

Electronic Journal of Graph Theory and Applications

C_4 -decomposition of the tensor product of complete graphs

Opeyemi Oyewumi^a, Abolape Deborah Akwu^b

^aDepartment of Mathematics, Air Force Institute of Technology, Kaduna, Nigeria ^bDepartment of Mathematics, Federal University of Agriculture, Makurdi, Nigeria

opeyemioluwaoyewumi@gmail.com, abolaopeyemi@yahoo.co.uk

Abstract

Let G be a simple and finite graph. A graph is said to be *decomposed* into subgraphs H_1 and H_2 which is denoted by $G = H_1 \oplus H_2$, if G is the edge disjoint union of H_1 and H_2 . If $G = H_1 \oplus H_2 \oplus H_3 \oplus \cdots \oplus H_k$, where $H_1, H_2, H_3, ..., H_k$ are all isomorphic to H, then G is said to be H-decomposable. Futhermore, if H is a cycle of length m then we say that G is C_m -decomposable and this can be written as $C_m|G$. Where $G \times H$ denotes the tensor product of graphs G and H, in this paper, we prove the necessary and sufficient conditions for the existence of C_4 -decomposition of $K_m \times K_n$. Using these conditions it can be shown that every even regular complete multipartite graph G is C_4 -decomposable if the number of edges of G is divisible by 4.

Keywords: cycle decomposition, tensor product, complete graph Mathematics Subject Classification: 05C70 DOI: 10.5614/ejgta.2020.8.1.2

1. Introduction

Let C_m , K_m and $K_m - I$ denote cycle of length m, complete graph on m vertices and complete graph on m vertices minus a 1-factor respectively. By an m-cycle we mean a cycle of length m. Let $K_{n,n}$ denote the complete bipartite graph with n vertices in each bipartition set and $K_{n,n} - I$ denote $K_{n,n}$, with a 1-factor removed. All graphs considered in this paper are simple and finite. A graph is said to be *decomposed* into subgraphs H_1 and H_2 which is denoted by $G = H_1 \oplus H_2$, if

Received: 7 February 2019, Revised: 25 May 2019, Accepted: 14 June 2019.

G is the edge disjoint union of H_1 and H_2 . If $G = H_1 \oplus H_2 \oplus \cdots \oplus H_k$, where $H_1, H_2, ..., H_k$ are all isomorphic to *H*, then *G* is said to be *H*-decomposable. Furthermore, if *H* is a cycle of length *m* then we say that *G* is C_m -decomposable and this can be written as $C_m|G$. A *k*-factor of *G* is a *k*-regular spanning subgraph. A *k*-factorization of a graph *G* is a partition of the edge set of *G* into *k*-factors. A C_k -factor of a graph is a 2-factor in which each component is a cycle of length *k*. A *resolvable k*-cycle decomposition (for short *k*-RCD) of *G* denoted by $C_k||G$, is a 2-factorization of *G* in which each 2-factor is a C_k -factor.

For two graphs G and H their tensor product $G \times H$ has vertex set $V(G) \times V(H)$ in which two vertices (g_1, h_1) and (g_2, h_2) are adjacent whenever $g_1g_2 \in E(G)$ and $h_1h_2 \in E(H)$. From this, note that the tensor product of graphs is distributive over edge disjoint union of graphs, that is if $G = H_1 \oplus H_2 \oplus \cdots \oplus H_k$, then $G \times H = (H_1 \times H) \oplus (H_2 \times H) \oplus \cdots \oplus (H_k \times H)$. Now, for $h \in V(H), V(G) \times h = \{(v, h) | v \in V(G)\}$ is called a *column* of vertices of $G \times H$ corresponding to h. Further, for $y \in V(G), y \times V(H) = \{(y, v) | v \in V(H)\}$ is called a *layer* of vertices of $G \times H$ corresponding to y. It is true that $K_m \times K_2$ is isomorphic to the complete bipartite graph $K_{m,m}$ with the edges of a perfect matching removed, i.e. $K_m \times K_2 \cong K_{m,m} - I$, where I is a 1-factor of $K_{m,m}$.

The lexicographic product G * H of two graphs G and H is the graph having the vertex set $V(G) \times V(H)$, in which two vertices (g_1, h_1) and (g_2, h_2) are adjacent if either $g_1, g_2 \in E(G)$; or $g_1 = g_2$ and $h_1, h_2 \in E(H)$.

For very recent works on decomposition of graphs, see [6, 8]. The problem of finding C_k decomposition of K_{2n+1} or $K_{2n} - I$ where I is a 1-factor of K_{2n} , is completely settled by Alspach, Gavlas and Šajna in two different papers (see [2, 17]). A generalization to the above complete graph decomposition problem is to find a C_k -decomposition of $K_m * \overline{K}_n$, which is the complete m-partite graph in which each partite set has n vertices. The study of cycle decompositions of $K_m * \overline{K}_n$ was initiated by Hoffman et al. [7]. In the case when p is a prime, the necessary and sufficient conditions for the existence of C_p -decomposition of $K_m * \overline{K}_n$, $p \ge 5$ is obtained by Manikandan and Paulraja in [11, 12, 14]. Billington [3] has studied the decomposition of complete tripartite graphs into cycles of length 3 and 4. Furthermore, Cavenagh and Billington [5] have studied 4-cycle, 6-cycle and 8-cycle decomposition of complete multipartite graphs. Billington et al. [4] have solved the problem of decomposing $(K_m * \overline{K}_n)$ into 5-cycles. Similarly, when $p \geq 3$ is a prime, the necessary and sufficient conditions for the existence of C_{2p} -decomposition of $K_m * \overline{K}_n$ is obtained by Smith (see [19]). For a prime $p \ge 3$, it was proved in [20] that C_{3p} decomposition of $K_m * \overline{K}_n$ exists if the obvious necessary conditions are satisfied. As the graph $K_m \times K_n \cong K_m * \overline{K}_n - E(nK_m)$ is a proper regular spanning subgraph of $K_m * \overline{K}_n$. It is therefore natural to think about the cycle decomposition of $K_m \times K_n$.

The results in [11, 12, 14] also gives the necessary and sufficient conditions for the existence of a *p*-cycle decomposition, (where $p \ge 5$ is a prime number) of the graph $K_m \times K_n$. In [13] it was shown that the tensor product of two regular complete multipartite graph is Hamilton cycle decomposable. Muthusamy and Paulraja in [15] proved the existence of C_{kn} -factorization of the graph $C_k \times K_{mn}$, where $mn \ne 2 \pmod{4}$ and k is odd. Paulraja and Kumar [16] showed that the necessary conditions for the existence of a resolvable k-cycle decomposition of tensor product of complete graphs are sufficient when k is even. In a recent work by the present authors, it was proven that the necessary and sufficient conditions for the decomposition of the graph $K_m \times K_n$ into cycles of length six is that $m \text{ or } n \equiv 1 \text{ or } 3 \pmod{6}$ (see [1]). In this paper, we prove the necessary and sufficient conditions for $K_m \times K_n$, where $m, n \geq 2$, to have a C_4 -decomposition. Among other results, here we prove the following main result.

Theorem 1.1. For $m, n \geq 2$, $C_4 | K_m \times K_n$ if and only if either

1. $n \equiv 0 \pmod{4}$ and m is odd,

2. $m \equiv 0 \pmod{4}$ and n is odd or

3. $m \text{ or } n \equiv 1 \pmod{4}$

Let ρ be a permutation of the vertex set V of a graph G. For any subset U of V, ρ acts as a function from U to V by considering the restriction of ρ to U. If H is a subgraph of G with vertex set U, then $\rho(H)$ is a subgraph of G provided that for each edge $xy \in E(H)$, $\rho(x)\rho(y) \in E(G)$. In this case, $\rho(H)$ has vertex set $\rho(U)$ and edge set $\{\rho(x)\rho(y) : xy \in E(H)\}$.

Next, we give some existing results on cycle decomposition of complete graphs.

Theorem 1.2. [9] Let m be an odd integer and $m \ge 3$. If $m \equiv 1$ or $3 \pmod{6}$ then $C_3|K_m$.

Theorem 1.3. [17] Let n be an odd integer and m be an even integer with $3 \le m \le n$. The graph K_n can be decomposed into cycles of length m whenever m divides the number of edges in K_n .

Now we have the following lemma, this lemma gives the cycle decomposition of the complete graph K_m into cycles of length 3 and 4.

Lemma 1.1. For $m \equiv 5 \pmod{6}$, there exist positive integers p and q such that K_m is decomposable into p 3-cycles and q 4-cycles.

Proof. Let the vertices of K_m be 0, 1, ..., m-1. The 4-cycles are (i, i+1+2s, i-1, i+2+2s), s = 0, 1, ..., (m-i)/2 - 2, i = 1, 3, ..., m-4. The 3-cycles are (m-1, i-1, i), i = 1, 3, ..., m-2. Hence the proof.

The following theorem is on the complete bipartite graph minus a 1-factor, it was obtained by Ma et. al [10].

Theorem 1.4. [10] Let m and n be positive integers. Then there exist an m cycle system of $K_{n,n}-I$ if and only if $n \equiv 1 \pmod{2}$, $m \equiv 0 \pmod{2}$, $4 \le m \le 2n$ and $n(n-1) \equiv 0 \pmod{m}$.

From the theorem above we have the following corollary.

Corollary 1.1. The graph $K_{n,n} - I$, where I is a 1-factor of $K_{n,n} - I$ admits a C_4 decomposition if and only if $n \equiv 1 \pmod{4}$.

The following result is on the complete bipartite graphs.

Theorem 1.5. [18] The complete bipartite graph $K_{a,b}$ can be decomposed into cycles of length 2k if and only if a and b are even, $a \ge k$, $b \ge k$ and 2k divides ab.

2. C_4 Decomposition of $C_m \times K_n$

We begin this section with the following lemma.

Lemma 2.1. $C_4 | C_3 \times K_4$.

Proof. Following from the definition of the tensor product of graphs, let $U^1 = \{u_1, v_1, w_1\}, U^2 = \{u_2, v_2, w_2\}, ..., U^4 = \{u_4, v_4, w_4\}$ form the partite sets of vertices in the product $C_3 \times K_4$. For $1 \le i, j \le 4$, surely $U^i \cup U^j, i \ne j$ induces a $K_{3,3} - I$, where I is a 1-factor of $K_{3,3}$. A C_4 decomposition of $C_3 \times K_4$ is given below: $\{u_1, v_4, u_2, w_3\}, \{u_1, v_3, u_4, w_2\}, \{u_1, v_2, u_3, w_4\}, \{u_2, v_3, w_2, v_1\}, \{u_3, v_1, w_3, v_4\}, \{u_2, w_1, v_3, w_4\}, \{u_3, w_2, v_4, w_1\}, \{u_4, v_1, w_4, v_2\}$ and $\{u_4, w_1, v_2, w_3\}$

Next, we have the following lemma which follows from Lemma 2.1.

Lemma 2.2. $C_4 | C_3 \times K_5$.

Proof. Suppose we fix the 4-cycles already given in Lemma 2.1, clearly the graph which remains after removing the edges of $C_3 \times K_4$ from $C_3 \times K_5$ can be decomposed into 3 copies of $K_{2,4}$. Now, by Theorem 1.5 the graph $K_{2,4}$ can be decomposed into cycles of length 4. Hence $C_4 | C_3 \times K_5$. \Box

The following theorem is an extension of Lemma 2.1 and Lemma 2.2.

Theorem 2.1. $C_4 | C_3 \times K_n$ if and only if $n \equiv 0$ or $1 \pmod{4}$.

Proof. Suppose that $C_4|C_3 \times K_n$. The graph $C_3 \times K_n$ has 3n(n-1) edges. For $C_4|C_3 \times K_n$ it implies that $n(n-1) \equiv 0 \pmod{4}$. Hence $n \equiv 0 \text{ or } 1 \pmod{4}$.

Following the definition of tensor product of graphs, let $U^1 = \{u_1, v_1, w_1\}, U^2 = \{u_2, v_2, w_2\},..., U^n = \{u_n, v_n, w_n\}$ form the partite sets of vertices in the product $C_3 \times K_n$. For $1 \le i, j \le n$, surely $U^i \cup U^j, i \ne j$ induces a $K_{3,3} - I$, where I is a 1-factor of $K_{3,3}$.

Next, we prove the sufficiency in two cases.

Case 1. Whenever $n \equiv 0 \pmod{4}$. Let n = 4t where $t \ge 1$.

Next we note that $C_3 \times K_n \cong (C_3 \times K_4) + (C_3 \times K_4) + (C_3 \times K_4) + \dots + (C_3 \times K_4) + H^*$, H^* is the graph containing the edges of $C_3 \times K_n$ which are not covered by these t copies of $C_3 \times K_4$. By Lemma 2.1 the product $C_3 \times K_4$ admits a C_4 -decomposition.

Furthermore, we define the set $U = \{u^1, u^2, ..., u^p\}, V = \{v^1, v^2, ..., v^p\}$ and $W = \{w^1, w^2, ..., w^p\}$ where p = n/4 and for j = 1, 2, ..., p, $u^j = \{u_i | 4j - 3 \le i \le 4j\}, v^j = \{v_i | 4j - 3 \le i \le 4j\}$ and $w^j = \{w_i | 4j - 3 \le i \le 4j\}$.

Now, H^* is decomposable into graphs isomorphic to $K_{4,4n-4}$. Indeed, the $K_{4,4n-4}$ graphs in the decomposition of H^* are induced by $(u^i \cup v^1 \cup v^2 \cup \cdots \cup v^p) \setminus v^i$, $(u^i \cup w^1 \cup w^2 \cup \cdots \cup w^p) \setminus w^i$ and $(v^i \cup w^1 \cup w^2 \cup \cdots \cup w^p) \setminus w^i$, i = 1, 2, ..., p. By Theorem 1.5 $C_4 | K_{4,4n-4}$. Therefore we have decomposed $C_3 \times K_n$ into 4-cycles when $n \equiv 0 \pmod{4}$.

Case 2. Whenever $n \equiv 1 \pmod{4}$. Let n = 4t + 1 where $t \ge 1$.

By removing U^1 , we obtain a copy of $C_3 \times K_{n-1}$, so we may apply Case 1. The remaining structure can be decomposed into $3K_{2,4t}$ and by Theorem 1.5 $C_4|K_{2,4t}$. Therefore $C_4|C_3 \times K_n$ when $n \equiv 1 \pmod{4}$.

Next, we establish the following lemma.

Lemma 2.3. For all $n \geq 3$, $C_4 | C_4 \times K_n$.

Proof. From the definition of tensor product of graphs, let $U^1 = \{u_1, v_1, w_1, x_1\}, U^2 = \{u_2, v_2, w_2, x_2\}, \dots, U^n = \{u_n, v_n, w_n, x_n\}$ form the partite sets of vertices in the product $C_4 \times K_n$. Also, for $1 \le i, j \le n$ and $i \ne j, U^i \cup U^j$ induces $K_{4,4} - 2I$, where I is a 1-factor of $K_{4,4}$. Now, each set $U^i \cup U^j$ is isomorphic to $K_{4,4} - 2I$. But $K_{4,4} - 2I$ admits a 4-cycle decomposition. Hence the proof.

Furthermore, we quote the following result on decomposition of the tensor product of graphs into cycles of odd length.

Lemma 2.4. [12] For $k \ge 1$ and $m \ge 3$, $C_{2k+1}|C_{2k+1} \times K_m$

The next lemma is an extension of Lemma 2.3 and Lemma 2.4.

Lemma 2.5. For $m \ge 3$ and $n \ge 2$, $C_m | C_m \times K_n$

Proof. We shall split the proof of this lemma into two cases.

Case 1.When m = 2k + 1, $k \ge 1$ The proof of this case is immediate from Lemma 2.4.

Case 2.When $m = 2k, k \ge 2$

Following from the definition of tensor product of graphs, let $U_1 = \{u_1^1, u_1^2, u_1^3, ..., u_1^m\}$, $U_2 = \{u_2^1, u_2^2, u_2^3, ..., u_2^m\}$,..., $U_n = \{u_n^1, u_n^2, u_n^3, ..., u_n^m\}$ form the partite sets of vertices in the product $C_m \times K_n$. Now, for $1 \le i, j \le n$ and $i \ne j$, the subgraph induced by $U_i \cup U_j$ is isomorphic to $K_{m,m} - (m-2)I$, where I is a 1-factor of $K_{m,m}$. But $K_{m,m} - (m-2)I$ admits an m-cycle decomposition. Hence the proof.

3. Proof of the Main Theorem

Proof of Theorem 1.1. Assume that $C_4|K_m \times K_n$, for some m and n with $2 \le m, n$. Then every vertex of $K_m \times K_n$ has even degree and 4 divides the number of edges of $K_m \times K_n$. These two conditions translates to (m-1)(n-1) being even and 8|mn(m-1)(n-1) respectively. Hence by the first fact, m or n has to be odd, i.e. has to be congruent to 1 or 3 or 5 (mod 6). The second condition is satisfied precisely when one of the following holds.

1. $n \equiv 0 \pmod{4}$ and m is odd,

- 2. $m \equiv 0 \pmod{4}$ and n is odd, or
- 3. $m \text{ or } n \equiv 1 \pmod{4}$.

Next we proceed to prove the sufficiency in two cases.

Case 1. Since the tensor product is commutative, we may assume that m is odd and so $m \equiv 1 \text{ or } 3 \text{ or } 5 \pmod{6}$. Suppose that $n \equiv 0 \pmod{4}$.

Subcase 1. Let $m \equiv 1 \text{ or } 3 \pmod{6}$

Now since $m \equiv 1$ or 3 (mod 6) it implies that by Theorem 1.2 $C_3|K_m$. Therefore, the graph $K_m \times K_n = ((C_3 \times K_n) \oplus \cdots \oplus (C_3 \times K_n))$. But $n \equiv 0 \pmod{4}$ therefore by Theorem 2.1 we have that $C_4|C_3 \times K_n$. Hence $C_4|K_m \times K_n$.

Subcase 2. Let $m \equiv 5 \pmod{6}$

By Lemma 1.1, there exist positive integers p and q such that K_m is decomposable into p 3-cycles and q 4-cycles. Hence $K_m \times K_n$ has a decomposition into p copies of $C_3 \times K_n$ and q copies of $C_4 \times K_n$. By Theorem 2.1 $C_4 | C_3 \times K_n$ and also Lemma 2.3 shows that $C_4 | C_4 \times K_n$. Hence $C_4 | K_m \times K_n$.

Case 2. By commutativity of the tensor product we assume that $m \equiv 1 \pmod{4}$. The graph $K_m \times K_n = ((K_m \times K_2) \oplus \cdots \oplus (K_m \times K_2))$. Since $m \equiv 1 \pmod{4}$, by Corollary 1.1, $C_4 | K_{m,m} - I$, and $K_m \times K_2 \cong K_{m,m} - I$. Hence $C_4 | K_m \times K_n$. This completes the proof. \Box

Lastly, we draw our conclusion by the following remark.

Remark 3.1. The product $K_m \times K_n$ can also be viewed as an even regular complete multipartite graph. So by the conditions given in Theorem 1.1 we have that every even regular complete multipartite graph G is C_4 -decomposable if the number of edges of G is divisible by 4.

Acknowledgement

The authors are grateful to the anonymous referees for their helpful comments to improve the paper.

References

- [1] A. D. Akwu and O. Oyewumi, C_6 decomposition of the tensor product of complete graphs, *J. Combin. Math. Combin.Comput.*, In Press.
- [2] B. Alspach and H. Gavlas, Cycle decompositions of K_n and $K_n I$, J. Combin. Theory Ser. B 81 (2001), 77–99.
- [3] E.J. Billington, Decomposing complete tripartite graphs into cycles of length 3 and 4, *Discrete Math.* **197/198** (1999), 123–135.
- [4] E.J. Billington, D.G. Hoffman and B.M. Maenhaut, Group divisible pentagon systems, *Util. Math.* 55 (1999), 211–219.
- [5] N.J. Cavenagh and E.J. Billington, Decompositions of complete multipartite graphs into cycles of even length, *Graphs Combin.* **16** (2000), 49–65.

- [6] J. Fahnenstiel and D. Froncek, Decomposition of complete graphs into connected unicyclic bipartite graphs with eight edges, *Electron. J. Graph Theory Appl.* **7**(2)(2019), 235–250.
- [7] D. G. Hoffman, C. C. Linder and C. A. Rodger, On the construction of odd cycle systems, *J. Graph Theory* **13** (1989), 417–426.
- [8] I. Heinrich and M. Streicher, Cycle decompositions and constructive characterizations, *Electron. J. Graph Theory Appl.* **7**(2)(2019), 411–428.
- [9] T.P. Kirkman, On a problem in combinations, *Cambridge and Dublin Math. J.* 2 (1847), 191–204.
- [10] J. Ma, L. Pu and H. Shen, Cycle decomposition of $K_{n,n} I$, SIAM J. Discrete Math. 20 (2006), 603–609.
- [11] R.S. Manikandan and P. Paulraja, C_p -decompositions of some regular graphs, *Discrete Math.* **306** (2006), 429–451.
- [12] R.S. Manikandan and P. Paulraja, C₅-decompositions of the tensor product of complete graphs, Australas. J. Combin. 37 (2007), 285–293.
- [13] R.S. Manikandan and P. Paulraja, Hamilton cycle decompositions of the tensor product of complete multipartite graphs, *Discrete Math.* **308** (2008), 3586–3606.
- [14] R.S. Manikandan and P. Paulraja, C₇-decompositions of the tensor product of complete graphs, *Discuss. Math. Graph Theory* **37** (2017), 523–535.
- [15] A. Muthusamy and P. Paulraja, Factorizations of product graphs into cycles of uniform length, *Graphs Combin.* 11 (1995), 69–90.
- [16] P. Paulraja and S. S. Kumar, Resolvable even cycle decompositions of the tensor product of complete graphs. *Discrete Math.* **311** (2011), 1841–1850.
- [17] M. Šajna, Cycle decompositions III: complete graphs and fixed length cycles, J. Combin. Designs 10 (2002), 27–78.
- [18] D. Sotteau, Decomposition of $K_{m,n}(K_{m,n}^*)$ into cycles (circuits) of length 2k, J. Combin. Theory (Series B), **30** (1981), 75–81.
- [19] B. R. Smith, Decomposing complete equipartite graphs into cycles of length 2p, J. Combin. Des. 16 (2006), 244–252.
- [20] B. R. Smith, Complete equipartite 3p-cycle systems, Australas J. Combin. 45 (2009), 125–138.