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Abstract

In this work we explore some graphs associated with the grid Pm×Pn. A fence is any subgraph of
the grid obtained by deleting any feasible number of edges from some or all the copies of Pm. We
present here a closed formula for the number of non-isomorphic fences obtained from Pm × Pn,
for every m,n ≥ 2. A rigid grid is a supergraph of the grid, where for every square a pair of
opposite vertices are connected; we show that the number of fences built on Pm × Pn is the same
that the number of rigid grids built on Pm × Pn+1. We also introduce a substitution scheme that
allows us to substitute any interior edge of any Pm in an α-labeled copy of Pm × Pn to obtain a
new graph with an α-labeling. This process can be iterated multiple times on the n copies of Pm;
in this way we prove the existence of an α-labeling for any graph obtained via these substitutions;
these graphs form a quite robust family of α-graphs where the grid is one of its members. We also
show two subfamilies of disconnected graphs that can be obtained using this scheme, proving in
that way that they are also α-graphs.
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1. Introduction

The grid Pm × Pn is the graph that results of the Cartesian product of the paths Pm and Pn.
Thus, the grid has vertex-set V (Pm × Pn) = V (Pm) × V (Pn), and edge-set E(Pm × Pn) =
E(Pm) × V (Pn) ∪ V (Pm) × E(Pn). This graph has order mn and size 2mn − (m + n). Given
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the simplicity of the structure of the paths, the grid also has a strightforward structure, being one
of the first graphs studied in the context of graph labeling; in particular, its bipartite nature makes
it an ideal candidate to be an α-graph.

The following two definitions were introduced in the mid sixties by Rosa [13]. Let G be a
graph of order m and size n; an injective function f : V (G)→ {0, 1, . . . , n} is said to be graceful
when every edge uv of G has assigned a weight defined as |f(u)− f(v)| and the set of all weights
induced on the edges of G is {1, 2, . . . , n}.

The function f is called an α-labeling of G when G is a bipartite graph and there is an integer
λ such that whenever f(u) ≤ λ < f(v), u and v are in different stable sets of G. The integer λ is
called the boundary value of f ; when G admits an α-labeling is named an α-graph. This type of
labeling is the most restrictive of the ones introduced by Rosa. Several other types of labeled graphs
can be obtained by proving that they are of the α-type. Rosa [13] used these labelings to study the
problem of decomposing K2n+1 into copies of any tree of size n. He proved that any tree of size n
admiting a ρ-labeling decomposes (cyclically) the graph K2n+1. In a ρ-labeling of a tree of size n,
the labels are taken from {0, 1, . . . , 2n} and the set of induced weights is {x1, x2, . . . , xn} where
xi = i or xi = 2n+1− i. Hence, a graceful labeling is also a ρ-labeling. Rosa proved that a cyclic
T -decomposition of K2n+1 exists when T is a tree of size n that admits a ρ-labeling. These are
some of the origins of the Graceful Tree Conjecture, that states that all trees are graceful. Several
families of graceful trees are known; among them, we have the family of all trees of diameter up to
five. Balbuena et al. [2], used the technique of edge switching to prove that all trees of diameter d
are graceful, provided that all leaves are vertices of maximum eccentricity and all internal vertices
(except a root) have even degree. They also showed that when the degrees of all vertices adjacent
to a leaf are odd, the tree is also graceful. The same technique is used by Mishra et al. [11] to show
the existence of a graceful labeling for each tree of diameter six such that deg(v) is even for every
vertex v adjacent to the root with descendents in level 3. In Section 3, we use edge switching on
α-labeled graphs related to Pm×Pn. A detailed account of results on graph labelings can be found
in [9].

Several graph operations have been studied under the perspective of graceful and α-labelings.
The Cartesian product and the join of two graphs have recieved special attention. Some results
about the corona of two graphs have been published in the last years. In [3], Barrientos proved
that if G is a graceful graph of order m and size m − 1, then G � nK1 is graceful. Recently,
Mitra and Bhoumik [12], showed that in the case of complete bipartite graphs, K2m,2m � K2

is graceful. As we mentioned before, Pm × Pn is an ideal candidate to be an α-graph, in fact
Jungreis and Read [10] proved that the grid Pm × Pn is an α-graph, they also described a way
to transform the α-labeling of the grid into a harmonious labeling. Polyominoes form a robust
family of subgraphs of the grid; Acharya [1] asked: Are all polyominoes arbitrarily graceful?
Polyominoes can be described as a collection of a number of equal-sized squares arranged with
coincident sides. Motivated by Acharya’s question we investigated [4] the existence of an α-
labeling for a subfamily of polyominoes, the one formed by the snake-polyominoes. Later [7] we
used the idea of Jungreis and Read to prove that the α-labeling of the snake polyominoes could
also be transformed into a harmonious labeling, proving so that these snakes are also harmonious.

In the present work, we continue the search of subgraphs of the grid that admit α-labelings. In
[5] and [6] we show some results about α-graphs associated with the cartesian product of paths and
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caterpillars. We also defined a 2-link fence as the graph obtained with r copies of Pn by connecting
two vertices of the ith copy to the corresponding two vertices in the (i + 1)th copy. In Section 2
we extend this concept and define a fence as a subgraph of the grid Pm × Pn that is formed by
deleting k edges from the copies of Pn. We enumerate these fences, discovering that even for quite
small values of the parameters m,n, and k, there is a big number of non-isomorphic fences. We
close Section 2 with the introduction of a family of supergraphs of the grid Pm × Pn, called rigid
grids; we establish a connection of these graphs and the fences, that allows us to determine its
number as a function of m and n. In Section 3 we study α-labelings of grid-related graphs; we
prove a general result that allows us to eliminate some edges of the grid, which originates a fence,
and introduce new edges to replace the ones eliminated. This substitution of edges, done on an
α-labeled version of the grid, preserves the order and size of the grid and the resulting grid-like
graph is also an α-graph. In the last two results, we show the existence of an α-labeling for two
distinguishable disconnected graphs constructed using edge replacements on the grid.

In this paper, we follow the notation and terminology used in [8] and [9].

2. Subgraphs and supergraphs of the grid

2.1. The number of non-isomorphic fences
In this work, Pm denotes the path of order m with V (Pm) = {v1, v2, . . . , vm} and E(Pm) =

{vivi+1 : 1 ≤ i ≤ m − 1}. A fence is a subgraph of the grid Pm × Pn obtained by deleting any
subset of “horizonal” edges. Formally, suppose that P 1

m, P
2
m, . . . , P

n
m are disjoint copies of Pm. For

each j ∈ {1, 2, . . . , n− 1}, select a nonempty subset Sj of {1, 2, . . . ,m}; a fence, of order m× n,
is the graph obtained connecting P j

m and P j+1
m by drawing, for every i ∈ Sj , an edge between the

vertices vi,j and vi,j+1. Our goal is to determine the number of non-isomorphic fences of order
m× n.

In Figure 1 we show several fences, classified horizontally according to the parity of m and n,
and vertically according the symmetries within them.

On each of these graphs, the end-vertices of P 1
m and P n

m have been highlighted. Any of these
end-vertices can be placed in the lower left corner of the graphical representation of the graph.
Thus the graphs of type I are the only one that have four different representations. In Figure 2 we
show the four representations of a graph taken from Figure 1.

Graphs of type II only have two different representations because they are symmetric with
respect to a vertical axis passing through the center of the figure. The graphs of type III also have
two different representations, because they possess a symmetry that corresponds to a 180◦ rotation
around their center. Graphs of type IV are symmetric with respect to a horizontal axis passing by
the center of the figure, so they also have only two different representations. In Figure 3 we show
the different representations for these types of symmetric graphs. Since graphs of type V have all
the above symmetries, they have a unique representation.

As we mentioned before, the edges connecting consecutive copies of Pm are associated to a
binary string of lengthm, so it is natural to represent a fence of orderm×n as a 0-1 matrix of order
m× (n− 1), where the ith column of this matrix corresponds to the binary string that determines
the edges in between P i

m and P i+1
m . Thus, to count all the non-isomorphic fences of order m × n,

we count special types of 0-1 matrices of order m× (n− 1).
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Type I Type II Type III Type IV Type V

Figure 1. Different types of fences and their symmetries

For all 1 ≤ i ≤ m and 1 ≤ j ≤ n, let Z be the set of all 0-1 matrices of order m × (n − 1),
V be the subset of Z containing all the matrices V = (vi,j) such that vi,j = vi,n−j , that is, which
associated fence has the vertical symmetry (fence of type II), C be the subset of Z containing all
the matrices C = (ci,j) such that ci,j = cm+1−i,n−j , i.e., those matrices which associated fence has
the central symmetry (fence of type III), and H be the subset of Z containing all the matrices
H = (hi,j) such that hi,j = hm+1−i,j , in other terms, where the associated fence has the horizontal
symmetry (fence of type IV). In the following theorem we prove that the number of non-isomorphic
fences of order m× n is determined by the cardinalities of these sets.

Theorem 2.1. The number f(m,n) of non-isomorphic fences obtained from Pm × Pn is given by

f(m,n) =
1

4
(t+ v + c+ h),

where t, v, c, and h are the cardinalities of Z , V , C , and H , respectively.
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Figure 2. A fence with four representations

180◦ 180◦

Type II Type III Type IV

Figure 3. Fences with exactly two representations

Proof. Suppose that A is the set of all the matrices A = (ai,j) in Z such that ai,j = am+1−i,j and
ai,j = ai,n−j for all 1 ≤ i ≤ m and 1 ≤ j ≤ n. In other terms A = V ∩ C ∩H . Let a = |A |
and v′ = v − a, c′ = c − a, and h′ = h − a; then, v′ + c′ + h′ is the number of 0-1 matrices that
appear twice in Z . Thus, t− v′ − c′ − h′ − a is the number of matrices that appear four times in
Z . Hence, the number f(m,n) of non-isomorphic fences obtained from Pm × Pn is:

f(m,n) =
t− v′ − c′ − h′ − a

4
+
v′

2
+
c′

2
+
h′

2
+ a

=
t

4
− v′

4
− c′

4
− h′

4
− a

4
+
v′

2
+
c′

2
+
h′

2
+ a

=
t

4
+
v′

4
+
c′

4
+
h′

4
+

3a

4

=
1

4
(t+ v′ + a+ c′ + a+ h′ + a)

=
1

4
(t+ v + c+ h).

Now we use this equation to find a closed formula for f(m,n). Let T be a 0-1 matrix of order
m× (n− 1); each column of T is a binary string of length m. Since there are 2m different binary
strings of length m, there are (2m)n−1 different possible configurations for T , which implies that
|Z | = t = (2m)n−1.

Let V ∈ V , since for every 1 ≤ j ≤
⌊
n
2

⌋
, the jth and (n− j)th columns of V are identical, we

conclude that there are (2m)b
n
2 c different configurations for V ; in other terms |V | = v = (2m)b

n
2 c.

353



www.ejgta.org

Counting and Labeling Grid Related Graphs | Christian Barrientos and Sarah Minion

Let C ∈ C , then C is formed in such a way that for every 1 ≤ i ≤
⌊
n
2

⌋
, the ith column of C is

the reverse of its (n − i)th column. Note that when n is even and i = n
2
, we have that i = n − i,

this implies that the ith column of C is a symmetric binary string. Therefore, when n is even
|C | = c = (2m)

n−2
2 · 2b

m
2 c; when n is odd, c = (2m)

n−1
2 .

If H ∈ H , then H is formed in such a way that every column is a symmetric binary string.

Since there are 2b
m
2 c different symmetric binary strings, we conclude that |H | = h =

(
2b

m
2 c
)n−1

.
Therefore, we have a closed formula for f(m,n) and have proven the following theorem.

Theorem 2.2. For every m ≥ 2 and n ≥ 2, the number of non-isomorphic fences obtained from
Pm × Pn is:

(i) f(m,n) = 2m(n−1)−2 + 2
mn
2
−2 + 2

m(n−1)−2
2 when m is even and n is even,

(ii) f(m,n) = 2m(n−1)−2 + 3 · 2
m(n−1)−4

2 when m is even and n is odd,

(iii) f(m,n) = 2m(n−1)−2 + 2
mn
2
−2 + 2

m(n−1)−3
2 + 2

(m+1)(n−1)−4
2 when m is odd and n is even,

(iv) f(m,n) = 2m(n−1)−2 + 2
m(n−1)−2

2 + 2
(m+1)(n−1)−4

2 when m is odd and n is odd.

In Table 1 we show the first values of f(m,n) where both m and n are in {2, 3, . . . , 10}.

In Figure 4 we present an example, exhibiting all non-isomorphic fences obtained from P4 × P3.
The fences in brown and green correspond to matrices in V , the ones in brown and red to the
matrices in C , and the ones in brown and blue to the matrices in H ; the ones in brown have
matrices in A , exclusively.

2.2. The number of non-isomorphic rigid grids
Consider the paths Pm and Pn. A cell of Pm × Pn is any of the subgraphs induced by the

vertices vi,j , vi,j+1, vi+1,j+1, vi+1,j , where 1 ≤ i ≤ m − 1 and 1 ≤ j ≤ n − 1. A rigid grid is a
graph obtained from Pm × Pn in such a way that, on each cell, either vi,j is connected to vi+1,j+1

or vi+1,j is connected to vi,j+1. In Figure 5 we show the six non-isomorphic rigid grids obtained
from P3 × P3.

Let F be any fence constructed with n copies of Pm. We may construct a rigid grid on Pm ×
Pn+1 using the information contained in the binary strings associated with the fence F . If the
vertices vi,j and vi,j+1 are connected in F , in Pm × Pn+1 we connect the vertices vi,j and vi+1,j+1,
otherwise we connect the vertices vi+1,j and vi,j+1. Thus, there is a bijection between the set of all
fences associated to Pm×Pn and the set of all rigid grids associated to Pm×Pn+1. Therefore, the
number of rigid grids constructed on Pm×Pn+1 is the same that the number of fences constructed
with n copies of Pm. In Figure 6 we show an example of this bijection where the fence is built
with 5 copies of P6.

Theorem 2.3. The number of rigid grids constructed on Pm × Pn+1 is f(m,n).
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Table 1. Initial values of f(m,n)

m\n 2 3 4
2 3 7 24
3 6 24 168
4 10 76 1,120
5 20 288 8,640
6 36 1,072 66,816
7 72 4,224 529,920
8 136 16,576 4,212,736
9 272 66,048 33,632,256

10 528 262,912 268,713,984
m\n 5 6 7

2 76 288 1,072
3 1,120 8,640 66,816
4 16,576 263,680 4,197,376
5 263,680 8,407,040 268,517,376
6 4,197,376 268,517,376 17,180,065,792
7 67,133,440 8,590,786,560 1,099,516,870,656
8 1,073,790,976 274,882,625,536 70,368,756,760,576
9 17,180,262,400 8,796,137,062,400 4,503,599,962,914,820

10 274,878,693,376 281,475,261,923,328 288,230,376,957,018,000
m\n 8 9 10

2 4,224 16,576 66,048
3 529,920 4,212,736 33,632,256
4 67,133,440 1,073,790,976 17,180,262,400
5 8,590,786,560 274,882,625,536 8,796,137,062,400
6 1,099,516,870,656 70,368,756,760,576 2,251,799,981,457,410
7 140,737,630,961,664 18,014,399,717,441,500 2,305,843,036,057,240,000
8 18,014,399,717,441,500 4,611,686,021,648,610,000 1,180,591,621,026,650,000,000
9 2,305,843,036,057,240,000 1,180,591,621,026,650,000,000 604,462,909,825,457,000,000,000

10 295,147,905,471,411,000,000 302,231,454,904,482,000,000,000 309,485,009,821,644,000,000,000,000
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Figure 4. All non-isomorphic fences of order 4× 3

3. α-labeling of grid-like graphs

In this section we prove that any graph obtained from the grid Pm×Pn, by replacing some of its
edges by new edges, specifically chosen, is also an α-graph. Before showing this new construction
we present two, well-known, results about bipartite labelings of the path. The following result is
due to Rosa [13]. Suppose that v1, v2, . . . , vn are the consecutive vertices of Pn.

Proposition 1. For every n ≥ 1, the function given below is an α-labeling of Pn.

g(vj) =

{
(j − 1)/2, if j is odd;
n− j/2, if j is even.

Before the next proposition we need some more definitions. Let G be a bipartite graph of size
n with stable sets A and B. A bipartite labeling of G is an injection f : V (G)→ {0, 1, . . . , t} for
which there is an integer λ, named the boundary value of f , such that f(u) ≤ λ < f(v) for every
(u, v) ∈ A× B, that induces n different weights. The labeling g : V (G)→ {c, c + 1, . . . , c + t},
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Figure 5. All the non-isomorphic rigid grids obtained from P3 × P3

Figure 6. A fence and its associated rigid grid

defined for every v ∈ V (G) and c ∈ Z as g(v) = c+ f(v), is the shifting of f in c units. Note that
this labeling preserves the weights induced by f . Suppose that f is a α-labeling ofGwith boundary
value λ; the labeling h : V (G) → {0, 1, . . . , t + d − 1}, defined for every v ∈ V (G) and d ∈ Z+

as h(v) = f(v) if f(v) ≤ λ and h(v) = f(v) + d− 1 if f(v) > λ, is the d-graceful labeling of G
obtained from f . The labels used by h are in the set {0, 1, . . . , λ}∪{λ+d, λ+d+1, . . . , t+d−1}
and the set of induced weight is {d, d+ 1, . . . , t+ d− 1}.

Proposition 2. For every n ≥ 1, there exists a bipartite labeling of Pn where the set of induced
weights is {d, d+ 1, . . . , d+ n− 2}.

Proof. Let V (Pn) = {v1, v2, . . . , vn} andE(Pn) = {vjvj+1 : 1 ≤ j ≤ n−1}. Let f : V (Pn)→ N
defined as:

f(vj) =

{
k + (j − 1)/2, if j is odd;
d+ k + n− (j + 2)/2, if j is even.

Note that d + k + n − (j + 2)/2 = k + (d − 1) + n − j/2. Thus, f is a shifting in k units of
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the d-graceful labeling of Pn obtained from the α-labeling g in Proposition 1. Therefore, the set of
induced weights is {d, d+ 1, . . . , d+m− 2}.

Proposition 3. Let 2 ≤ j ≤ m− 2 and x ≤ min{j − 1,m− j − 1}. An α-graph is obtained when
the edge vjvj+1 of Pm is replaced by the edge vj−xvj+1+x.

Proof. Suppose that Pm has been labeled using the function f in Proposition 2.
If j is odd, then f(vj) = k + (j − 1)/2 and f(vj+1) = d + k +m − (j + 3)/2. So, the edge

vjvj+1 has weight f(vj+1)− f(vj) = d+ k +m− (j + 3)/2− k − (j − 1)/2 = dm − j − 1.
When x is even,

f(vj−x) = k + (j − x− 1)/2

= f(vj)− x/2

and

f(vj+1+x) = d+ k +m− (j + 1 + x+ 2)

= d+ k +m− (j + 3)− x/2
= f(vj+1)− x/2.

Thus,

f(vj+1+x)− f(vj−x) = f(vj+1)− x/2− f(vj) + x/2

= f(vj+1)− f(vj).

When x is odd,

f(vj−x) = d+ k +m− (j − x+ 2)/2

= f(vj+1) + (x+ 1)/2

and

f(vj+1+x) = k + (j + 1 + x− 1)/2

= k + (j − 1)/2 + (x+ 1)/2

= f(vj) + (x+ 1)/2.

Thus,

f(vj−x)− f(vj+1+x) = f(vj+1) + (x+ 1)/2− f(vj)− (x+ 1)/2

= f(vj+1)− f(vj).

If j is even, then f(vj) = d+ k +m− (j + 2)/2 and f(vj+1) = k + j/2. So, the edge vjvj+1 has
weight f(vj)− f(vj+1) = d+ k +m− (j + 2)/2− k − j/2 = d+m− j − 1.
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When x is even,

f(vj−x) = d+ k +m− (j − x+ 2)/2

= d+ k +m− (j + 2) + x/2

= f(vj) + x/2

and

f(vj+1+x) = k + (j + 1− x− 1)/2

= k + j/2 + x/2

= f(vj+1) + x/2.

Hence,

f(vj−x)− f(vj+1+x) = f(vj) + x/2− f(vj+1)− x/2
= f(vj)− f(vj+1).

When x is odd,

f(vj−x) = k + (j − x− 1)/2

= f(vj+1)

= (x+ 1)/2

and

f(vj+1+x) = d+ k +m− (j + 1 + x+ 2)

= f(vj)− (x+ 1)/2.

Thus,

f(vj+1+x)− f(vj−x) = f(vj)− (x+ 1)/2− f(vj+1) + (x+ 1)/2

= f(vj)− f(vj+1).

Therefore, independently of the parity of j and x, the edges vjvj+1 and vj−xvj+1+x have the same
weight. Whence, if the edge vjvj+1 of Pm is replaced by the new edge vj−xvj+1+x, the emerging
graph is an α-graph.

Now we turn our attention to the grid Pm×Pn and an α-labeling of it. The gridG = Pm×Pn is a
bipartite graph of ordermn and size 2mn−(m+n). If V (G) = {vi,j : 1 ≤ i ≤ m and 1 ≤ j ≤ n},
then E(G) = {vi,jvi,j+1 : 1 ≤ i ≤ m and 1 ≤ j ≤ n− 1} ∪ {vi,jvi+1,j : 1 ≤ i ≤ m− 1 and 1 ≤
j ≤ n}.

Jungreis and Reid [10] proved that G is an α-graph for all the positive integers m and n. We
show below an α-labeling of G.
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f(vi,j) =


(2n− 1)(i− 1)/2 + (j − 1)/2, i odd and j odd;
(2n− 1)(2m− 1− i)/2 + (n− 1)− (j − 1)/2, i odd and j even;
(2n− 1)(2m− i)/2 + (j − 1)/2, i even and j odd;
(2n− 1)i/2− (n− 1) + (j − 1)/2, i even and j even.

Note that when i is odd (even), the sequence of consecutive integers formed by the labels f(vi,j)
is increasing for the odd (even) values of j and decreasing for the even (odd) values. That is, the
labeling of the ith copy of Pm in G follows the same pattern than the labelings in propositions 2
and 3. That means that on any number of copies of Pm in G and for multiple values of j, the edge
vi,jvi,j+1 can be replaced by the edge vi,j−xvj+1+x and the resulting graph is an α-graph.

The process of replacing in G the edge vi,jvi,j+1 by the new edge vi,j−xvi,j+1+x is called an
elementary transformation. A graph H is said to be a grid-like graph if it is obtained from G via
a sequence of elementary transformations. We claim that if H is a grid-like graph, then H is an
α-graph.

Theorem 3.1. If H is a grid-like graph, then H is an α-graph.

Proof. Suppose H is a grid-like graph obtained from G = Pm×Pn. For any edge vi,j−xvi,j+1+x in
H , there exists an edge vi,jvi,j+1 in the ith copy of Pm in G. Since we can match every edge of H
with an edge ofG and the function f described before is an α-labeling ofG, we have an α-labeling
of H .

In Figure 7 we show the α-labelings of all the graphs H obtained from P5 × P2.
This theorem can be used to prove the following corollaries and to find, eventually, α-labelings

for many other families of graphs in an easy way.

9 5 8 6 7

0 13 1 12 2

9 5 8 6 7

0 13 1 12 2

9 5 8 6 7

0 13 1 12 2

9 5 8 6 7

0 13 1 12 2

9 5 8 6 7

0 13 1 12 2

9 5 8 6 7

0 13 1 12 2

9 5 8 6 7

0 13 1 12 2

Figure 7. α-labeling of grid-like graphs.

Corollary 1. For positive integers t and n, C4t × Pn ∪ Pn is an α-graph.

360



www.ejgta.org

Counting and Labeling Grid Related Graphs | Christian Barrientos and Sarah Minion

Proof. We need to prove that C4t can be obtained from P4t+1 via a sequence of elementary trans-
formations. Thus, suppose that v1, v2, . . . , v4t+1 are the consecutive vertices of P4t+1. The edge
v2t+1v2t+2 is replaced with v2v4t+1. For every j ∈ {1, 2, . . . , t}, the edge v2jv2j+1 is replaced with
v2j−1v2j+2. Note that in the first transformation x = 2t − 1 and in all the remaining ones, x = 1.
Moreover, both extreme vertices of P4t+1 have now degree 2. In order to see that the resulting
graph is actually C4t+1 ∪ P1 we must observe that now v1, v4, v3, v6, v5, v8, v7, . . . , v2t−1, v2t+2 are
consecutive vertices. This implies that every vertex has degree 2 except v2t+1 that has degree 0.
Since the edges v2t+2v2t+3, v2t+3v2t+4, . . . , v4tv4t+1 have not been touched, and v2t+2 is connected
to v2t−1 as well as v2 is connected to v4t+1, we can see that our claim is true. Therefore, if these
transformations are applied to every copy of P4t+1 within P4t+1×Pn, the resulting graph is in fact
C4t × Pn ∪ Pn.

In Figure 8 we show an example of this result for t = 3 and n = 4.

50 38 49 39 48 40 47 41 46 42 45 43 44

25 62 26 61 27 60 28 59 29 58 30 57 31

75 13 74 14 73 15 72 16 71 17 70 18 69

0 87 1 86 2 85 3 84 4 83 5 82 6

Figure 8. α-labeling of C13 × P4 ∪ P4

30 26

23 28

2724

15 3437 17

1836

45 1181 43

429

0 49

52 2

351

29

16

44

1

25

35

10

10

Figure 9. α-labeling of C6 × P4 ∪ P2 × P4
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Corollary 2. For every t ≥ 2 and n ≥ 1, the graph C2t × Pn ∪ Pt−1 × Pn is an α-graph.

Proof. Let t ≥ 2 be an integer. Suppose that v1, v2, . . . , v3t−1 are the consecutive vertices of P3t−1
and that they have been labeled using Proposition 1, in such a way that v1 receives the label 0.
If for every 2 ≤ i ≤ 3t − 3, the edge vivi+1 is replaced by the edge vi−1vi+2, then the paths
〈v1, v4, . . . , v3t−2〉, 〈v2, v5, . . . , v3t−1〉, and 〈v3, v6, . . . , v3t−3〉 are mutually disjoint.

Considering that the edges v2v3 and v3t−3v3t−2 have been replaced, the vertices v3 and v3t−3
have now degree one. In addition, the edges v1v2 and v3t−2v3t−1 have not been replaced, which im-
plies that all the vertices, except v3 and v3t−3, have degree two and the graph induced by the vertices
in {vi : i 6≡ 0(mod 3)} is a cycle of length 2t with consecutive vertices v1, v4, . . . , v3t−2, v3t−1, . . . ,
v5, v2, v1.

Since the α-labeling of P3t−1 has not been affected by these substitutions, the resulting graph,
C2t∪Pt−1 is an α-graph. When the same substitutions are made on each copy of P3t−1 in P3t−1×Pn,
we obtain an α-labeling of the graph C2t × Pn ∪ Pt−1 × Pn.

In Figure 9 we show an example of this construction for the case t = 3 and n = 4.
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