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Abstract

Decomposing an Eulerian graph into a minimum respectively maximum number of edge disjoint
cycles is an NP-complete problem. We prove that an Eulerian graph decomposes into a unique
number of cycles if and only if it does not contain two edge disjoint cycles sharing three or more
vertices. To this end, we discuss the interplay of three binary graph operators leading to novel
constructive characterizations of two subclasses of Eulerian graphs. This enables us to present a
polynomial-time algorithm which decides whether the number of cycles in a cycle decomposition
of a given Eulerian graph is unique.
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1. Introduction

It is well-known that a graph is Eulerian if and only if its edge set can be decomposed into
cycles (cf. [3]). The decision problem whether an Eulerian graph can be decomposed into at most
k cycles is NP-complete as a consequence of [10]. Also the corresponding maximization problem
is NP-complete, cf. [4]. Approximation algorithms for the maximization problem are discussed
in [6] and [9].
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Our contribution is to give two equivalent characterizations for the class of Eulerian graphs
where both numbers – the minimum and the maximum amount of cycles in a cycle decomposition –
coincide. We show that those are exactly the graphs that can be constructed from the set of Eulerian
multiedges using a finite number of vertex-identifications and vertex-edge-identifications which
will be introduced and discussed in Section 3. This constructive characterization then enables us
to prove the following statement:

Theorem (5.2 - shortened version). Let G be an Eulerian graph. The number of cycles in a cycle
decomposition of G is unique if and only if no two edge-disjoint cycles in G intersect more than
twice.

We exploit Theorem 5.2 to develop an algorithm which applies the identification operations
backwards. We can recognize the described graph class in polynomial time.

Theorem (6.6 - shortened version). We can decide in timeO(n(n+m)) if the number of cycles in
a cycle decomposition of a given Eulerian graph is unique.

Our main tool for proving the before mentioned results is a novel constructive characterization.
A constructive characterization of a graph class is a construction manual for building all graphs
in the class starting from some simple set of initial graphs. Many graph classes can be expressed
through constructive characterization, among those are graphs of low treewidth [1], 3-connected
[11] and k-edge-connected graphs [8].

We may turn the before mentioned statement – a graph is Eulerian if and only if it is connected
and can be decomposed into cycles – into a toy example for a constructive characterization. We
describe the class E of Eulerian graphs recursively:

- If G is isomorphic to K1 or Cn for some n ∈ N, n ≥ 1, then G ∈ E .

- If G1, G2 ∈ E with E(G1) ∩ E(G2) = ∅ and V (G1) ∩ V (G2) 6= ∅, then also G1 ∪G2 ∈ E .

Often constructive characterizations can be exploited to prove a desired statement by induction.
Coming back to the above toy example, we can prove that every Eulerian graph has only vertices
of even degree by first observing that each Cn and the K1 have only vertices of even degree and
then using the fact that the graph union with disjoint edge sets does not change the even degrees.

We study three basic binary graph operators. In Section 3 we define these operators and regard
their behaviour concerning the following graph invariants: connectivity, minimum and maximum
number of cycles in a cycle decomposition and treewidth. Sections 4 and 5 will then use the
introduced operators for constructive characterizations of Eulerian graphs with maximum degree
at most 4 and treewidth at most 2 (Section 4) and Eulerian graphs which have the property that the
number of cycles in all of its cycle decompositions is the same (Section 5). Finally, in Section 6
we exploit the gained insights to develop a polynomial time algorithm which decides if the cycle
number of a given Eulerian graph is unique.
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2. Preliminaries

We use standard graph terminology, see [12, 2, 7]. Though, we recall some basic notions in the
following. A graph G is a triple consisting of a finite non-empty vertex set V (G), and a finite edge
set E(G) and a relation that associates with each edge two different vertices called its end vertices.
Observe that this definition excludes loop edges. If two edges have the same two endvertices we
call them parallel. An edge with end vertices u and v is often written as uv. We use this notation
even if G has parallel edges between the vertices u and v. This does not lead to any inconvenience
as the problems discussed in this article refer to graph invariants which do not depend on the
choice of the exact edge between u and v. We denote with NG(u) the set of all neighbours of u
in G. The degree degG(v) of v ∈ V (G) is defined as the number of edges incident to v. If all
vertices of G have the same degree k, then G is k-regular. We call two graphs G and G′ disjoint if
V (G)∩ V (G′) = ∅ and E(G)∩E(G′) = ∅. Let G and G′ be two graphs with E(G)∩E(G′) = ∅.
We set G∪G′ to be the graph with V (G∪G′) = V (G)∪V (G′) and E(G∪G′) = E(G)∪E(G′).

Let u ∈ V (G). We denote with G − u the graph where u and all its incident edges are
removed from G. For F ⊆ E(G) we write G − F for the graph with V (G − F ) = V (G)
and E(G − F ) = E(G) \ F . If F = {f} we write G − f . Let G be a graph containing a
vertex u ∈ V (G) with degG(u) = 2 with two distinct neighbours. Resolving u means to remove u
from G and to connect its two neighbours by a new edge. A path P is a graph of the form
V (P ) = {u0, u1, . . . , uk}, E(P ) = {u0u1, u1u2, . . . , uk−1uk}, where all the ui are distinct. We
often refer to a path omitting its precise edges but only listing the sequence of its vertices ordered
according to their appearance in P , say P = u0u1 . . . uk. We say that P is a u0-uk-path, the
vertices u1, . . . , uk−1 are internal vertices of P . Let P be a u-v-path and Q be a v-w-path with
V (P ) ∩ V (Q) = v. We set PQ := P ∪Q. Even when we study paths as subgraphs of non-simple
graphs, this notation does not lead to any inconvenience: In the upcoming topics it is never of any
relevance which precise edge a path uses. If P = u0 . . . uk is a path, then the graph C := P ∪uku0
is a cycle. A cycle decomposition of a graph G is a set of cycles which are subgraphs in G such
that each edge appears in exactly one cycle in the set. We set

c(G) := min{|C| : C is a cycle decomposition of G},
ν(G) := max{|C| : C is a cycle decomposition of G}

to be the minimum respectively maximum cycle number of G. A graph is Eulerian if it allows for
an Euler tour, i.e. a non-empty alternating sequence v0e0v1e1 . . . ek−1vk of vertices and edges in
G such that ei has end vertices vi and vi+1 for all 0 ≤ i < k, v0 = vk and every edge of G appears
exactly once in the sequence.

A graph G is called connected if it is non-empty and any two of its vertices are linked by a path
in G. The components of a graph are its maximal (with respect to the subgraph relation) connected
subgraphs. For V1, V2 ⊆ V (G) we set E(V1, V2) to be the set of all edges with one endvertex in V1
and the other endvertex in V2. A set F of edges is a cut in G if there exists a partition {V1, V2} of V
such that F = E(V1, V2). We call F a k-cut if |F | = k. An element of a 1-cut is called a cut-edge.
A connected graph G is called k-edge-connected if it stays connected after the removal of k − 1
arbitrary edges. A vertex v ∈ V (G) is a cut-vertex if G − v has more connected components
than G. A connected graph without cut-vertices is called biconnected. The maximal biconnected
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subgraphs of a graph are called its biconnected components. For a more detailed description of
biconnectivity and some basic results we refer to [12] and [5]. We say that a set S ⊆ V (G)∪E(G)
separates w1, w2 ∈ V (G) if there exists no w1-w2-path in G without elements of S.

A connected graph T that does not contain a cycle as a subgraph is a tree. A vertex of de-
gree 1 in T is called a leaf. For a graph G a tree-decomposition (T ,B) of G consists of a tree T
and a set B = {Bt : t ∈ V (T )} of bags Bt ⊆ V (G) such that V (G) =

⋃
t∈V (T )

Bt, for each

edge vw ∈ E(G) there exists a vertex t ∈ V (T ) such that v, w ∈ Bt, and if v ∈ Bs ∩ Bt,
then v ∈ Br for each vertex r on the path connecting s and t in T . A tree-decomposition (T ,B)
has width k if each bag has a size of at most k + 1 and there exists some bag of size k + 1. The
treewidth of G is the smallest integer k for which there is a width k tree-decomposition of G.
We write tw(G) = k. A tree-decomposition (T,B) of width k is smooth if |Bt| = k + 1 for
all t ∈ V (T ) and |Bs ∩ Bt| = k for all st ∈ E(T ). A graph of treewidth at most k always has a
smooth tree-decomposition of width k; see Bodlaender [1].

The contraction of an edge e with endpoints u, v is the replacement of u and v with a single
vertex whose incident edges are the edges other than e that were incident to u or v. A graph H is a
minor of a graph G if an isomorphic copy of H can by obtained from G by deleting or contracting
edges of G. The graph H obtained by subdivision of some edge uv ∈ E(G) is obtained by
replacing the edge uv by a new vertex w and edges uw and wv.

3. Construction operations

In the following, we introduce three binary graph operations – vertex-identification, edge-
identification and vertex-edge-identification. The constructive characterizations in Section 4 and 5
each start off by a simple base class of graphs. In Section 4 the considered class is then built by
mainly using edge-identification. In Section 5 the vertex-edge-identification is the crucial con-
struction tool. After defining the above mentioned operations we regard their behaviour concerning
cycle decompositions, connectivity and treewidth.

Vertex-identification. Let G1, G2 be disjoint graphs and let u1 ∈ V (G1), u2 ∈ V (G2). We con-
struct the graph (G1, u1) (G2, u2) by identifying u1 and u2.

Figure 1. Vertex-identification of two Eulerian graphs.

Edge-identification. Let G1, G2 be disjoint graphs. Further let ei ∈ E(Gi) be an edge with end-
points ui, vi for i ∈ {1, 2}. We construct the graph (G1, e1, u1) (G2, e2, u2) by removing the
edge ei from Gi, i ∈ {1, 2} and adding an edge from u1 to u2 and another one from v1 to v2.
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Figure 2. Edge-identification of two Eulerian graphs.

Figure 3. Vertex-edge-identification of two Eulerian graphs.

Vertex-edge-identification. Let G1, G2 be disjoint graphs and let ei be an edge in Gi from ui to vi
for i ∈ {1, 2}. We define (G1, e1, u1) (G2, e2, u2) to be the graph where v1 and v2 are identified,
the edges e1, e2 are removed and an edge between u1 and u2 is added.

If ei and ui are clear from the context or the statement is independent from the choice of ei
and ui then we simply write G1 G2, G1 G2 and G1 G2.

Cycles invariants are compatible with the identification operations. In the following we demon-
strate that the identification operations preserve the cycle behaviour in a natural way. We just keep
all cycles whose edges are untouched by the operation (in the case of vertex identification these
are all cycles). In each of G1 and G2 exactly one edge is deleted in the construction of G1 G2

respectively G1 G2. We obtain a cycle in G1 G2 respectively G1 G2 which uses the edges
not contained in E(G1) nor in E(G2) by combining a cycle from G1 with a cycle from G2 each
containing a deleted edge.

Lemma 3.1 (Cycle invariants under construction operations). Let G1 and G2 be Eulerian graphs.

(i) The invariants c and ν show the following behaviour under vertex-identification:

c(G1 G2) = c(G1) + c(G2),

ν(G1 G2) = ν(G1) + ν(G2).

(ii) They behave in the following way under edge-identification and vertex-edge-identification:

c(G1 G2) = c(G1 G2) = c(G1) + c(G2)− 1,

ν(G1 G2) = ν(G1 G2) = ν(G1) + ν(G2)− 1.

Proof.

(i) For i ∈ {1, 2} let vi ∈ V (Gi) such that G1 G2 = (G1, v1) (G2, v2). The vertex which
arises from the identification of v1 ∈ V (G1) and v2 ∈ V (G2) is a cut-vertex. Thus, we obtain
a one-to-one-correspondence of cycle decompositions in G1 ∪G2 and cycle decompositions
in G1 G2 just by relabelling v1 and v2 to v and adjusting the incident edges. Altogether we
obtain c(G1 G2) = c(G1) + c(G2) and ν(G1 G2) = ν(G1) + ν(G2).
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(ii) Let G1 G2 = (G1, e1, u1) (G2, e2, u2) for suitable ei ∈ E(Gi) and ui ∈ V (Gi), i ∈ {1, 2}.
In a cycle decomposition of Gi there is exactly one cycle Ci containing the edge ei with
end vertices ui and vi. We obtain a one-to-one-correspondence of cycle decompositions
inG1∪G2 and cycle decompositions inG1 G2 by keeping all cycles from the decompositions
of G1 and G2 except C1 and C2 and adding the cycle C with E(C) = (E(C1) ∪ E(C2) \
{u1v1, u2v2}) ∪ {u1u2, v1v2}, see Figure 2. Thus,

c(G1 G2) = c(G1 ∪G2)− 1 = c(G1) + c(G2)− 1 and
ν(G1 G2) = ν(G1 ∪G2)− 1 = ν(G1) + ν(G2)− 1.

Now let G1 G2 = (G1, e1, u1) (G2, e2, u2) for suitable ei ∈ E(Gi), ui ∈ V (Gi),
i ∈ {1, 2}. Analogously to the previous operation, we obtain a one-to-one correspon-
dence between cycle decompositions of G1 ∪ G2 and G1 G2 by choosing C with E(C) =
(E(C1)∪E(C2)∪{u1u2})\{e1, e2}, see Figure 3. Consequently we obtain the same relations
as above: c(G1 G2) = c(G1) + c(G2)− 1 and ν(G1 G2) = ν(G1) + ν(G2)− 1.

Corollary 3.2. Let G1, G2 be two Eulerian graphs. If G = G1 ◦ G2 for some ◦ ∈ { , , } then it
holds true that

ν(G)− c(G) = (ν(G1)− c(G1)) + (ν(G2)− c(G2)) .

Connectivity is compatible with the identification operations. We show in Lemma 3.4 that the
behaviour of paths between two given vertices in G1 is preserved in G1 G2. We follow the
intuition to keep all paths which do not contain the edge of G1 which is deleted in G1 G2 and
to reroute a path which uses the deleted edge along a path in G2. We translate the results to the
construction G1 G2. We start off by the observation that cut-edges are preserved under vertex-
edge-identification.

Observation 3.3. Let G1 be a graph containing a cut-edge and let G2 be some other graph. Then,
also G1 G2 contains a cut-edge.

Proof. Let ei ∈ E(Gi) and ui ∈ V (Gi) for i ∈ {1, 2} such thatG1 G2 = (G1, e1, u1) (G2, e2, u2).
Let e′ ∈ E(G1) be a cut-edge. If e′ 6= e1 then e′ is still a cut-edge in G1 G2. Otherwise, the new
edge connecting u1 and u2 is a cut-edge in G1 G2.

Lemma 3.4. Let G1 and G2 be 2-edge-connected graphs with edges ei = viui ∈ E(Gi) for
i ∈ {1, 2}. Let e be the edge in (G1, e1, u1) (G2, e2, u2) with end vertices u1 and u2 and let v be
the vertex arising from the identification of v1 and v2. Let S ⊆ V (G1) ∪ E(G1). Further set

S ′ :=


S, if v1, e1 /∈ S,
(S \ {e1}) ∪ {e}, if e1 ∈ S, v1 /∈ S,
(S \ {v1}) ∪ {v}, if v1 ∈ S, e1 /∈ S,
(S \ {e1, v1}) ∪ {e, v}, if v1, e1 ∈ S.
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Let w1, w2 ∈ V (G1) be two distinct vertices. We may assume w1 6= v1. Set

w′2 :=

{
w2, if w2 6= v1,

v, if w2 = v1.

The set S separates w1 and w2 in G1 if and only if S ′ separates w1 and w′2 in G1 G2.

Proof. If suffices to show: G1 contains aw1-w2-path without elements from S if and only ifG1 G2

contains a w1-w′2-path without elements from S ′.

Let P be a w1-w2-path in G1 with (V (P ) ∪ E(P )) ∩ S = ∅. Assume that P does not contain v1
and e1, then w′2 = w2 and P is a w1-w′2-path in G1 G2 with (V (P ) ∪ E(P )) ∩ S ′ = ∅. Now
assume that P contains v1 but not e1. We obtain a w1-w′2-path P ′ with (V (P ) ∪ E(P )) ∩ S ′ = ∅
by renaming v1 to v in P . Last assume that P contains e1. Then, P is of the form P = P1u1e1v1P2

where P1 is a w1-u1-path (resp. w2-u1-path) and P2 is a v1-w2-path (resp. v1-w1-path) in G1. From
the 2-edge-connectivity of G2, we obtain that there exists a u2-v2-path Q in G2− e2. Let Q′ be the
path obtained from Q by renaming v2 to v and let P ′2 be the path in G1 G2 obtained from P2 by
renaming v1 to v. Now P1u1eu2Q

′P ′2 is a w1-w2-path inG1 G2 with (V (P1Q
′P ′2)∪E(P1Q

′P ′2))∩
S ′ = ∅.
Let now P ′ be a w1-w′2-path in G1 G2 with (V (P ′)∪E(P ′))∩ S ′ = ∅. If V (P ′) ⊆ V (G1)∪ {v}
then the path obtained from P ′ by renaming v to v1 (if it is contained in P ′) is a w1-w2-path in G1.
Otherwise P ′ must be of the form P ′ = P ′1u1eu2P

′
2P
′
3, where P ′1 is a w1-u1-path (resp. w2-u1-path)

with edges in E(G1) \ {e1}, P ′2 is a u2-v-path with edges in E(G2) \ {e2} and P ′3 is a v-w2-path
(resp. v-w1-path) with edges in E(G1) \ {e1}. Let P3 be the path in G1 that arises from P ′3 by
renaming v to v1. We obtain (V (P ′1u1e1v1P3) ∪ E(P ′1u1e1v1P3)) ∩ S = ∅ and P ′1u1e1v1P3 is a
w1-w2-path in G1.

Corollary 3.5. Let G1 and G2 be graphs with edges ei = viui ∈ E(Gi) for i = 1, 2. Let e be the
edge in (G1, e1, u1) (G2, e2, u2) with end vertices u1 and u2 and let v be the vertex arising from
the identification of v1 and v2. It holds that G1 G2 is biconnected if and only if G1 and G2 are
biconnected and contain more than one edge.

Proof. Assume that G1 and G2 are both biconnected and each contain more than one edge. Let
w ∈ V (G1) and x ∈ V (G2). Then, by Menger’s Theorem (see [12]) there exist internally vertex
disjoint paths P1 from w to u1 and Q1 from w to v1 in G1. Further, there exist internally vertex
disjoint paths P2 from u2 to x and Q2 from v2 to x in G2. Let for i ∈ {1, 2} Q′i be the path that
arises from Qi by renaming vi to v. Now P1u1eu2P2 and Q′1Q

′
2 are two internally vertex disjoint

w-x-paths in G1 G2. For i ∈ {1, 2} and two vertices w1 and w2 in V (Gi) \ {vi} we obtain from
Lemma 3.4 and Menger’s Theorem that there exists two internally vertex disjoint paths in G1 G2

connecting w1 and w2.
If Gi for some i ∈ {1, 2} contains just one edge, then G1 G2 contains a cut vertex. Next

suppose thatGi has a cut-edge for some i ∈ {1, 2}. By Observation 3.3 alsoG1 G2 has a cut-edge.
Last suppose that G1 and G2 are 2-edge-connected and Gi has a cut-vertex for some i ∈ {1, 2}.
But then by Lemma 3.4 also G1 G2 has a cut-vertex. This settles the claim.
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Lemma 3.6. Let G1 and G2 be 2-edge connected graphs and let ei ∈ E(Gi) with end vertices ui
and vi for i ∈ {1, 2}. Let S ⊆ V (G1) ∪ E(G1). Let w1, w2 ∈ V (G1) be two distinct vertices. Set

S ′ :=

{
S, if e1 /∈ S,
(S \ {e1}) ∪ {u1u2}, if e1 ∈ S.

Then, S separates w1 and w2 in G1 if and only if S ′ separates w1 and w2 in (G1, e1, u1)
(G2, e2, u2). In particular, G1 G2 is biconnected if and only if G1 and G2 are biconnected.

Proof. The proof is analogous to the proofs of Lemma 3.4 and Corollary 3.5.

Treewidth is compatible with the identification operations. Also the treewidth behaves nicely
with the identification operations. Clearly, the treewidth of a graph can be computed knowing
the treewidth of its biconnected components. Furthermore, a width-optimal tree decomposition
ofG1 G2 orG1 G2 can be constructed by just slighlty changing a tree decomposition ofG1∪G2.
The results are summarized in Lemma 3.7.

Lemma 3.7. Let G1 and G2 be 2-edge-connected graphs. It holds true that

tw(G1 G2) = max{tw(G1), tw(G2)},
tw(G1 G2) = max{2, tw(G1), tw(G2)} and
tw(G1 G2) = max{2, tw(G1), tw(G2)}.

Proof. A graph is of treewidth at most k if and only if all of its biconnected components are of
treewidth at most k, cf. [1]. Thus, tw(G1 G2) = max{tw(G1), tw(G2)}.

By the assumption thatG1 andG2 are 2-edge connected we obtain thatG1 G2 andG1 G2 each
contain a cycle of length not less than 3. Consequently tw(G1 G2) ≥ 2 and tw(G1 G2) ≥ 2. Now,
G1 andG2 are minors ofG1 G2 andG1 G2. Altogether tw(G1 G2) ≥ max{2, tw(G1), tw(G2)}
and tw(G1 G2) ≥ max{2, tw(G1), tw(G2)}. For the other inequality let (T (i),B(i)) be a tree
decomposition of Gi and let Bi ∈ B(i) be a bag with {ui, vi} ∈ Bi for i ∈ {1, 2}. We obtain a tree
decomposition of G1 G2 of width max{2, tw(G1), tw(G2)} by the following construction. Set

Ba := {u1, u2, v1},
Bb := {u2, v1, v2},
B := B(1) ∪ B(2) ∪ {Ba, Bb},

V (T ) := V (T (1)) ∪ V (T (2)) ∪ {a, b} and

E(T ) := E(T (1)) ∪ E(T (2))) ∪ {1a, ab, b2}.

Now (T ,B) is a tree decomposition of G1 G2 of width max{2, tw(G1), tw(G2)}. The inequality
for G1 G2 follows immediately since G1 G2 is a minor of G1 G2. This settles the claim.
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4. Characterizing all subquartic Eulerian graphs of treewidth at most 2

We are now ready to discuss a constructive characterization starting with a simple class of
base graphs – the closed necklaces – and then only using the operators and . More precisely
we characterize all Eulerian graphs with treewidth at most 2 and maximum degree 4. A closed
necklace is a graph which can be constructed from a cycle of length at least 2 by duplicating all of
its edges. We define the classH recursively:

- All closed necklaces are contained inH.

- If H1, H2 ∈ H, then also H1 H2 ∈ H.

Observation 4.1. The only biconnected 4-regular graph of treewidth 1 is the closed necklace on
two vertices. The only biconnected 4-regular graph on three vertices is the closed necklace on
three vertices.

Lemma 4.2. Let G be a biconnected 4-regular graph of treewidth 2 which is not isomorphic to
a closed necklace. Then G has a 2-cut {e1, e2} where no end vertex of e1 coincides with an end
vertex of e2.

Proof. We prove the following statement by induction on the number of vertices of G: A bicon-
nected 4-regular graph of treewidth 2 is either a closed necklace or it has a 2-cut {e1, e2} where
no end vertex of e1 coincides with an end vertex of e2. The base case |V (G)| ≤ 3 is settled by
Observation 4.1. Let now |V (G)| ≥ 4.

Suppose that G contains a vertex u with NG(u) = {x1, x2} such that u is connected to each xi
with exactly two edges. We construct a graph G′ by removing u and adding two edges between x1
and x2. Observe that G′ is still biconnected, 4-regular, of treewidth at most 2. By induction G′ is
either a closed necklace – in this case G is also a closed necklace. Or G′ contains a two-edge-cut
of the desired form, then it is also a cut of the desired form in G.

Now suppose that each vertex in G which has exactly two neighbours is connected to one of them
with three edges and to the other one with a single edge. Let ({Xi : i ∈ I}, T ) be a smooth
tree decomposition of G of width 2. Let l be a leaf in T with unique neighbour k, which exists
as tw(G) = 2 and V (G) ≥ 4. As the tree decomposition is smooth we have Xl = {u, x1, x2}
and Xk = {v, x1, x2} with distinct vertices u, v, x1, x2 ∈ V (G). The biconnectivity of G and the
structure of the bags Xl and Xk imply NG(u) = {x1, x2}. We may assume that there are three
edges connecting u to one of its neighbours, say x1. Let NG(x1) = {u, x′1} for some x′1 ∈ V (G).
Note that x′1 6= x2 as otherwise x2 would be a cut-vertex, contradicting the fact that G is bicon-
nected. Thus, {x1x′1, ux2} is a 2-cut of the desired form in G.

Theorem 4.3. Let G be a graph. Then G ∈ H if and only if it is a biconnected 4-regular graph of
treewidth at most 2.

Proof. Let G ∈ H. Note that this implies that G is 2-edge-connected by Lemma 3.6. If G is a
closed necklace, it is biconnected, 4-regular and fulfils tw(G) ≤ 2. We prove that G fulfils the
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desired properties by induction on the number of vertices. If V (G) = 2 it is a closed necklace.
So assume that V (G) ≥ 3 and G is not a closed necklace. Consequently G = G1 G2 for two
graphs G1, G2 ∈ H. By induction G1 and G2 are biconnected, 4-regular and have treewidth at
most 2. Then also G is 4-regular, tw(G) ≤ 2 by Lemma 3.7 and G is biconnected by Lemma 3.6.

Let now G be biconnected 4-regular of treewidth at most 2. We prove G ∈ H by induction
on |V (G)|. If |V (G)| ∈ {2, 3} then G must be the necklace with two or three vertices by Observa-
tion 4.1 and thus G ∈ H. Let now |V (G)| ≥ 4. If G is not a closed necklace, then tw(G) = 2 by
Observation 4.1. We may apply Lemma 4.2 and obtain that G = G1 G2 for suitable G1, G2. Ob-
serve that G1 and G2 are biconnected, cf. Lemma 3.6, and 4-regular. Furthermore, their treewidth
is bounded by 2 since they are minors of G. By induction, G1, G2 ∈ H. Thus, also G ∈ H.

Let v be a cut-vertex in a 4-regular graph G. The degree of v in the biconnected components
of G is 2 since otherwise the edges incident to v would contain an odd cut in an Eulerian graph.
Consequently, all degrees of vertices in biconnected components of G lie in {2, 4}. We conclude
that a biconnected component of a 4-regular graph is either a cycle or can be obtained from a
biconnected 4-regular graph by subdivision. Together with Theorem 4.3 we obtain:

Corollary 4.4. A connected graph G is 4-regular of treewidth at most 2 if and only if each of its
biconnected components H is either a cycle such that each of its vertices is a cut-vertex in G or
the graph obtained by successively resolve all former cut-vertices in H is contained inH.

We obtain a constructive characterization of the class H′ containing all Eulerian graphs of
treewidth at most 2 and with maximum degree 4 in a straightforward way:

- All closed necklaces are inH′.

- All cycles are inH′.

- If G ∈ H′ and G′ is obtained from G by subdividing an edge then G′ ∈ H′.

- If G1, G2 ∈ H′, then G1 G2 ∈ H′.

- If for i ∈ {1, 2} Gi ∈ H′ and vi ∈ V (Gi) with degGi
(vi) = 2, then (G1, v1) (G2, v2) ∈ H′.

Now that we have extensively studied the applications of the binary operator , we continue
with considering the class of graphs which arises using the operators and .

5. Constructive characterization of all graphs with unique cycle-decomposition size

In this section we prove our main result – two equivalent characterizations for the class of
graphs where the minimum and maximum number of cycles in a cycle decomposition coincide.
We show first that the class of graphs with unique cycle decomposition size is contained in the
class of graphs where two cycles intersect at most twice.

Lemma 5.1.

(i) Let H be an Eulerian subgraph of an Eulerian graph G. If c(H) < ν(H) then c(G) < ν(G).
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(ii) Let H ′ be a graph which is decomposable into two edge disjoint cycles that have more than
two vertices in common. Then c(H ′) = 2 and ν(H ′) ≥ 3.

In particular: An Eulerian graph G containing two edge-disjoint cycles that have more than two
vertices in common satisfies c(G) < ν(G).

Proof. Let C be a maximum cycle decomposition of H and C be a minimum cycle decomposition
of H . Further let C be a cycle decomposition of G− E(H). We obtain

c(G) ≤ |C ∪ C| < |C ∪ C| ≤ ν(G),

proving the first claim.
Let now H ′ = C1∪C2 for two edge-disjoint cycles C1 and C2. Further let v1, v2, v3 ∈ V (C1)∩

V (C2) be three distinct vertices. Let i ∈ {1, 2}. As Ci is a cycle there exists a path Pi from v1
to v2 with v3 /∈ V (Pi), which is a subgraph of Ci. Then P1P2 is even and the degree of v3
in H ′ − E(P1P2) is 4. We get ν(H ′) ≥ ν(H ′−E(P1P2))+ ν(P1P2) ≥ 2+1 = 3 as claimed.

We are now ready to present a constructive characterization of all Eulerian graphs with the
property that the number of cycles in a cycle decomposition is unique. Let us define a class of
graphs G, where the base graphs are Eulerian multiedges and all other graphs recursively arise
from operations on two disjoint graphs in the class.

- If G is an Eulerian multiedge, i.e. a graph that consist only of two vertices and an even
number of parallel edges between the two vertices, then G ∈ G.

- Let G1, G2 ∈ G with V (G1) ∩ V (G2) = ∅ and vi a vertex in Gi for i ∈ {1, 2}. Then
(G1, v1) (G2, v2) ∈ G.

- Let G1, G2 ∈ G with V (G1) ∩ V (G2) = ∅, ei be an edge in Gi from ui to vi for i ∈ {1, 2}.
Then (G1, e1, u1) (G2, e2, u2) ∈ G.

Theorem 5.2. Let G be a graph. The following three statements are equivalent.

(i) G is Eulerian with c(G) = ν(G).

(ii) G is Eulerian and no two edge disjoint cycles in G have more than two vertices in common.

(iii) G ∈ G.

Proof. (i) implies (ii): This implication is stated in Lemma 5.1.

(ii) implies (iii): Suppose that there are graphs satisfying (ii) but not (iii). Then amongst those
graphs there exists a graph G of lowest order. Note that G is not an Eulerian multiedge, since these
satisfy (iii). We establish further structural properties of G:

Property 1. G is biconnected.

Proof of Property 1: Suppose G is not biconnected. Then there exists some cut-vertex v ∈ V (G).
Thus, there are two graphs G1 and G2 such that G = G1 G2. As no two cycles in G1 and G2 have
more than two vertices in common, we get G1, G2 ∈ G by the minimality of G and thereby G ∈ G,
contradicting the choice of G.
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Property 2. For all e ∈ E(G) : G− e is biconnected.

Proof of Property 2: Suppose that G− e is not biconnected. Then there are two graphs G1 and G2

such that G = G1 G2. Note that the vertex v ∈ V (G) that is split up in G1 and G2 cannot be an
endpoint of e, as G is biconnected by Property 1. Further observe that neither G1 nor G2 contain
edge disjoint cycles with more than two vertices in common. By the minimality of G we obtain
G1, G2 ∈ G. Consequently G ∈ G. A contradiction.

Property 3. For all v ∈ V (G) : G− v is 2-edge-connected.

Proof of Property 3: Suppose that G − v contains a one-edge-separator. Again, there are two
graphs G1 and G2 such that G = G1 G2 and we can argue as in the proof of Property 2.

Property 4. For all v ∈ V (G) there is at most one neighbour of v that is connected to v by multiple
edges.

Proof of Property 4: Assume that there is a vertex v that is connected to two different vertices w1

and w2 by multiple edges. By Property 3 we know that G − v is 2-edge-connected. By Menger’s
Theorem (see [12]) there exist two edge disjoint paths P1, P2 from w1 to w2 in G− v. But then the
two cycles vw1P1w2v and vw1P2w2v are edge disjoint and share more than two vertices. This is a
contradiction to (ii).

Property 5. For all v ∈ V (G) we have |N(v)| ≥ 4.

Proof of Property 5: Suppose there is a vertex v with |N(v)| ≤ 3. Assume that |N(v)| = 1.
Then G is either an Eulerian multiedge or not biconnected – a contradiction to the assumption
respectively Property 1. Now assume that |N(v)| = 2, say N(v) = {w1, w2}. By Property 4 v
cannot be connected to both neighbours by multiple edges, say v is connected to w1 by a single
edge e. If we delete w2 from G− e we isolate v which is a contradiction to Property 2.

Last assume that |N(v)| = 3, say N(v) = {w1, w2, w3}. By Property 4, we may further
assume that v is connected to w1 and w2 by a single edge only. By Property 2 the graph G − vw1

is biconnected. Thus, there is a cycle C in G − vw1 containing the vertices v and w1. Since w2

and w3 are the only neighbours of v in G − vw1, we obtain that C also contains the vertices w2

and w3. The graph G − E(C) is even and thus vw1 is contained in some cycle C ′ in G − E(C).
The single edge vw2 is contained in C. Hence, v has only neighbours w1 and w3 in G − E(C).
Thus, C ′ contains the vertex w3 as well. Thereby C and C ′ are two edge disjoint cycles with more
than two vertices in common – a contradiction.

We now exploit Properties 4 and 5 to complete the proof. Regard a path P = v1v2 . . . vk with
the property that N(vk) ⊆ {v1, . . . , vk−1} and v1vk ∈ E. Such a path can be found in a greedy
fashion: Start at some vertex v in the graph and always move to a new vertex until all neighbours
of the current vertex w have already been visited. The resulting path contains the neighbourhood
of w. Now simply set v1 to be the neighbour of w that has been visited first and the subsequent
vertices accordingly. By Property 5 we have |N(vk)| ≥ 4. Thus, we can find i, j ∈ {2, .., k − 2}
with i 6= j and vi, vj ∈ N(vk). Property 4 implies that vk is connected to vi or vj by a single edge.
Without loss of generality let this be vi. Set C := v1v2...vkv1. Then G − E(C) is an even graph
and we can find a cycle C ′ in G− E(C) containing the edge vkvi. Since N(vk) ⊆ {v1, . . . , vk−1}
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the two edge disjoint cycles C and C ′ have more than two vertices in common, which contradicts
assumption (ii). Altogether we may conclude G ∈ G.

(iii) implies (i): Eulerian multiedges fulfil property (i). Let Gi be a graph with c(Gi) = ν(Gi)
for i ∈ {1, 2}. If G arises from vertex-identification or vertex-edge-identification from graphs G1

and G2, by Lemma 3.1 we have

ν(G)− c(G) = ν(G1)− c(G1) + ν(G2)− c(G2) = 0,

which implies (i).

Combining the constructive characterization in Theorem 5.2 with Lemma 3.7 we obtain that
all graphs with unique cycle number are of treewidth at most 2. In particular, they are planar and
at most 2-vertex-connected.

6. Algorithmic recognition of graphs with unique cycle number

In this section, we present an O(n(m + n))-algorithm which decides if the cycle number of
a given Eulerian graph is unique. The main idea of the algorithm is to exploit the following two
observations:

Observation 6.1. Cycles are subgraphs of the biconnected components of a given graph. Hence:
A graph G fulfils c(G) = ν(G) if and only if this equation holds true for each of its biconnected
components.

Observation 6.2. LetG be a biconnected graph. ThenG fulfils c(G) = ν(G) if and only if it fulfils
one of the following two properties:

- The graph G is an Eulerian multiedge.

- There exists graphs G1 and G2 such that G = G1 G2. For any two graphs G1 and G2

satisfying this equation it holds that c(G1) = ν(G1) and c(G2) = ν(G2).

Proof. By Theorem 5.2G ∈ G. HenceG is either an Eulerian multiedge or there existsG1, G2 ∈ G
withG = G1 G2 orG = G1 G2. The caseG = G1 G2 cannot occur sinceG is biconnected. Now
assume thatG1, G2 are graphs withG = G1 G2. Suppose that c(Gi) < ν(Gi) for some i ∈ {1, 2}.
We obtain by Lemma 3.1 that c(G) = c(G1) + c(G2) − 1 < ν(G1) + ν(G2) − 1 = ν(G). A
contradiction.

These two observations already give an outline of the whole algorithm: We start by computing
the biconnected components of the given graph. If a biconnected component is of the formG1 G2,
we replace it by G1 ∪G2 and check if further decomposition is possible. Corollary 3.5 ensures us
that G1 and G2 are still biconnected - hence, it suffices to replace G1 G2 by G1 and G2 in the
list of biconnected components. If at some point of the algorithm no component allows for further
decomposition, the input graph has a unique cycle number if and only if each of the computed
components is an Eulerian multiedge.
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Definition 6.3 (Vertex-Edge Separation). LetG be a disjoint union of biconnected graphs. Further
let v ∈ V (G) and e ∈ E(G) be a vertex and an edge in the same component H of G. We call
the tuple (v, e) a vertex-edge-separator in G if H − v − e has more than one component. Observe
that (v, e) is a vertex-edge-separator if and only if there exist biconnected graphs H1, H2 with
edges ei = uivi ∈ E(Hi) for i = 1, 2, such that H = (H1, e1, u1) (H2, e2, u2) where v is the
vertex that arises from the identification of v1 and v2 and e is the edge from u1 to u2 in H . We call
the process of replacing H by H1 ∪H2 in G a vertex-edge-separation step. The constructed graph
is called vertex-edge-separation of G. Observe that the constructed graph is again a disjoint union
of biconnected graphs by Corollary 3.5.

Before we describe the algorithm we will prove a Lemma showing that edges which are not
contained in a vertex-edge separator at some step of the algorithm will never be contained in a
vertex-edge separator. This proof implies that it suffices to check for each vertex only once whether
it is contained in a vertex-edge-separator during the algorithm.

Lemma 6.4. LetG be a biconnected graph satisfyingG = G1 G2 for two graphsG1, G2. Further
let v ∈ V (G) be some vertex inG which is not contained in any vertex-edge separator ofG. Then v
is not contained in any vertex-edge separator of G1 or G2.

Proof. The graphs G1 and G2 both are biconnected and consequently also 2-edge-connected by
Corollary 3.5. As v is not contained in a vertex-edge separator in G it is either contained in G1

or G2. Hence, by Lemma 3.4 v cannot be contained in a vertex edge separator in G1 or G2.

We are now ready to present a formal algorithm and prove its correctness. In the description of
Algorithm 6.1 we use the two black box procedures FINDCUTEDGE and SPLIT:

FINDCUTEDGE(G) returns a cut-edge of G if one exists and Nil else.

SPLIT(G, v) gets a graph G and a cut-vertex v ∈ V (G) as input. Let G1 and G2 be graphs
satisfying G = (G1, v1) (G2, v2) where v is the vertex that arises from identifying v1
with v2. The procedure returns G1 ∪G2, v1 and v2.

When implementing the algorithm the two procedures would rather be done at the same time
using a slightly modified version of the lowpoint algorithm for finding biconnected components by
Hopcroft and Tarjan, cf. [5]. We merely state it in the presented way to better catch the intuition
behind the algorithm.

Theorem 6.5. Given a biconnected graph G with n vertices and m edges Algorithm 6.2 returns a
graph G′ that does not contain a vertex-edge separator. The graph G can be obtained from G′ by
repeated vertex-edge-identification of connected components of G′. Algorithm 6.2 can be imple-
mented to run in time O(n · (m+ n)).

Proof. Note that each time a vertex-edge separation step is applied the number of vertices, edges
and components of G all increase by 1. The size of the largest component never increases though
and at least one component becomes smaller. Thus, Algorithm 6.2 terminates.
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Algorithm 6.1 Test if vertex is contained in a vertex-edge separator, if so apply vertex-edge sepa-
ration.
TESTANDDECOMPOSE(G, v)

Input: Graph G and vertex v ∈ V (G).
Output: Graph G, vertices v1, v2

1 e = u1u2 = FINDCUTEDGE(G− v)
2 if e is not Nil then
3 G = G− e
4 G, v1, v2 = SPLIT(G, v)
5 Add an edge between u1 and v1 to G.
6 Add an edge between u2 and v2 to G.
7 return G, v1, v2
8 else
9 return G, Nil, Nil

10 end if

Algorithm 6.2 Computation of vertex-edge-components using vertex-edge separation.

VE-COMPONENTS(G)

Input: Biconnected graph G.
Output: Disjoint union G of biconnected graphs.

1 S := V
2 while S 6= ∅ do
3 Take out arbitrary v ∈ S
4 G, v1, v2 = TESTANDDECOMPOSE(G, v)
5 if v1 6= Nil then
6 Add v1 and v2 to S.
7 end if
8 end while
9 return G
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Let G be a biconnected graph and G′ the graph returned by the algorithm starting with G. By
Lemma 6.4 any vertex that is not contained in a vertex-edge separator in a graph G is also not
contained in a vertex-edge separator in G1 ∪ G2 with G = G1 G2. As every vertex in G′ is at
some point contained in the set S and, when regarded, is only kept in the graph if it is not contained
in a vertex-edge separator, no vertex of G′ can be contained in a vertex-edge separator. This proves
the correctness of the Algorithm.

Now we discuss the running time of the algorithm. IfG contains only one vertex, the algorithm
terminates after the first iteration, as no vertex-edge separation step can be applied. Now assume
that n ≥ 2. Algorithm 6.2 never creates a component with only one vertex. Thereby any compo-
nent of G′ contains at least two vertices. Let k be the number of vertex-edge separation steps taken
during the whole procedure. We get that the number of components in G′ is exactly k + 1, so the
number of vertices in G′ is at least 2 · (k + 1). As in each iteration exactly one additional vertex is
added to the graph, we know that |V (G′)| = k+n. Thus, k+n ≥ 2·(k+1) which implies k ≤ n−2.
As already mentioned, we can find a cut-edge and split the graph using a slightly altered version
of the usual lowpoint algorithm for finding biconnected components, cf. [5]. This algorithm can
be implemented to run in time O(n+m). Thus any call to TESTANDDECOMPOSE needs at most
time O(n+m). Altogether Algorithm 6.2 can be implemented to run in time O(n(n+m)).

Next we want to use Algorithm 6.2 to find out if the cycle number of a biconnected graph G is
unique. As pointed out earlier, we will do this by simply testing if all components remaining, after
Algorithm 6.2 has terminated, are Eulerian multiedges.

Algorithm 6.3 Test if cycle number of a graph is unique.

ISCYCLENUMBERUNIQUE(G)

Input: Biconnected graph G.

Output:

{
True, if cycle number is unique,
False, else.

1 H = VE-COMPONENTS(G)
2 for all v ∈ V (H) do
3 if |N(v)| 6= 1 or # of incident edges is odd then
4 return False
5 end if
6 end for
7 return True

Theorem 6.6. Algorithm 6.3 correctly decides if the cycle number of a biconnected graph G with
n vertices and m edges is unique. It can be implemented to run in time O(n(m+ n)).

Proof. First note, that a graph H is a disjoint union of Eulerian multiedges if and only if each
vertex has exactly one neighbour and the number of incident edges is even. This proves that
Algorithm 6.3 returns True if and only if the graph H in the algorithm is a collection of Eulerian
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multiedges. The running time is clear as the whole algorithm is clearly dominated by the running
time of Algorithm 6.2.

It remains to show that this indeed is a necessary and sufficient condition for the graph G to
have a unique cycle number. It is easy to see that G is contained in G, as in order to create it
we only have to do the algorithm backwards. Now assume that G has a unique cycle number but
Algorithm 6.2 does not terminate with a collection of Eulerian multiedges. Then there exists a
component H , which is not an Eulerian multiedge and does not allow a vertex-edge separation
step. This implies that H /∈ G and by Theorem 5.2 we have ν(H) > c(H). If we now apply
Lemma 3.1 multiple times, we get that ν(G) > c(G), which is a contradiction to G having unique
cycle number.

Observe that we can also use Algorithm 6.2 to reduce computation of minimum or maximum
cycle number to smaller graphs: We simply run the algorithm on a given graph G and com-
pute a minimum respectively maximum cycle decomposition in the outputted components. By
Lemma 3.1 we can then puzzle the cycle decomposition together in order to obtain a minimum or
maximum cycle decomposition of G.
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