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Abstract

Define a 3-star decomposition of Kn as being a collection of subgraphs, each isomorphic to K1,3,
with the property that each edge of Kn appears in exactly one of the subgraphs. A partial 3-
star decomposition is similarly defined except each edge appears in at most one of the subgraphs.
In this work, it is shown that any partial 3-star decomposition of Kn can be embedded into a
decomposition of Kn+s where s ≤ 4. Furthermore, we determine, for any maximal partial 3-
star decomposition P of Kn, the minimum s ∈ {1, 2, 3, 4} such that P can be embedded into a
decomposition of Kn+s.
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1. Introduction

All graphs will be simple and finite. Define a k-star to be the complete bipartite graph K1,k.
A k-star decomposition of the complete graph Km consists of a collection B of subgraphs, each
isomorphic to K1,k, with the property that each edge of Km appears in exactly one of the subgraphs.
A partial k-star decomposition P of Kn is similarly defined except each edge appears in at most
one of the subgraphs. If P ⊆ B, say that P is embeddable in B, or alternately that B is
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an embedding of P . We will designate by G0 the graph formed by deleting from Kn all edges
found in any subgraph of P , where in various literature G0 is termed the leave of the partial
decomposition. Furthermore, it is free to assume in our work that P is maximal – that is, all
vertices of the corresponding G0 have degree less than k. We will be primarily concerned with the
case k = 3, and although the graph K1,3 is commonly called a “claw”, we will refer to it as being
a 3-star to keep with the terminology used in [2].

In [2], Hoffman and Roberts prove that, regardless of the value of n, any partial k-star decom-
position of Kn can be embedded into a k-star decomposition of Kn+s where s is at most 7k − 4 if
k is odd, and 8k− 4 if k is even. These bounds are lowered by the authors in [3], where it is shown
that such an s can be selected which is at most 3k−2 for k odd and 4k−2 for k even. Bounds on s
are lowered even further in [1], where De Vas Gunasekara and Horsley prove that s can be chosen
satisfying s < 9

4
k when k is odd and s < (6− 2

√
2)k when k is even. Furthermore, it is shown in

[1] that those bounds are optimal in the sense that they cannot be improved for general k.
In our work, we consider the specific case of k = 3, showing that s = 4 is a sharp upper bound.

We conclude by determining, for each maximal partial 3-star decomposition P , the minimum
s ∈ {1, 2, 3, 4} such that P is embeddable into some decomposition of Kn+s.

2. Preliminaries

Our method of proof will be constructive and we illustrate it with the following example. Con-
sider the partial decomposition P of K6 given in Figure 1, where G0 has edge set {v1v5, v1v6, v3v4}.

v1 v2

v3

v4v5

v6

Figure 1. A Partial 3-Star Decomposition of K6

Consider the adjacency matrix of G0, looking only at the triangular portion of the matrix below
the main diagonal. The edges of the original copy of K6 are in bijective correspondence with the
cells of this portion of the matrix. Form a “staircase” diagram by coloring any cell containing a 0
and making blank any cell containing a 1, as is done in Figure 2.

Three cells in such a diagram correspond to the edges of a 3-star if and only if they appear
in the same row, or they appear in the same column, or they appear in rows and columns that
intersect in a cell on the main diagonal of the adjacency matrix. In particular, since any partial
3-star decomposition we are considering can be assumed maximal, each column of a staircase
diagram for a potential G0 can have zero, one, or two blank cells only.
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v1 v2 v3 v4 v5 v6

Figure 2. The Staircase Diagram for the Partial Decomposition Given in Figure 1

In forming an embedding of P , we extend the diagram by affixing s additional rows, for some
s ∈ {1, 2, 3, 4}, which represent the additional vertices x1, . . . , xs. For our example, it turns out
that s = 3 does the trick. For each additional row, we take note of the number of cells in that row
computed modulo 3. In the staircase diagram for G0, for each column containing one blank cell,
we may then extend our partial decomposition by coloring that blank cell along with two blank
cells simultaneously lying in that column and in the affixed rows. We call such a maneuver a 2-
drop as we are “dropping” two colored cells into the additional rows. Similarly, for each column
in the G0 diagram containing two blank cells, we may color those cells along with one cell lying
in that column and in an additional row. Refer to this move as a 1-drop. Returning to our example,
these moves are executed in Figure 3.

v1

v2

v3

v4

v5

v6

v1 v2 v3 v4 v5 v6

x1

x2

x3

x1 x2 x3

Figure 3. An Extended Staircase Diagram for the Partial Decomposition Given in Figure 1

Note that, in Figure 3, after the described 1- and 2-drops have been made, the remaining num-
bers of uncolored cells in the rows corresponding to vertices x1, x2, and x3 are each congruent to
0 modulo 3. What remains to be seen (and what we intend to show in the next section) is that this
process of designating 1-drops and 2-drops can always be performed with a suitable s ∈ {1, 2, 3, 4}
so that all cells are colored in the original diagram for G0, and the number of uncolored cells in
each additional row is congruent to 0 modulo 3. This circumstance allows us to complete our
decomposition of Kn+s by iteratively coloring sets of three cells, with each set consisting of three
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cells lying in the same additional row.

3. Results

Throughout this section, we will use the fact that |E(Kn)| ≡ 0 (mod 3) if n ≡ 0 or 1 (mod 3)
and |E(Kn)| ≡ 1 (mod 3) if n ≡ 2 (mod 3).

Theorem 3.1. Let n ≡ 0 or 1 (mod 3). A partial 3-star decomposition P of Kn is embeddable
in a 3-star decomposition of Kn+3.

Proof. Assume P maximal, and consider a staircase diagram of G0. Let α1 designate the number
of columns in the diagram having one blank cell, and denote by α2 the number of columns having
two blank cells. Since P is only a partial decomposition, we have α1 + α2 > 0. Also, since
|E(Kn)| ≡ 0 (mod 3), we must have α1 + 2α2 ≡ 0 (mod 3), which implies α1 ≡ α2 (mod 3).
Affix three additional rows to the staircase diagram and note that the number of cells in these three
rows will be congruent to 0, 1, and 2 (mod 3), respectively, with the order of those depending on
whether n ≡ 0 (mod 3) or n ≡ 1 (mod 3). Regardless, labeling the additional rows R1, R2, R3,
and letting ri be the total number of empty cells in row Ri, we may assume r1 ≡ 1 (mod 3),
r2 ≡ 2 (mod 3), and r3 ≡ 0 (mod 3). We now consider cases.

Case 1. α1 ≡ α2 ≡ 1 (mod 3)
We have α1 2-drops to make and α2 1-drops to make. Place all 2-drops in rows R1 and R2, along
with placing all 1-drops in row R2.

Case 2. α1 ≡ α2 ≡ 2 (mod 3)
Place all 2-drops in rows R1 and R2. Place all 1-drops in row R1.

Case 3. α1 ≡ α2 ≡ 0 (mod 3)
Since α1 + α2 > 0, here we must have α1 and α2 at least 3. Place one 1-drop in row R1 and the
rest in R2. Place all 2-drops in rows R1 and R2.

Theorem 3.2. Let n ≡ 2 (mod 3). A partial 3-star decomposition P of Kn is embeddable in a
3-star decomposition of Kn+4.

Proof. Assume P maximal, and define α1 and α2 as in the proof of Theorem 3.1. Consider a
staircase diagram of G0. As |E(Kn)| ≡ 1 (mod 3), we have α1 + 2α2 ≡ 1 (mod 3), which can
be expressed as α1 ≡ α2 + 1 (mod 3). Affix four additional rows R1, R2, R3, R4 to the staircase
diagram, and for i ∈ {1, 2, 3, 4}, let ri designate the number of empty cells in row Ri before any
“drops” have been made. Note that r1 ≡ 2 (mod 3), r2 ≡ 0 (mod 3), r3 ≡ 1 (mod 3), and
r4 ≡ 2 (mod 3). Also, when it is advantageous, we may select a column which has no blank
cells in the G0 diagram (the column corresponding to vn, for example) and color three cells that
simultaneously lie in that column and in three of the additional rows. This maneuver, a “3-drop”
using the terminology we have introduced, will play a factor in the cases that follow.

Case 1. α1 ≡ 1 (mod 3), α2 ≡ 0 (mod 3)
Here we have α1 2-drops, α2 1-drops, and optional access to at least one 3-drop. Our plan will
then be to place the 3-drop in rows R1, R3, and R4. Place all 2-drops in rows R1 and R4. Place all
1-drops in row R1.
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Case 2. α1 ≡ 2 (mod 3), α2 ≡ 1 (mod 3)
Place all 2-drops in rows R1 and R4. Place all 1-drops in row R3.

Case 3. α1 ≡ 0 (mod 3), α2 ≡ 2 (mod 3)
Again, place a 3-drop in rows R1, R3, and R4. Place all 2-drops in rows R1 and R2. Conclude by
placing one 1-drop in row R1 and the rest in row R4.

The above two theorems establish an upper bound for the minimum s such that any partial
3-star decomposition of Kn can be embedded into a decomposition of Kn+s. To see that s = 4
cannot be lowered, we need only observe the theorem below, originally proved by Yamamoto, et
al. [6], and also seen as a consequence of more general results of Tarsi in [4] and [5].

Theorem 3.3. The complete graph Kn admits a k-star decomposition if and only if |E(Kn)| ≡ 0
(mod k) and n ≥ 2k.

It then stands that a partial k-star decomposition of K2, wherein P would be empty, cannot
be embedded into a k-star decomposition of Kn for any n < 2k. For the general problem studied
in [2], this gives a lower bound on the minimum s such that P can be embedded into a k-star
decomposition of Kn+s, with the bound being s = 2k − 2. However, for our case of k = 3, we
were able to determine, for any given P , exactly the minimum s ∈ {1, 2, 3, 4} needed. We do this
in the following two theorems.

Theorem 3.4. Let P be a maximal partial 3-star decomposition of Kn. Then P can be embedded
into a decomposition of Kn+1 if and only if the following hold.

(i) n ≡ 0 or 2 (mod 3)

(ii) Each component of G0 is an isolated vertex, an even cycle, or a path with an odd number of
vertices.

Proof. The first condition is obvious as it ensures |E(Kn+1)| is a multiple of 3. To see that the
second condition is sufficient, place a new vertex x, making it adjacent to every vertex of G0.
Let C2r be a cycle of G0 with vertices c1, . . . , c2r, and let P2s+1 be a path of G0 with vertices
p1, . . . , p2s+1. Consider every other vertex of C2r – that is, c1, c3, . . . , c2r−1 and for each, identify a
3-star of G0+{x} centered at that vertex. Consider vertices p2, p4, . . . , p2s of the path and for each
of these, identify a 3-star centered at that vertex. Repeat this process for any other even cycles or
odd paths in G0. The only edges of G0 + {x} not appearing in any of these identified 3-stars each
have x as one of their endpoints. We can then complete the decomposition of G0 + {x} through
use of 3-stars centered at x.

For necessity, suppose that G0 contains an odd cycle C2r+1. When attempting to decompose
G0 + {x}, note that any edge of C2r+1 must appear in a 3-star centered at a vertex of the cycle.
However, any such 3-star contains two edges of C2r+1, and it follows that all 2r + 1 edges cannot
appear in a decomposition of G0 + {x}. Now suppose that G0 contains a path P2s. The same
argument applies, as P2s contains an odd number of edges, and any 3-star of G0 + {x} contains
either zero or two edges of P2s.

Theorem 3.5. Let P be a maximal partial 3-star decomposition of Kn. Then P can be embedded
into a decomposition of Kn+2 if and only if the following hold.
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(i) n ≡ 1 or 2 (mod 3)

(ii) G0 has at least one vertex of degree 2.

Proof. The first condition ensures |E(Kn+2)| is a multiple of 3. For necessity of the second con-
dition, assume G0 has only vertices of degree 0 or 1, and consider a potential decomposition of
G0 +K2 where V (K2) = {x, y}. Any edge e = ab of G0 must appear in a 3-star centered at a or
b. Removing from G0 +K2 all such 3-stars centered at vertices of G0, we are left with a graph G1

in which deg(x) = deg(y) and x, y are the only vertices of degree greater than 2. Consequently,
any further 3-stars in G1 must be centered at x or y. Without loss of generality, assume that in
the decomposition, edge e = xy appears in a 3-star centered at x. It then follows that, in G1,
deg(x) ≡ 0 (mod 3). This implies deg(y)− 1 ≡ 0 (mod 3), giving us a contradiction.

For sufficiency of the second condition, let v1 ∈ V (G0) where deg(v1) = 2. We again consider
a staircase diagram of G0 and note that the leftmost column has two blank cells. Affix two addi-
tional rows to the diagram labeled R1 and R2 where again, r1, r2 denote the total number of empty
cells in the corresponding row. Define α1 and α2 as is done in the proofs of Theorems 3.1 and 3.2.

Case 1. n ≡ 1 (mod 3)
We have α1 ≡ α2 (mod 3) with r1 ≡ 1 (mod 3) and r2 ≡ 2 (mod 3). As we only have two
additional rows, we are forced to place all 2-drops in rows R1 and R2. If α2 ≡ 1 (mod 3), place
all 1-drops in row R2. If α2 ≡ 2 (mod 3), instead place all 1-drops in row R1. And if α2 ≡ 0
(mod 3) (which necessarily implies α2 ≥ 3), place one 1-drop in row R1 and the rest in row R2.

Case 2. n ≡ 2 (mod 3)
Here, α1 ≡ α2+1 (mod 3), r1 ≡ 2 (mod 3), and r2 ≡ 0 (mod 3). Again, we are forced to place
all 2-drops in rows R1 and R2. If α2 ≡ 1 (mod 3), place all 1-drops in row R2. If instead α2 ≡ 2
(mod 3), place all 1-drops in row R1. And if α2 ≡ 0 (mod 3) (which again means α2 ≥ 3), place
one 1-drop in row R1 and the rest in row R2.

Finally, we note that for any n ≡ 2 (mod 3), there indeed exists a partial 3-star decomposition
P of Kn that requires s ≥ 4 to embed P into a 3-star decomposition of Kn+s. To see this, in
light of the previous two theorems, we just need to find P in which G0 has each vertex of degree
less than 2. For n = 2, this is obvious. For n = 5, we have the partial 3-star decomposition given
in Figure 4.

Figure 4. A Partial 3-star Decomposition of K5
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If n ≥ 8, label the vertices of Kn as v1, . . . , vn, and by Theorem 3.3, there exists a 3-star
decomposition of the induced subgraph of Kn on vertices v1, . . . , vn−1. We have deg(vn) ≡ 1
(mod 3) so we can remove 3-stars centered at vn until only one edge remains.
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