity of �, denoted by rck(�),
is the minimum number of colors required to color the edges of � to make it rainbow k–connected,
and ' is called a rainbow k–coloring of �. We usually denote rc1(�) by rc(�).

The importance of rainbow connection number emerge from applications to the secure transfer
of classified information between agencies [2]. Recently, Septyanto in [8], showed another form
to see the application.

The commutator of an ordered pair g1, g2 of elements of G is the element

[g1, g2] = g�1
1 g�1

2 g1g2 2 G

G is abelian if and only if [g1, g2] = 1

Let G(V,E), and let a = (e1, ..., ej) be a path with ei 2 E. Then l(a) := j is called the length

of a.

We denote by P (x, y) the set of all x, y paths in G. Then d(x, y) := min{l(a)|a 2 P (x, y)} is
called the distance from x to y.

We call diam(G) := max{d(x, y)|x, y 2 G} the diameter of G. The length of a shortest cycle
of G is called the girth of G.

When a pair of vertices gi, gj are joined, we denoted by gi ⇠ gj . In otherwise we denoted by
gi ⌧ gj .

A non–commutative graph �(G) is connected and the diameter of �(G) is 2, diam(�(G)) = 2.

Theorem 1.1. [1] For any non–abelian group G, diam(�(G)) = 2. In particular, �(G) is con-

nected.

In [9], it is shown that rc(�(G)) =rc2(�(G)) = 2.

Theorem 1.2. [9] Let G be a finite non-abelian group. Then rc(�(G)) = rc2(�(G)) = 2.

In the present article, we estimate rck(�(G)) for 3  k  |Z(G)|. Our main result is the following
theorem.

Theorem 1.3. Let G be a finite non-abelian group. Then rck(�(G))  k, for 3  k  |Z(G)| with

|Z(G)| � 3. Specifically rck(�(G)) =
⌃
k
2

⌥
+ 2.
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2. rck(�(G)) with 1  k  |Z(G)|

Let G be a finite non-abelian group, from now on we write the vertices of �(G) as the partition

V (�(G)) = g1Z [̇ g2Z [̇ · · · [̇ gmZ,

with Z = Z(G), giZ 6= Z, m = [G : Z(G)]� 1 and where giZ is an independent subset of �(G).

Proposition 2.1. Let G be a finite non-abelian group. Then the m–partite graph �(G) with parti-

tion V (�(G)) = g1Z [̇ g2Z [̇ · · · [̇ gmZ, provides an adjacency by blocks.

Proof. Observe that every pair of vertices gi ⇠ gj, if and only if for all x, y 2 Z gix ⇠ gjy. In
addition, for each i, the vertex g 2 V (�(G)) is adjacent to gi if and only if it is adjacent to every
element of the set giZ. In other words, it is an adjacency by blocks.

Definition 2.2. Let G be a non-commutative finite group, with m–partition

V (�(G)) = g1Z [̇ g2Z [̇ · · · [̇ gmZ

adjacency by blocks. We define the skeleton of the m–partition as the subgraph induced by M =
{g1, g2, . . . , gm}. The skeleton is denoted by SM

�(G).

Remark 2.3. The graph �(G) is not complete , however SM
�(G) can be complete, we can see this

in the follow example: Let G = D2⇥4 := ha, x : a4 = x2 = 1, xax = a�1i, the dihedral group of
order 8. Then Z := Z(G) = {1, a2}, and we have

V (�(G)) = aZ[̇xZ[̇axZ.

Since each pair of {a, x, ax} do not commute, we have SM
�(D2⇥4)

is complete.

By Theorem 1.2, there is a coloration

' : E(�(G)) ! {1, 2}

such that rc(�) = rc2(�) = 2. Thus, the graph �(G) is not complete, implies that '(E(SM
�(G))) =

{1, 2}. Therefore, the coloration

� := '|E(SM
�(G))

: E(SM
�(G)) ! {1, 2}

meets the 2–connectivity, that is to say, rc(SM
�(G))  2. Consider Z(G) = {e = z1, z2, z3, . . . , zs}

and define the following coloring of �(G):

 : E(�(G)) ! {1, 2} given by

 ({gizp, gjzp}) = �({gi, gj}) for 1  i, j, p  m; i 6= j;

 ({gizp, gjzq}) 6= �({gi, gj}) for 1  i, j, p, q  m; i 6= j; p 6= q.

In the next section we give a coloring for 3  k  s with p 6= q. Moreover in section 6 we will
proof that this coloring works.

95



www.ejgta.org

The rainbow k-connectivity of the non-commutative graph of a finite group | Luis A. Dupont et al.

3. About edge-connectivity

We need to find k-rainbow paths between any two vertices for �(G), with k � 3. We may
ask for the maximum number of paths from v1 to v2 vertices, no two of which have an edge in
common (such paths are called edge-disjoint paths). As a consequence of Menger’s theorem about
max-flow and min-cut, Witney [10] presented that a graph is k-connected if and only if any two
vertices are connected by k internally disjoint paths. With Whitney’s result we can answer how
many edge-disjoint paths are connecting a given pair of vertices on �(G).

Definition 3.1. The edge-connectivity is the minimum size of a subset C ⇢ E(G) for which G�C
is not connected for a graph G. The edge-connectivity of G is denoted by �(G). If �(G) � k then
G es called k-edge connected.

The next theorem is a result implied by Menger’s theorem. This form can be found in [7,
Chapter 15].

Theorem 3.2. An undirected graph G = (V,E) is k-edge-connected if and only if there exist k
edge-disjoint paths between any two vertices s and t.

As we can obtain the rainbow-connectivity number of �(G) and this graph is connected by
blocks with s = |Z(G)| as size of each block, we have that the graph �(G) is s-edge-connected
and there exist s edge-disjoint paths in �(G). Then, our problem now is coloring the s edge-disjoint
paths of �(G).

Remark 3.3. By 1.1 we note that there exist two cases that we need analyze, for gi, gj, gk, gl 2
SM
�(G) and zr, zt, zw, zp 2 Z(G). The first case is when gizr ⇠ gjzt which give us a bipartite

complete graph in �(G). The second case is when we have gizr ⇠ gjzt ⇠ gkzw, but gizr ⌧ gkzw.

Remark 3.4. We note that �(G) � s. Then, if we want a path between end vertices gizr and
gjzt, without loss of generality we start with gizr, necessarily, from 3.2, the edges gizr ⇠ gjztb
with tb 2 {1, ..., s}, are in the set of edge-disjoint paths. The same happens for the edges
gizra ⇠ gjzt with ra 2 {1, ..., s} because we have s disjoint paths, therefore we need all out-
edge from gizr, and all in-edge to gjzt, thus all our edge-disjoint paths have the following form:
(gizr, gjztb , ..., gizra , gjzt), with ta, rb 2 {1, ..., s}.

4. Rainbow k–connectivity

4.1. Case when gi ⇠ gj 2 V (SM
�(G))

Let s = |Z(G)| and let r̄ ⌘ r mod s with 1  r  s. If gi ⇠ gj 2 V (SM
�(G)), then the set of

edges is given by
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E1 = {e 2 E(�(G))|gizr ⇠ gjzr such that  ({gizp, gjzp}) = 1}
S

{e 2 E(�(G))| for gizr ⇠ gjzr+1 such that  ({gizp, gjzp}) = 2 with
1  i, j, p  m; i 6= j}

E2 = {e 2 E(�(G))|gizr ⇠ gjzr such that  ({gizp, gjzp}) = 2}
S

{e 2 E(�(G))| for gizr ⇠ gjzr+1 such that  ({gizp, gjzp}) = 1 with
1  i, j, p  m; i 6= j}

E3 = {e 2 E(�(G))|gizr ⇠ gjzr+2}
...

...
...

En = {e 2 E(�(G))|gizr ⇠ gjzr+n�1}
En+1 = {e 2 E(�(G))|gizr ⇠ gjzr+n}
En+2 = E(�(G)) \

�
E1 [ · · · [ En+1

�

with n =
⌅
k
2

⇧
. The coloring given by:

 : E(�(G)) �! {1, ..., n+ 2}
f 7! i if f 2 Ei

For an easier study of this kind of graph we use a table called rainbow table, whose entries
(ra, tb) are the color from edge (gizra , gjztb). This table is the following form:

2

666666666664

gjz1 gjz2 gjz3 ··· gjzn gjzn+1 gjzn+2 ··· gjzs

giz1 1 2 3 · · · n n+ 1
giz2 1 2 · · · n� 1 n n+ 1
giz3 1 · · · n� 2 n� 1 n · · ·

...
...

...
...

gizn 1 2 3 · · · n+ 1
gizn+1 n+ 1 1 2 · · · n

...
...

...
gizs 2 3 4 · · · n+ 1 1

3

777777777775

Case gi ⇠ gj in SM
�(G), s = |Z(G)| and n =

⌅
k
2

⇧
.

The (n+ 2)-color in the table is given by white space.

4.2. Case when gi ⇠ gj ⇠ gl but gi ⌧ gl in SM
�(G)

Let s = |Z(G)| and let r̄ ⌘ r mod s with 1  r  s. If gi ⇠ gj 2 V (SM
�(G)), then the set of

edges is given by
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E1 = {e 2 E(�(G))|gizr ⇠ gjzr such that  ({gizp, gjzp}) = 1}
S

{e 2 E(�(G))| for gizr ⇠ gjzr+1 such that  ({gizp, gjzp}) = 2 with
1  i, j, p  m; i 6= j}

E2 = {e 2 E(�(G))|gizr ⇠ gjzr such that  ({gizp, gjzp}) = 2}
S

{e 2 E(�(G))| for gizr ⇠ gjzr+1 such that  ({gizp, gjzp}) = 1 with
1  i, j, p  m; i 6= j}

E3 = {e 2 E(�(G))|gizr ⇠ gjzr+2}
...

...
...

En = {e 2 E(�(G))|gizr ⇠ gjzr+n�1}
En+1 = {e 2 E(�(G))|gizr ⇠ gjzr+n}
En+2 = E(�(G)) \

�
E1 [ · · · [ En+1

�

with n =
⌃
k
2

⌥
. The coloring given by:

 : E(�(G)) �! {1, ..., n+ 2}
f 7! i if f 2 Ei

This give us a table as:

2

666666666666664

giz1 giz2 ··· gizn gizn+1 ··· gizs glz1 glz2 ··· glzn�1 glzn glzn+1 ··· glzs

gjz1 1 n+ 1 n · · · 2 2 1 · · · n� 1 n n+ 1 · · ·
gjz2 2 1 n+ 1 · · · 3 2 · · · n� 2 n� 1 n · · ·

...
...

...
...

. . .
...

...

gjzn�1 n� 1 n� 2
. . . n 2 1 3 · · · n+ 1

gjzn n n� 1 · · · 1 n+ 1 n+ 1 2 1 · · · n

gjzn+1 n+ 1 n · · ·
... 1 n n+ 1 2 · · · n� 1

...
...

...
...

...
. . .

...
gjzs n n� 1 · · · 1 1 3 · · · n n+ 1 2

3

777777777777775

Case when gi ⇠ gj ⇠ gl but gi ⌧ gl in SM
�(G) with n =

⌃
k
2

⌥
and (n+ 2)-color with white spaces.

5. How to build the rainbow table

Example 5.1. We give the case when s = 6 and g1 ⇠ g2 in SM
�(G) with the coloring assigned before.

Without loss of generality suppose that  ({g1zp, g2zp}) = 1, then the rainbow table is given by:

2

6666664

g2z1 g2z2 g2z3 g2z4 g2z5 g2z6

g1z1 1 2 3
g1z2 1 2 3
g1z3 1 2 3
g1z4 1 2 3
g1z5 3 1 2
g1z6 2 3 1

3

7777775

98



www.ejgta.org

The rainbow k-connectivity of the non-commutative graph of a finite group | Luis A. Dupont et al.

We can see that there is not exist a rainbow k-connectivity with 4 colors. To give s edge-disjoint
paths with ends vertices g1z2 and g2z4, the first path cross above g2z1, then we start the path with
g1z2

4⇠ g2z1. Now, we need move from g2z1 but our only options are g2z1
1⇠ g1z1, g2z1

3⇠ g1z5 and
g2z1

2⇠ g1z6 and these edges can not arrive to g2z4 because all the in-edge repeat color 4. For this
reason we need to ensure that there exist enough in-edge that cover complete the out-edge in the
set edges with majority color. For the existence of all edge-disjoint paths for any vertex we need
to add one color more, and the table is given by

2

6666664

g2z1 g2z2 g2z3 g2z4 g2z5 g2z6

g1z1 1 2 3 4
g1z2 1 2 3 4
g1z3 1 2 3 4
g1z4 4 1 2 3
g1z5 3 4 1 2
g1z6 2 3 4 1

3

7777775

Example 5.2. We will do an example step-by-step about how we found all the edge-disjoint paths
with our table. Let g1 ⇠ g2 in SM

�(G) and |Z(G)| = 4. Then, we will build our rainbow table with 3
colors the following form.

2

664

g2z1 g2z2 g2z3 g2z4

g1z1 1 2
g1z2 1 2
g1z3 1 2
g1z4 2 1

3

775

From this table we can found rc3(�(G)) = 3 for any vertices. For example, for end vertices
g1z3, g2z4

g2z1

g2z2

g2z3

g2z4

g1z1

g1z2

g1z3

g1z4

1-path: g1z3
2⇠g2z4

2-path: g1z3
3⇠g2z1

2⇠g1z4
1⇠g2z4

3-path: g1z3
1⇠g2z3

2⇠g1z2
3⇠g2z4

If we note, we can not find 4 edge-disjoint paths with 3 colors, because g1z1 to g2z1 passes
through g2z3, the paths are the followings: g1z1

3⇠ g2z3
2⇠ g1z2

3⇠ g2z1 or g1z1
3⇠ g2z3

1⇠ g1z3
3⇠

g2z1. Then, we need add another color, then the table is 4 colors the following form:

2

664

g2z1 g2z2 g2z3 g2z4

g1z1 1 2 3
g1z2 1 2 3
g1z3 3 1 2
g1z4 2 3 1

3

775
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Then, with all this 4 colors we found all 4 edge-disjoint paths from g1z1 to g2z1, and they are the
followings:

g2z1

g2z2

g2z3

g2z4

g1z1

g1z4

g1z3

g1z2

1-path: g1z1
1⇠g2z1

2-path: g1z1
2⇠g2z2

1⇠g1z2
4⇠g2z1

3-path: g1z1
3⇠g2z3

4⇠g1z4
2⇠g2z1

4-path: g1z1
4⇠g2z4

2⇠g1z3
3⇠g2z1

and the same is true for any pair of vertices.

6. Proofs

6.1. Case 3-partite with |Z(G)| = 3

The coloring given before can not help us to find all the disjoint-edge paths for the case when
gi ⇠ gj ⇠ gl but gi ⌧ gl in SM

�(G), for example, the rainbow table for this case is the next

2

4

giz1 giz2 giz3 glz1 glz2 glz3

gjz1 1 2 2 1
gjz2 2 1 2 1
gjz3 2 1 1 2

3

5

But, we can see that for go from giz1 to glz2 we have same colors then, we need to do paths
with length at least 4 like the following picture:

The coloring given for this specifical case is the following: The rainbow tables for each case

giz1 glz1

gjz1

giz2

giz3

gjz2

gjz3

glz2

glz3

are the following:
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2

4

giz1 giz2 giz3 glz1 glz2 glz3

gjz1 1 3 2 2 3 4
gjz2 2 4 1 4 1 3
gjz3 4 2 3 1 4 2

3

5

With  ({gi, gj}) = 1 in SM
�(G).

2

4

giz1 giz2 giz3 glz1 glz2 glz3

gjz1 2 3 4 1 3 2
gjz2 4 1 3 2 4 1
gjz3 1 4 2 4 2 3

3

5

With  ({gj, gl}) = 1 in SM
�(G).

Theorem 6.1. Let G be a non–abelian group with |Z(G)| = 3 and �(G) be the non-commutative

graph associated to G, then rc3(�(G)) = 4.

Proof. Let the set of edges be the following form:
E1 = {e 2 E(�(G))|gizkr ⇠ gjz1 such that  ({gi, gj}) = 1 for gi, gj 2 SM

�(G) and kr = 1, 2, 3}S
{e 2 E(�(G))|gjz2 ⇠ glz2, gjz3 ⇠ glz1 such that  ({gj, gl}) = 2 for gj, gl 2 SM

�(S)}
E2 = {e 2 E(�(G))|gizkr ⇠ gjz2 such that  ({gi, gj}) = 1 for gi, gj 2 SM

�(G) and kr = 1, 2, 3}S
{e 2 E(�(G))|gjzja ⇠ glzja such that  ({gj, gl}) = 2 for gj, gl 2 SM

�(S) and ja = 1, 3}
E3 = {e 2 E(�(G))|gizkr ⇠ gjz3 such that  ({gi, gj}) = 1 for gi, gj 2 SM

�(G) and kr = 1, 2, 3}S
{e 2 E(�(G))|gjz1 ⇠ glz2, gjz2 ⇠ glz3 such that  ({gj, gl}) = 2 for gj, gl 2 SM

�(S)}
E4 = E \ (E1 [ E2 [ E3)

And the coloring is given by

 : E(�(G)) �! {1, 2, 3, 4}
f 7! i if i 2 Ei.

The following are all the 3 edge-disjoint paths for each pair of vertices when �({gj, gl}) = 2

gjz1
2⇠ glz1 gjz1

3⇠ glz2 gjz1
4⇠ glz3

gjz1
4⇠ glz3

2⇠ gjz3
1⇠ glz1 gjz1

2⇠ glz1
1⇠ gjz3

4⇠ glz2 gjz1
2⇠ glz1

4⇠ gjz2
3⇠ glz3

gjz1
3⇠ glz2

1⇠ gjz2
4⇠ glz1 gjz1

4⇠ glz3
3⇠ gjz2

1⇠ glz2 gjz1
3⇠ glz2

4⇠ gjz3
2⇠ glz3

gjz2
4⇠ glz1 gjz2

1⇠ glz2 gjz2
3⇠ glz3

gjz2
1⇠ glz2

3⇠ gjz1
2⇠ glz1 gjz2

4⇠ glz1
2⇠ gjz1

3⇠ glz2 gjz2
4⇠ glz1

1⇠ gjz3
2⇠ glz3

gjz2
3⇠ glz3

2⇠ gjz3
1⇠ glz1 gjz2

3⇠ glz3
2⇠ gjz3

4⇠ glz2 gjz2
1⇠ glz2

3⇠ gjz1
4⇠ glz3

gjz3
1⇠ glz1 gjz3

4⇠ glz2 gjz3
2⇠ glz3

gjz3
4⇠ glz2

3⇠ gjz1
2⇠ glz1 gjz3

1⇠ glz1
2⇠ gjz1

3⇠ glz2 gjz3
4⇠ glz2

1⇠ gjz2
3⇠ glz3

gjz3
2⇠ glz3

3⇠ gjz2
4⇠ glz1 gjz3

2⇠ glz3
3⇠ gjz2

1⇠ glz2 gjz3
1⇠ glz1

2⇠ gjz1
4⇠ glz3

All the edge-disjoint paths when �({gi, gj}) = 2,�({gj, gl}) = 2 and gi ⇠ gj ⇠ gl but gi ⌧ gl

giz1 ⇠ glz1 giz1 ⇠ glz2 giz1 ⇠ glz3

giz1
1⇠ gjz1

2⇠ glz1 giz1
4⇠ gjz3

2⇠ glz3
3⇠ giz2

1⇠ glz2 giz1
1⇠ gjz1

4⇠ glz3
giz1

2⇠ gjz2
4⇠ glz1 giz1

2⇠ gjz2
1⇠ giz3

3⇠ gjz3
4⇠ glz2 giz1

2⇠ gjz2
3⇠ glz3

giz1
4⇠ gjz3

1⇠ glz2 giz1
1⇠ gjz1

3⇠ glz2 giz1
4⇠ gjz3

2⇠ glz3
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giz2 ⇠ glz1 giz2 ⇠ glz2 giz2 ⇠ glz3

giz2
3⇠ gjz1

2⇠ gjz1 giz2
2⇠ gjz3

4⇠ glz2 giz2
3⇠ gjz2

4⇠ glz3
giz2

2⇠ gjz3
3⇠ giz3

1⇠ gjz2
4⇠ glz1 giz2

4⇠ gjz2
1⇠ giz3

2⇠ gjz1
3⇠ glz2 giz2

4⇠ gjz2
1⇠ giz3

3⇠ gjz3
2⇠ glz3

giz2
4⇠ gjz2

3⇠ glz3
2⇠ gjz3

1⇠ glz1 giz2
3⇠ gjz1

2⇠ glz1
4⇠ gjz2

1⇠ glz2 giz2
2⇠ gjz3

4⇠ glz2
1⇠ gjz2

3⇠ glz3

giz3 ⇠ glz1 giz3 ⇠ glz2 giz3 ⇠ glz3

giz3
3⇠ gjz3

1⇠ glz1 giz3
2⇠ gjz1

3⇠ glz2 giz3
2⇠ gjz1

4⇠ glz3
giz3

2⇠ gjz1
3⇠ glz2

1⇠ gjz2
4⇠ glz1 giz3

1⇠ gjz2
3⇠ glz3

2⇠ gjz3
4⇠ glz2 giz3

1⇠ gjz2
3⇠ glz3

giz3
1⇠ gjz2

4⇠ giz2
3⇠ gjz1

2⇠ glz1 giz3
3⇠ gjz3

2⇠ giz2
4⇠ gjz2

1⇠ glz2 giz3
3⇠ gjz3

2⇠ glz3

All the edge-disjoint paths when  ({gi, gj}) = 1

giz1
1⇠ gjz1 giz1

2⇠ gjz2 giz1
4⇠ gjz3

giz1
2⇠ gjz2

4⇠ giz2
3⇠ gjz1 giz1

4⇠ gjz3
3⇠ giz3

1⇠ gjz2 giz1
2⇠ gjz2

1⇠ giz3
3⇠ gjz3

giz1
4⇠ gjz3

3⇠ giz3
2⇠ gjz1 giz1

1⇠ gjz1
3⇠ giz2

4⇠ gjz2 giz1
1⇠ gjz1

3⇠ giz2
2⇠ gjz3

giz2
3⇠ gjz2 giz2

4⇠ gjz2 giz2
2⇠ gjz3

giz2
4⇠ gjz2

1⇠ giz3
2⇠ gjz1 giz2

3⇠ gjz1
1⇠ giz1

2⇠ gjz2 giz2
3⇠ gjz1

1⇠ giz1
4⇠ gjz3

giz2
2⇠ gjz3

4⇠ giz1
1⇠ gjz1 giz2

2⇠ gjz1
3⇠ giz3

1⇠ gjz2 giz2
4⇠ gjz2

1⇠ giz3
3⇠ gjz3

giz3
2⇠ gjz1 giz3

1⇠ gjz2 giz3
3⇠ gjz3

giz3
1⇠ gjz2

4⇠ giz2
3⇠ gjz1 giz3

3⇠ gjz3
4⇠ giz1

2⇠ gjz2 giz3
1⇠ gjz2

4⇠ giz2
2⇠ gjz3

giz3
3⇠ gjz3

4⇠ giz1
1⇠ gjz1 giz3

2⇠ gjz1
3⇠ giz2

4⇠ gjz2 giz3
2⇠ gjz1

1⇠ giz1
4⇠ gjz3

Theorem 6.2. Let G be a finite non-abelian group. Then rck(�(G)) 
⌃
k
2

⌥
+ 2, for 3  k  s =

|Z(G)| with |Z(G)| � 4.

Proof. We will proof that 4 is a coloring works for our graph.

1. Case gi ⇠ gj Let gizia , gjzjb be the end vertices. We want to find the edge-disjoint paths
between them. Let 4.1 the rainbow table assigned for this case. From 4.1 it is evident that
the first path is given by gizia

(ia,jb)⇠ gjzb with color (ia, jb).

Let j1 be the column assigned to the row ia such that (ia, j1) = f1 then, we remove the
entries with color f1 to the column gjzj1 and, the same happen to column gjzjb .

Remark 6.3. When we say remove the entry we say that entry is not consider to form the
rainbow path.

Thus, the path for this case is

gizia
f⇠ gjzj1

(ia1 ,j1)⇠ gizia1
(ia1 ,jb)⇠ gjzjb (1)
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with (ia1 , j1) 6= f1 6= (ia1 , jb) the colors assigned to remaining entries and gjzj1 , gizia1 the
respective vertices from remaining entries.

Let (ia, j2) be the entry with j2 6= j1, such that (ia, j2) = f2 then, we remove the entries with
same color as f2 in column gjzj2 . We can not use the entry (giza1 , gjzjb) because is an edge
for 1, moreover we remove all the entries with same color as f2 in column gjzjb . Thus, the
path is the following:

gizia
(ia,j2)⇠ gjzj2

(ia2 ,j2)⇠ gizia2
(ia2 ,jb)⇠ gjzjb (2)

with (ia2 , j2), (ia2 , jb) the colors assigned to remaining entries and gjzj2 , gizia2 the respective
vertices from remaining entries.

2

6666664

gjzjb gjzj1
...

...
gizia1 · · · f · · ·

...
...

gizia · · · f · · ·
...

...

3

7777775

Under the conditions stated above we apply the same to all the colors assigned to ia-raw. We
take edges from remaining entries to form the rest paths with the same method. Let j01 such
that f 0 = (ia, j01) from jb-column we remove the row with entry same color like f 0. The new
path is the following:

gizia
(ia,j01)⇠ gjzj01

(ia01
,j01)

⇠ gizia01

(ia01
,jb)

⇠ gjzjb (3)

Take (ia, j01), (ia01 , j
0
1) as remaining entries from all the entries do not removed before with a

dofferent color as f 0.

Remark 6.4. Suppose that we can coloring with only
⌅
k
2

⇧
+ 1 colors. Let gizim any start

vertex, then there exists a pair of vertices gjzjn , gjzjn0 such that {(air , bjn)|(air , bjn)�color 6=
(
⌅
k
2

⇧
+ 1)� color} identify with {(air , bjn0 )|(air , bjn)� color = the last color}, therefore is

impossible to built k paths between any end vertices gizim , gjzjn passes through gjzjn0 , just
like 5.1.

2. Case: gi ⇠ gj ⇠ gl with gi ⌧ gl in SM
�(G).

(a) Repetition of different color to the last color

Case: repetition of one color between columns. Suppose that f is the repeated color
between the columns assigned to the end vertices gizia and glzlb i.e. f = (jc, ia) =
(jc, lb) in the rainbow table, for some c = {1, ..., |Z(G)|}, with lb 2 glZ and ia 2 giZ.
Suppose that f is in the path passes through gjzjc , thus for do the rainbow path we need
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to find another row jc0 such that (jc0 , lb) = f 0 6= f then for do the rainbow path, to the
row jc0 we remove the columns with color f (i.e. 2 columns) and one of color f 0. To
row jc remove 2 columns for color f 0 and 2 columns assigned for ia and lb. Then we
remove a total of 7 columns. There are in total 2|Z(G)| columns in our rainbow table,
then it remains 2|Z(G)|� 7 columns with |Z(G)| � 4, leaving at least one column for
do the path without similar colors. The path is gizia

f⇠ gjzjc
f1⇠ g(jc)

f2⇠ g(jc0)
f 0
⇠ glzlb

with f1, f2 colors assigned to left column and g(jc), g(jc0) vertices in column assigned
to above column.

2

6666664

ia lb

...
...

jc · · · · · · f · · · · · · f 0 · · f1 · · f 0 · · f · · · · · ·
...

...
jc0 · · · f 0 · · g · · f · · · · · · f2 f 0 · · · f · ·

...
...

3

7777775

Now we make the path who starts in gizia
g⇠ gjzjc0

When g 6= f and g 6= f 0. As written above we remove the columns in row jc0 with color
f and one of color g, i.e. 3 columns, and in the row jc remove the columns assigned
with color g and two of columns ia and lb, in total we remove 7 columns and leaving
2|Z(G)|� 7 columns where we can find the desired path.
Case: repetition of two colors between columns with g = f 0. We remove 2 columns
with color f 0 to jc-row and 2 columns assigned to ia and lb. In row jc0 remove 2
columns assigned with color f . There are in total 2|Z(G)| � 6 free columns to find
rainbow paths.
Case: repetition of 3 colors Suppose that there are 3 repeated colours between the
columns for do the paths with end vertices gizia and glzlb passes through gjzjc , gjzjc0
and gjzjc00 . For do the paths passes through gjzjc , just like the first case, we remove
columns with color f 0 to jc-row and, to row j0c remove the 2 columns with color f mi-
nus the rows assigned ia and lb, then for |Z(G)| � 4 there are 2|Z(G)|�6 free columns
for do the rainbow path with end vertices gizia and glzlb cross above gjzjc and gjzjc0 .
The same happens for rainbow path passes through gjzjc0 , gjzc00 and gjzjc00 , gjzjc . The
paths have the following form:

gizia
f⇠ gjzjc

g1⇠ g1(jc)
g02⇠ g02(jc0)

f 0
⇠ glzlb ,

gizia
f 0
⇠ gjzjc0

g01⇠ g01(jc0)
g002⇠ g002(jc00)

f 00
⇠ glzlb

gizia
f 00
⇠ gjzjc00

g001⇠ g001(jc00)
g2⇠ g2(jc)

f⇠ glzlb
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2

666666666664

ia lb

...
...

jc · · · f g1 g2 f · · ·
...

...
jc0 · · · f 0 g02 g01 f 0 · · ·

...
...

jc00 · · · f 00 g002 g001 f 00 · · ·
...

...

3

777777777775

Note that g1, g02; g01, g002 and g001 , g2 are the colors between free columns with colors as-
signed f, f 0; f 0, f 00 and f 00,f respectively, and g1(jc), g2(jc); g01(jc0),g02(jc0); g001(jc00),
g002(jc00) are vertices associated to the colors in the free columns with its rows jc, jc0 , jc00
respectively.

(b) Repetition of last color between columns

Case: repeat the last color
⌃
k
2

⌥
+ 2 one time. Let gizia and glzlb be the end vertices

and suppose that only is repeated the last color
⌃
k
2

⌥
+2 only one time. Let f =

⌃
k
2

⌥
+2

be the last color and let B = 2
⇥
k �

�⌃
k
2

⌥
+ 1

�⇤
be the number of entries with the last

color in each row of the rainbow table. Let jc0 be a row associated with different color
to f in the entries (jc0 , ia) and (jc0 , lb).

For make the rainbow path passes through jc, to row jc0 remove B columns associated
to the last color f and one column designated to color f 0, i.e., we remove B+1 columns.
Further in row jc we remove B � 2 columns associated to f , 2 columns associated to
color f 0 and 2 columns for columns associated to ia and lb, thus we remove from row
jc B + 2 columns. If the columns removed are all different from each other then we
keep C = 2k� (2B + 3) free columns, in the extreme case that we eliminate the same
columns for each case, evaluate in f and f 0, thus we would have 2k � (B + 2) free
columns, then the value of free columns is 2k � (2B + 3)  C  2k � (B + 2) for
k  4. The same happens to do a path passes through gjzjc0 . Thus, we have enough
free columns to do the rainbow path.

2

6666664

ia lb

...
...

jc · · · f f · · ·
...

...
jc0 · · · g f 0 · · ·

...
...

3

7777775

Later, for make the rainbow path from gizia
g⇠ gjzzjc0 we remove 2 columns assigned

to color g to jc-row, B � 2 columns assigned to color f and 2 for the columns ia, lb,
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i.e., remove B + 2 columns. Moreover from jc0-row remove B columns for last color
f plus 1 column for color g, i.e. B + 1 columns. In total the amount of free columns is
between:

2k � (2B + 3)  C  2k � (B + 2) k � 4 (4)

Then, there are enough free columns for do the rainbow path.

Case: repeat two colors, one of them the last color, i.e., g = f 0 6= f . To the row
jc0 we remove B columns associated to last color f and the row jc we remove B � 2
columns associated to last color f , 2 columns associated to color f 0 and 2 columns
associated to columns ia and lb, i.e. we remove B + 2 columns. In total there are
2k � (2B + 2)  C  2k � (B + 2)

2(k � B � 1)  C  2k � (B + 2) for k � 4 (5)

Since k � B � 1 > 0 for all k we always have a minimum, two columns to form two
paths.

Case: repeat at most
B
2 entries between columns. Suppose that between columns

ia and lb assigned to end vertices gizia , glzlb there are, at most D = k � (
⌃
k
2

⌥
+ 1)

entries with the last color f in each column, since D <
⌃
k
2

⌥
+ 1 we can proceed like

the previous cases.
3. Case: any vertices of same class We can do the paths directly, if we want to go from gizia

to gizib the paths are of the following form gizia
(ia,p)⇠ gjzp

(ij ,p)⇠ gizib for p = {1, ..., s =
|Z(G)|}. We note that we can only find up to (

⌃
k
2

⌥
+ 2) edge disjoint paths for any pair of

vertices.
2

66664

gjz1 gjz2 ··· ··· gjzs

gizia (ia, j1) (ia, j2) · · · · · · (ia, js)

gizib (ib, j1) (ib, j2) · · · · · · (ib, js)

3

77775

Corollary 6.5. Let G be a finite non-abelian group. If gi ⇠ gj then
⌅
k
2

⇧
+ 1 < rck(�(G)).

Proof. From 6.4.

Corollary 6.6. Let G be a finite non-abelian group. If gi ⇠ gj ⇠ gl with gi ⌧ gl then
⌃
k
2

⌥
+ 1 <

rck(�(G)).

Proof. Suppose that B = 2(k �
⌃
k
2

⌥
) then, for any value of k, B = 2m (k = {2m, 2m+ 1}). For

the case where only repeat one time the last color f , from 4

�3  C  2m� 2 for k = 2m
�1  C  2m for k = 2m+ 1

106



www.ejgta.org

The rainbow k-connectivity of the non-commutative graph of a finite group | Luis A. Dupont et al.

Thus, there are cases when we have not free columns for do the rainbow paths. The same happens
for case 5:

�2  C  2m� 2 for k = 2m
0  C  2m� 1 for k = 2m+ 1

Therefore, we can not form k rainbow paths with
⌃
k
2

⌥
+ 1 different colors.

Theorem 1.3 Let G be a finite non-abelian group. Then rck(�(G)) =
⌃
k
2

⌥
+ 2, for 3  k  s =

|Z(G)| with |Z(G)| � 4.

Proof. From 6.2, 6.5 and 6.6.

Given the structure of �(G), it could be considered a generalization of study in [5] to find the
Harary index of �(G).

Example 6.7. Let G be the Heisenberg group for p = 3 with presentation

hx, a, b|x3 = a3 = b3 = 1, ab = ba, xax�1 = ab, xbx�1 = bi.

We know that |G| = 27, |G \ Z(G)| = 24 and |G/Z(G)| = 9, i.e. the partition for V (�(G)) =
{Z, aZ, a2Z, xZ, axZ, a2xZ, x2Z, ax2Z, a2x2Z} by [x, a] = b we have xa = bax, then xaZ =
axZ. The following is the graph for SM

�(G)

Figure 1. Heisenberg skeleton graph for p = 3.

In SM
�(G) the only vertices with distance 2 are a with a2 and x with x2. Suppose without loss of

generality that  ({g, a}) = 1. The edge-disjoint paths for end vertices a and a2 are the following

a a2g

ab

ab2

gb

gb2 a2b2

a2b

2

4

a ab ab2 a2 a2b a2b2

g 1 3 2 2 3 4
gb 2 4 1 4 1 3
gb2 4 2 3 1 4 2

3

5

And all the paths are given in 6.1.
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a

a2

a3

a4

x

x2

x3

x4

ax a2x
a3x

a4x

ax2

a2x2

a3x2

a4x2

ax3
a2x3

a3x3

a4x3

ax4

a2x4

a3x4

a4x4

Figure 2. Heisenberg skeleton graph for p = 5.

Example 6.8. Let G be the Heisenberg group for p = 5 with presentation

hx, a, b|x5 = a5 = b5 = 1, ab = ba, xax�1 = ab, xbx�1 = bi.

We know that |G| = 125, |G \ Z(G)| = 120 and |G/Z(G)| = 25. Since [x, a] = b we have
xa = bax, then xaZ = axZ. The graph 2 is the skeleton SM

�(G) of G.

By 3.2 we know that we can found 5 edge-disjoint paths for any pair of vertices then, without
loss of generality we give the 5 edge-disjoint paths for end vertices x, ax2 2 SM

�(G). By 1.3 we
know that we need

�
b5
2c+ 2

�
-color. The rainbow table is given below

ax2

ax2b

ax2b2

ax2b3

ax2b4

x

xb

xb2

xb3

xb4

2

66664

ax2 ax2b a2b2 ax2b3 ax2b4

x 1 2 3
xb 1 2 3
xb2 1 2 3
xb3 3 1 2
xb4 2 3 1

3

77775

Rainbow table for x ⇠ ax2 2 SM
�(G)

Then, the 5 edge-disjoin paths are given by:
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x
1⇠ax2

x
2⇠ax2b

1⇠ xb4
4⇠ ax2

x
3⇠axb2

1⇠ xb2
4⇠ ax2

x
4⇠ax2b3

1⇠ xb3
3⇠ ax2

x
4⇠ax2b4

1⇠ xb4
2⇠ ax2

We can give 4 paths with 4 colors. The rainbow and the 4 edge-disjoint paths with ends vertices
x4, x3b3 are the following

2

66664

x4 x4b x4b2 x4b3 x4b4 x3 x3b x3b2 x3b3 x3b4

a3 1 3 2 2 1 3
a3b 2 1 3 2 1 3
a3b2 3 2 1 2 1 3
a3b3 3 2 1 3 2 1
a3b4 3 2 1 1 3 2

3

77775

x4 1⇠a3
4⇠ x3b3

x4 2⇠a3b
3⇠ x3b3

x4 3⇠a3b2
1⇠ x3b3

x4 4⇠a3b3
2⇠ x3b3

If we note, we can not find 5 edge-disjoint paths with only 4 colors, for example, for the end
vertices x4b4 and x3b2 we have the following paths:

Start with color 1 Start with color 2
x4b4

1⇠ a3b4
4⇠ x3b2 x4b4

2⇠ a3
3⇠ x3b2

x4b4
1⇠ a3b4

3⇠ x4b2
2⇠ a3b3

4⇠ x3b2 x4b4
2⇠ a3

3⇠ x4b3
4⇠ a3b

1⇠ x3b2

x4b4
1⇠ a3b4

4⇠ x4 3⇠ a3b2
2⇠ x3b2 x4b4

2⇠ a3
3⇠ x4b3

1⇠ a3b3
4⇠ x3b2

x4b4
1⇠ a3b4

2⇠ x3b3
4⇠ a3

3⇠ x3b2 x4b4
2⇠ a3

1⇠ x3b
3⇠ a3b4

4⇠ x3b2

Start with color 3 Start with color x4b4
4⇠ a3b2 Start with color 4 from

x4b4
4⇠ a3b3

x4b4
3⇠ a3b

1⇠ x3b2 x4b4
4⇠ a3b2

2⇠ x3b2 x4b4
4⇠ a3b3

1⇠ x3b4
3⇠

x3b2
2⇠ x3b2

x4b4
3⇠ a3b

4⇠ x4b2
1⇠ a3b2

2⇠
x3b2

x4b4
4⇠ a3b2

3⇠ x4 2⇠ a3b
1⇠

x3b2
x4b4

4⇠ a3b3
2⇠ x3b3

3⇠ x3b
1⇠

x3b2

Color 3 can not came to color 4 Color 4 can not came to color
a3

3⇠ x3b2
Color x4b4

4⇠ a3b3 can not
came to color a3 3⇠ x3b2
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Thus, we have not columns for do the rainbow path from x4b4
3⇠ a3b to a3b3

4⇠ x3b2

2

66664

x4 x4b x4b2 x4b3 x4b4 x3 x3b x3b2 x3b3 x3b4

a3 1 3 2 2 1 3
a3b 2 1 / / 3 / 2 1 �3 /
a3b2 3 2 1 2 1 3
a3b3 / �3 2 1 �3 / 2 1
a3b4 3 2 1 1 3 2

3

77775

Then, we can not find a path from x4b4 to x3b2 passes through a3b, because the last color from
x4b4 only can came to x3b2 passes through a3b and a3b2. Then we need one more color.

x4 x3
a3

x4b

x4b2

x4b3

x4b4

a3b

a3b2

a3b3

a3b4

x3b

x3b2

x3b3

x3b4

Figure 3. Graph in �(G)

2

66664

x4 x4b x4b2 x4b3 x4b4 x3 x3b x3b2 x3b3 x3b4

a3 1 4 3 2 2 1 3 4
a3b 2 1 4 3 2 1 3 4
a3b2 3 2 1 4 4 2 1 3
a3b3 4 3 2 1 3 4 2 1
a3b4 4 3 2 1 1 3 4 2

3

77775

Rainbow table for found the 5 edge-disjoin paths between x4 and x3

With the given structure, we could ask about the meaning of d-coloring redundant as a general-
ization of [4]. For example, in Figure 3 we could considered a particular case of Turán graph with
T (m|Z|,m).
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