

Electronic Journal of Graph Theory and Applications

A remark on star- C_4 and wheel- C_4 Ramsey numbers

Yanbo Zhang^{a,b}, Hajo Broersma^b, Yaojun Chen^a

^aDepartment of Mathematics, Nanjing University, Nanjing 210093, P.R. China ^bFaculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

ybzhang@163.com, h.j.broersma@utwente.nl, yaojunc@nju.edu.cn

Abstract

Given two graphs G_1 and G_2 , the Ramsey number $R(G_1, G_2)$ is the smallest integer N such that, for any graph G of order N, either G_1 is a subgraph of G, or G_2 is a subgraph of the complement of G. Let C_n denote a cycle of order n, W_n a wheel of order n + 1 and S_n a star of order n. In this paper, it is shown that $R(W_n, C_4) = R(S_{n+1}, C_4)$ for $n \ge 6$. Based on this result and Parsons' results on $R(S_{n+1}, C_4)$, we establish the best possible general upper bound for $R(W_n, C_4)$ and determine some exact values for $R(W_n, C_4)$.

Keywords: Ramsey number; star; wheel; quadrilateral Mathematics Subject Classification : 05C55, 05D10

1. Introduction

In this note we deal with finite simple graphs only. For a nonempty proper subset $S \subseteq V(G)$, let G[S] and G - S denote the subgraph induced by S and V(G) - S, respectively. Let $N_S(v)$ be the set of all the neighbors of a vertex v that are contained in S, let $N_S[v] = N_S(v) \cup \{v\}$ and let $d_S(v) = |N_S(v)|$. If S = V(G), we write $N(v) = N_G(v)$, $N[v] = N(v) \cup \{v\}$ and $d(v) = d_G(v)$. For two vertex-disjoint graphs G_1 and G_2 , $G_1 + G_2$ is the graph obtained from $G_1 \cup G_2$ by joining every vertex of G_1 to every vertex of G_2 . A star, a cycle and a complete graph of order n are denoted by S_n , C_n and K_n , respectively. A wheel $W_n = K_1 + C_n$ is a graph of order n + 1. We use

Received: 01 May 2014, Revised: 01 September 2014, Accepted: 07 September 2014.

 $\Delta(G)$, $\delta(G)$ and $\alpha(G)$ to denote the maximum degree, the minimum degree and the independence number, respectively, of a graph G.

Given two graphs G_1 and G_2 , the Ramsey number $R(G_1, G_2)$ is the smallest integer N such that, for any graph G of order N, either G contains G_1 or \overline{G} contains G_2 , where \overline{G} is the complement of G. It is well-known that it is difficult to deal with some extremal problems involving C_4 . In this note, we are interested in the relationship between two Ramsey numbers involving C_4 , that is, $R(S_{n+1}, C_4)$ and $R(W_n, C_4)$. The former has been well-studied and the latter has received more attention recently.

Parsons [6] began to consider the Ramsey numbers $R(S_{n+1}, C_4)$ back in 1975. By using the existence of projective planes over Galois fields and the generalized friendship theorem, in [6] he established upper bounds for $R(S_{n+1}, C_4)$ and determined the exact values for several specific values of n, as expressed in the following two results.

Theorem 1.1. (*Parsons [6]*). $R(S_{n+1}, C_4) \leq n + \lfloor \sqrt{n-1} \rfloor + 2$ for all $n \geq 2$, and if $n = q^2 + 1$ and $q \geq 1$, then $R(S_{n+1}, C_4) \leq n + \lfloor \sqrt{n-1} \rfloor + 1$.

Theorem 1.2. (*Parsons* [6]). If q is a prime power, then $R(S_{q^2+1}, C_4) = q^2 + q + 1$ and $R(S_{q^2+2}, C_4) = q^2 + q + 2$.

Noting that if $n = q^2$, then $n + \lfloor \sqrt{n-1} \rfloor + 2 = q^2 + q + 1$, we see that the general bound for $R(S_{n+1}, C_4)$ in Theorem 1.1 is best possible.

Obviously, S_{n+1} is a (spanning) subgraph of W_n and so $R(W_n, C_4) \ge R(S_{n+1}, C_4)$. By using an exhaustive computer search, Tse [10] was able to calculate the value of $R(W_n, C_4)$ for $3 \le n \le 12$. An interesting question in this respect is: what is the best possible upper bound for $R(W_n, C_4)$? Surahmat et al. [9] showed that $R(W_n, C_4) \le n + \lceil n/3 \rceil + 1$ for $n \ge 6$. Clearly, this upper bound is not tight in general. Because $R(W_n, C_4) \ge R(S_{n+1}, C_4)$ showing that the best bound for $R(W_n, C_4)$ is at least $n + \lfloor \sqrt{n-1} \rfloor + 2$, one may ask whether $R(W_n, C_4) - R(S_{n+1}, C_4)$ is a constant or a function depending on n. Recently, by using Reiman's theorem [8] on the Turán number $t(n, C_4)$, Ore's theorem [5] on Hamiltonicity, a result of Faudree and Schelp [3] on $R(C_n, C_4)$ and the Erdős-Rényi graph, Dybizbański and Dzido [2] established a general upper bound for $R(W_n, C_4)$ for $n \ge 10$ and determined some exact values of $R(W_n, C_4)$. We summarized some of their results in the following theorem.

Theorem 1.3. (*Dybizbański and Dzido* [2]). $R(W_n, C_4) \le n + \lfloor \sqrt{n-1} \rfloor + 2$ for all $n \ge 10$, and if $q \ge 4$ is a prime power, then $R(W_{q^2}, C_4) = q^2 + q + 1$.

In the same paper, with the help of computers, they determined the exact values of some Ramsey numbers for a small wheel versus a C_4 .

Theorem 1.4. (*Dybizbański and Dzido* [2]). $R(W_n, C_4) = n + 5$ for $13 \le n \le 16$.

Clearly, Theorem 1.3 implies that Parsons' bound for $R(S_{n+1}, C_4)$ is also a best possible upper bound for $R(W_n, C_4)$ if $n \ge 10$. In an unpublished paper, Wu et al. [11] obtained nine new values for $R(W_n, C_4)$; as in the other cases their calculations have been performed with the aid of computer search. **Theorem 1.5.** (Wu et al. [11]) $R(W_n, C_4) = n + 5$ for $17 \le n \le 20$; $R(W_{26}, C_4) = 32$; $R(W_n, C_4) = n + 7$ for $34 \le n \le 36$; $R(W_{43}, C_4) = 51$.

The exact values of the Ramsey numbers $R(S_{n+1}, C_4)$ for $n \le 6$ can be found in [7]. For the value of $R(S_8, C_4)$, we get $R(S_8, C_4) \le 11$ by Theorem 1.1. Since the Petersen graph contains no C_4 and its complement has no S_8 , we get $R(S_8, C_4) \ge 11$ and so we obtain that $R(S_8, C_4) = 11$. Using Theorem 1.2, we can get the exact values of $R(S_{n+1}, C_4)$ for n = 9, 10, 16, 17. By considering Theorems 1.1, 1.2 and 1.3, and these known values of $R(S_n, C_4)$ and $R(W_n, C_4)$ for small $n \ge 6$, we observe that there is an infinite number of values of n for which $R(W_n, C_4) = R(S_{n+1}, C_4)$. Motivated by this observation, a natural question is whether this equality holds in general. In this note, we give an affirmative answer to this question. Our main result is as follows.

Theorem 1.6. $R(W_n, C_4) = R(S_{n+1}, C_4)$ for $n \ge 6$.

We postpone our proof of this result to the next section.

By Theorem 1.6, we see that the two functions $R(W_n, C_4)$ and $R(S_{n+1}, C_4)$ are in fact the same when $n \ge 6$. Because the Ramsey numbers $R(S_{n+1}, C_4)$ are well-studied, we can use Theorem 1.6 and known results on $R(S_{n+1}, C_4)$ to establish new results on $R(W_n, C_4)$. Of course, we can do that in reverse as well. Up to now, most known values of $R(W_n, C_4)$ for small n are obtained with the help of computers. Because finding an S_{n+1} is much easier than finding a W_n in a graph using computers, we can focus our calculation on $R(S_{n+1}, C_4)$ by computers instead of $R(W_n, C_4)$ if we want to determine some values of $R(W_n, C_4)$ with the help of computers.

Combining Theorems 1.1, 1.2 and 1.6, we obtain the following.

Theorem 1.7. $R(W_n, C_4) \leq n + \lfloor \sqrt{n-1} \rfloor + 2$ for $n \geq 6$, and if $n = q^2 + 1$ and $q \geq 3$, then $R(W_n, C_4) \leq n + \lfloor \sqrt{n-1} \rfloor + 1$. Furthermore, if $q \geq 3$ is a prime power, then we have $R(W_{q^2}, C_4) = q^2 + q + 1$ and $R(W_{q^2+1}, C_4) = q^2 + q + 2$.

Clearly, Theorem 1.7 is stronger than Theorem 1.3. Furthermore, by Theorems 1.1-1.7 and some other known results on $R(S_{n+1}, C_4)$, we can summarize several exact values (see Table 1) for $R(W_n, C_4)$ and $R(S_{n+1}, C_4)$ when $n \ge 6$ is small. Here the numbers marked with * are obtained from the results in this paper, and the numbers marked with * can be obtained by Theorem 1.7 avoiding computer search.

n	6	7-8	9-10	11-15	16-17	18-20	25	26	34-36	43
$R(W_n, C_4)$	9	n+4	$n+4^{\star}$	n+5	$n+5^{\star}$	n+5	31	32^{\star}	n+7	51
$R(S_{n+1}, C_4)$	9	n+4	n+4	$n + 5^*$	n+5	$n + 5^{*}$	31	32	$n + 7^*$	51^{*}
Table 1: Exact values of $R(W_n, C_4)$ and $R(S_{n+1}, C_4)$ for $6 \le n \le 43$.										

As for the lower bounds of $R(S_{n+1}, C_4)$, Burr et al. [1] showed that $R(S_{n+1}, C_4) > n + \sqrt{n} - 6n^{11/40}$. In the same paper, they proposed the following conjecture, for which Erdős, one of the authors, offered \$100 for a proof or disproof.

Conjecture 1. (Burr et al. [1]). $R(S_{n+1}, C_4) < n + \sqrt{n} - c$ holds infinitely often, where c is an arbitrary constant.

After an easy calculation, we find that all exact values of $R(S_{n+1}, C_4)$ listed in Table 1 satisfy $R(S_{n+1}, C_4) \ge n + \lceil \sqrt{n} \rceil$. Thus we finish this section by posing the following intriguing problem. Question. Is it true that $R(W_n, C_4) = R(S_{n+1}, C_4) \ge n + \lceil \sqrt{n} \rceil$ for all $n \ge 6$?

2. Proof of Theorem 1.6

In order to prove Theorem 1.6, we need the following four lemmas.

Lemma 2.1. (*Faudree and Schelp* [3]). $R(C_n, C_4) = n + 1$ for $n \ge 6$.

Lemma 2.2. (*Tse* [10]). $R(W_6, C_4) = 9$, $R(W_n, C_4) = n + 4$ for $7 \le n \le 10$.

Lemma 2.3. (*Faudree et al.* [4]). $R(S_7, C_4) = 9$.

Lemma 2.4. (*Zhang et al.* [12]) Let C be a longest cycle in a graph G and $u \in V(G) - V(C)$. Then $\alpha(G) \ge d_C(u) + 1$.

Proof of Theorem 1.6. We first prove that $R(S_{n+1}, C_4) \ge n+4$ for $n \ge 7$. Let $k = \lfloor (n+1)/4 \rfloor$ and $C = x_1 x_2 \dots x_{4k} x_1$ be a cycle of length 4k. Set $X_1 = \{x_1, x_2\}, X_2 = \{x_3, x_4\}, X_3 = \{x_i \mid i \equiv 1, 2 \pmod{4}$ and $i \ge 5\}$ and $X_4 = \{x_i \mid i \equiv 0, 3 \pmod{4}$ and $i \ge 5\}$. We now construct a graph F of order n + 3 from C as follows: $V(F) = V(C) \cup \{z_i \mid 1 \le i \le l\}$, where 4k + l = n + 3. If $n \equiv 3 \pmod{4}$, then let $N(z_1) = X_1 \cup X_3$ and $N(z_2) = X_2 \cup X_4$; if $n \equiv 0 \pmod{4}$, then let $N(z_1) = X_1 \cup \{z_2\}, N(z_2) = X_3 \cup \{z_1\}$ and $N(z_3) = X_2 \cup X_4$; if $n \equiv 1 \pmod{4}$, then let $N(z_1) = X_1 \cup \{z_2\}, N(z_2) = X_3 \cup \{z_1\}, N(z_3) = X_2 \cup \{z_4\}$ and $N(z_4) = X_4 \cup \{z_2\}$; if $n \equiv 2 \pmod{4}$, then let $N(z_1) = X_1 \cup \{z_2\}, N(z_2) = X_3 \cup \{z_1\}, N(z_2) = X_3 \cup \{z_1\}, N(z_3) = X_2 \cup \{z_4\}, N(z_4) = X_4 \cup \{z_2\}$ and $N(z_5) = \{z_1, z_2, z_3, z_4\}$. It is easy to check that F has no C_4 and $\delta(F) \ge 3$. Therefore, $R(S_{n+1}, C_4) \ge n + 4$ for $n \ge 7$.

Since $S_{n+1} \subseteq W_n$, we have $R(W_n, C_4) \ge R(S_{n+1}, C_4)$. By Lemmas 2.2 and 2.3, we see that $R(W_6, C_4) = R(S_7, C_4)$ and $R(W_n, C_4) = n + 4$ for $7 \le n \le 10$. Since $R(S_{n+1}, C_4) \ge n + 4$ for $n \ge 7$, we get that $R(W_n, C_4) = R(S_{n+1}, C_4)$ for $7 \le n \le 10$. Now it remains to show that $R(W_n, C_4) \le R(S_{n+1}, C_4)$ for $n \ge 11$. Let G be a graph of order $N = R(S_{n+1}, C_4) \ge n + 4$. Set $v \in V(G)$ with $d(v) = \Delta(G)$, Z = V(G) - N[v]. Suppose to the contrary that neither G contains a W_n nor \overline{G} contains a C_4 . Thus, noting that $N = R(S_{n+1}, C_4)$, we have $d(v) \ge n$. If $d(v) \ge n+1$, then by Lemma 2.1, G[N(v)] contains a C_n , which together with v forms a W_n in G, a contradiction. Hence we have d(v) = n. By Theorem 1.1, $|Z| = N - (n+1) \le \lfloor \sqrt{n-1} \rfloor + 1$. Let C be a longest cycle in G[N(v)]. By Lemma 2.1, we have $|C| \ge n-1$, and so |C| = n-1. Set u = N(v) - V(C). If $d_C(u) \ge 3$, then by Lemma 2.4, $\alpha(G[N(v)]) \ge 4$, which implies that \overline{G} contains a C_4 , and hence $d_C(u) \le 2$. If there exists some vertex $y \in V(G) - \{u\}$ such that y has two nonadjacent vertices $y_1, y_2 \in V(C) - N_C(u)$, then uy_1yy_2u is a C_4 in \overline{G} , and hence y has at most one nonadjacent vertex in $V(C) - N_C(u)$ for each $y \in V(G) - \{u\}$. Since $n \ge 11$, $|Z| \le \lfloor \sqrt{n-1} \rfloor + 1$ and $d_C(u) \le 2$, we have

$$|V(C) - N_C(u)| - |N_C(u) \cup Z| = |C| - d_C(u) - |Z| - d_C(u)$$

$$\ge (n-1) - 2 - (\lfloor \sqrt{n-1} \rfloor + 1) - 2 \ge 2.$$

Because every vertex of $N_C(u) \cup Z$ has at least $|V(C) - N_C(u)| - 1$ adjacent vertices in $V(C) - N_C(u)$, by the Pigeonhole Principle, there exists some vertex $w \in V(C) - N_C(u)$ such that $N_C(u) \cup Z \subseteq N(w)$. Noting that w has at most one nonadjacent vertex in $V(C) - N_C(u)$ and $wv \in E(G)$, we have

 $d(w) \ge |V(C) - N_C(u)| - 2 + |N_C(u) \cup Z| + 1 = |C| + |Z| - 1 = N - 3 \ge n + 1$, which contradicts the fact that $d(v) = \Delta(G) = n$.

This completes the proof of Theorem 1.6.

Acknowledgement

This research was supported by NSFC under grant numbers 11071115, 11371193 and 11101207.

References

- [1] S.A. Burr, P. Erdős, R.J. Faudree, C.C. Rousseau and R.H. Schelp, Some complete bipartite graph-tree Ramsey numbers, *Annals of Discrete Mathematics* **41** (1989), 79–89.
- [2] J. Dybizbański and T. Dzido, On some Ramsey numbers for quadrilaterals versus wheels, *Graphs and Combinatorics* **30** (2014), 573–579.
- [3] R.J. Faudree and R.H. Schelp, All Ramsey numbers for cycles in graphs, *Discrete Mathematics* **8** (1974), 313–329.
- [4] R.J. Faudree, C.C. Rousseau and R.H. Schelp, Small order graph-tree Ramsey numbers, *Discrete Mathematics* **72** (1988), 119–127.
- [5] O. Ore, Note on Hamilton circuits, American Mathematical Monthly 67 (1960), 55.
- [6] T.D. Parsons, Ramsey graphs and block designs I, *Transactions of the American Mathemati*cal Society **209** (1975), 33–44.
- [7] S.P. Radziszowski, Small Ramsey numbers, *The Electronic Journal of Combinatorics* (2011), DS1.13.
- [8] I. Reiman, Uber ein Problem von K. Zarankiewicz, Acta Mathematica Academiae Scientiarum Hungarica 9 (1958), 269–279.
- [9] Surahmat, E.T. Baskoro, S. Uttunggadewa and H.J. Broersma, An upper bound for the Ramsey number of a cycle of length four versus wheels, *LNCS 3330*, Springer, Berlin (2005), 181–184.
- [10] K.K. Tse, On the Ramsey number of the quadrilateral versus the book and the wheel, *Australasian Journal of Combinatorics* **27** (2003), 163–167.
- [11] Y.L. Wu, Y.Q. Sun and S. Radziszowski, Wheel and star-critical Ramsey numbers for quadrilateral, http://www.cs.rit.edu/~spr/PUBL/wsr13.pdf
- [12] L.M. Zhang, Y.J. Chen and T.C. Edwin Cheng, The Ramsey numbers for cycles versus wheels of even order, *European Journal of Combinatorics* **31** (2010), 254–259.