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Abstract

Let GG be a connected plane graph with vertex set V' and edge set E. For X € {V, E,V U E}, two
elements of X are facially adjacent in G if they are incident elements, adjacent vertices, or facially
adjacent edges (edges that are consecutive on the boundary walk of a face of GG). A coloring of GG is
facial with respect to X if there is a coloring of elements of X such that facially adjacent elements
of X receive different colors. A facial coloring of GG is odd if for every face f and every color c,
either no element or an odd number of elements incident with f is colored by c. In this paper we
investigate odd facial colorings of trees. The main results of this paper are the following: (i) Every
tree admits an odd facial vertex-coloring with at most 4 colors; (ii) Only one tree needs 6 colors,
the other trees admit an odd facial edge-coloring with at most 5 colors; and (iii) Every tree admits
an odd facial total-coloring with at most 5 colors. Moreover, all these bounds are tight.
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1. Introduction and Notations

All graphs considered in this paper are simple connected plane graphs provided that it is not
stated otherwise. We use standard graph theory terminology according to [2]. However, the most
frequent notions of the paper are defined through it. A plane graph is a particular drawing of a
planar graph in the Euclidean plane such that no edges intersect except at their endvertices. Let
G be a connected plane graph with vertex set V' ((G), edge set F(G), and face set F'(G). The
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boundary of a face f is the boundary in the usual topological sense. It is the collection of all edges
and vertices contained in the closure of f that can be organized into a closed walk in G traversing
along a simple closed curve lying just inside the face f. This closed walk is unique up to the
choice of the initial vertex and the direction, and is called the boundary walk of the face f (see [8],
p. 101).

Two vertices (two edges) are adjacent if they are connected by an edge (have a common end-
vertex). A vertex and an edge are incident if the vertex is an endvertex of the edge. A vertex (or
an edge) and a face are incident if the vertex (or the edge) lies on the boundary of the face. Two
edges of a plane graph G are facially adjacent if they are consecutive on the boundary walk of a
face of G.

An edge-, vertex-, total-coloring of GG is an assignment of colors to the edges, vertices, edges
and vertices of (G, respectively, one color to each element. An edge-coloring (vertex-coloring) c of
a graph G is proper if for any two adjacent edges (vertices) x; and x5 of G, ¢(x1) # ¢(x2) holds.

A facial edge-coloring c of a plane graph G is an edge-coloring such that for any two facially
adjacent edges e; and e; of G, ¢(e1) # c(eq) holds. Observe that this coloring need not to be proper
in a usual sense. We require only that facially adjacent edges must receive different colors. On the
other hand proper edge-coloring and facial edge-coloring coincide in the class of subcubic plane
graphs. Facial edge-coloring was first studied for the family of cubic bridgeless plane graphs and
for the family of plane triangulations. Already Tait [13] observed that the Four Color Problem is
equivalent to the problem of facial 3-edge-coloring of any plane triangulation and to the problem
of facial 3-edge-coloring of cubic bridgeless plane graphs (see e.g. [12]).

The concept of facial total-coloring of plane graphs was introduced by Fabrici, Jendrol’, and
Vrbjarova [6]. A facial total-coloring of a plane graph G is a coloring of the vertices and edges such
that no facially adjacent edges, no adjacent vertices, and no edge and its endvertices are assigned
the same color.

An odd facial vertex-coloring of a plane graph is a proper vertex-coloring such that for every
face f and every color c, either no vertex or an odd number of vertices incident with f is colored
by c. In [5] it was proved that every 2-connected plane graph admits an odd facial vertex-coloring
with at most 118 colors. The bound 118 was improved to 97 by Kaiser et al. [9]. Czap [3] proved
that any 2-connected outerplane graph has an odd facial vertex-coloring with at most 12 colors,
moreover, if a 2-connected outerplane graph is bipartite, then 8 colors suffice. He presented an
outerplane graph on 10 vertices which require 10 colors for such a coloring. Wang, Finbow, and
Wang [14] proved that only two 2-connected outerplane graphs need 10 colors, the other outerplane
graphs admit an odd facial vertex-coloring with at most 9 colors.

An odd facial edge-coloring of a plane graph is a facial edge-coloring such that for every face
f and every color ¢, either no edge or an odd number of edges incident with f is colored by c.
Czap et al. [4] proved that every 2-edge-connected plane graph G has an odd facial edge-coloring
with at most 20 colors, this bound was later improved to 16 by LuZar and Skrekovski [11]. In the
case when G is a 3-edge-connected (resp. 4-edge-connected) plane graph, then 12 (resp. 9) colors
are sufficient, see [4]. In [1] it is proved that every 2-edge-connected outerplane graph admits an
odd facial 9-edge-coloring with one exception.

In this paper we introduce the concept of odd facial total-coloring of plane graphs, which
strengthens the requirement for the facial total-coloring. An odd facial total-coloring of a plane

348



0dd facial colorings of acyclic plane graphs | J. Czap and P. Sugerek

graph is a facial total-coloring such that for every face f and every color ¢, either no element or an
odd number of elements incident with f is colored by c.

The main results of this paper are the following: (i) Every tree admits an odd facial vertex-
coloring with at most 4 colors; (ii) Only one tree needs 6 colors, the other trees admit an odd facial
edge-coloring with at most 5 colors; and (ii1) Every tree admits an odd facial total-coloring with at
most 5 colors. Moreover, all these bounds are tight.

2. Odd facial colorings of trees

A set is odd if it has an odd number of elements, otherwise it is even. Vertices of degree one
are leaves. An edge incident to a leaf is a pendant edge.

2.1. Odd facial vertex-coloring of trees

A set of vertices is called independent, if no two of its members are adjacent. The vertex set of
every tree 1" on at least two vertices can be decomposed into two independent sets, called partite
sets.

Let x,(G) denote the minimum number of colors required in an odd facial vertex-coloring of a
plane graph G.

Theorem 2.1. Let T" be a tree on at least two vertices. Then
(i) xo(T) =2 if and only if both partite sets of T are odd,
(ii) xo(T) = 3 if and only if one partite set of T is odd,
(iii) xo(T) =4 if and only if no partite set of T is odd.

Proof. (i) Clearly, if a partite set of 7" is even, then no proper 2-vertex-coloring is an odd facial
vertex-coloring. Consequently, x,(7") = 2 implies that both partite sets of 7" are odd. On the other
hand, if both partite sets of 7" are odd, then trivially x,(7T") = 2.

(ii) If x,(7T") = 3, then T" has an odd number of vertices, hence exactly one partite set is odd.
On the other hand, if one partite set of 7" is odd, then by (i) x,(7") > 3. If we color the vertices of
T in the odd partite set with color 1, color one vertex from the even partite set with color 2, and
color all other vertices with color 3, we obtain an odd facial 3-vertex-coloring of 7.

(iii) If x,(7") = 4, then T has an even number of vertices. From (i) it follows that both partite
sets are even. On the other hand, if both partite sets are even, then x,(7") < 4 (since every partite
set can be decomposed into two odd sets). By (i) and (ii) we have x,(7") = 4. ]

2.2. Odd facial edge-coloring of trees

Lemma 2.1. Let T be a tree and T' its subtree. Every facial 3-edge-coloring of T' can be extended
to a facial 3-edge-coloring of T.
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Proof. Let c be a facial 3-edge-coloring of 7”. We extend the coloring c step by step. In each step
we color one uncolored edge of 7.

First we choose an uncolored edge uv (i.e. an edge from E(7T') — E(T")) which is incident with
a vertex of 7”. W.Lo.g., assume that v € V(7”). Observe that u is incident only with uncolored
edges (otherwise 7" with uv contains a cycle). This implies that uv has at most two facially
adjacent edges in 7". Consequently, there is an admissible color for uv.

In the next step 7" U {uv} plays the role of 7". O

Let x/(G) denote the minimum number of colors required in an odd facial edge-coloring of a
plane graph G.

Lemma 2.2. If T is a tree, then X' (T) < 6. Moreover, this bound is tight.

Proof. Let T be the tree depicted in Figure 1.

Figure 1. The tree T.

It is easy to see that \/,(T") = 6.

Lemma 2.1 implies that every tree 7" has a facial 3-edge-coloring. Every facial 3-edge-coloring
can be modified to an odd facial edge-coloring using at most 6 colors. If in a facial 3-edge-coloring
a color appears on an even number of edges, then we recolor one of them with a new color. Since
we recolor at most three edges, the new coloring uses at most six colors. [

Any tree in this paper is embedded in the plane. The particular embedding is very important.
The tree depicted in Figure 2 with the embedding on the left has an odd facial 2-edge-coloring, and
with the embedding on the right, its facial 2-edge-coloring is not odd.

Figure 2. Two different embeddings of the same tree.

Lemma 2.3. Let c be a facial 3-edge-coloring of a tree T'. If a color appears on an odd number of
edges (under the coloring c), then T has an odd facial 5-edge-coloring.

Proof. Assume that c uses the colors 1,2, 3 and the color 1 appears an odd number of times in 7.
If the color 2 (resp. 3) appears on an even number of edges, then we recolor one edge of color 2
(resp. 3) with a new color 4 (resp. 5). ]
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Theorem 2.2. Every tree 'T' distinct from T (depicted in Figure 1) has an odd facial 5-edge-
coloring.

Proof. Let P = vyvy...v, be a longest path in 7', where v; € V(T) fori = 1,2,...,n. We
distinguish some cases according to the length of P.
Case 1. P has at least five edges.

Let 7" be the subtree of 7" consisting of the first five edges of P. Color the edges viv, v4v5
with color A; the edge vsv, with color B; and the edges vov3, v5vg With color C'. By Lemma 2.1
this coloring of 7" can be extended to a facial 3-edge-coloring of 7. If all colors A, B, C' appear
an even number of times in 7', then we recolor the edges v,vs, v3v4, Usvg With a new color £ and
we obtain an odd facial 4-edge-coloring. Otherwise we apply Lemma 2.3.

Case 2. P has exactly four edges, i.e. P = v1v30304U5.
Case 2.1 The degree of vs is at least 3in 7.

Let v be a vertex adjacent to vs distinct from v, and vy. Let T” be the subtree of 7" consisting of
the edges of P and the edge vsv. Color the edges v1vy, v3v4 With color A; the edge vsv with color
B; and the edges vyvs, v4v5 With color C'. By Lemma 2.1 this coloring of 7" can be extended to a
facial 3-edge-coloring of 7". If all colors A, B, C' appear an even number of times in 7, then we
recolor the edges v1vs, v3v, v4v5 With a new color £ and we obtain an odd facial 4-edge-coloring.
Otherwise we apply Lemma 2.3.

Case 2.2 The degree of v is 2in 7.

Since P is a longest path in 7', the vertices v, and v, are incident only with leaves except for
V3.

Case 2.2.1 At least one of the vertices vs, v4 has degree at least 4.

Without loss of generality, assume that deg,(v2) > 4. Let vuy be an edge of 7" not facially
adjacent to vgvs. Let T” be the subtree of T consisting of the edges vvq, V93, V304, v4v5. Color
the edges vvo, v3v, With color A; the edge vovs with color B; and the edge v vs with color C.
By Lemma 2.1 this coloring of 7" can be extended to a facial 3-edge-coloring of 7". If all colors
A, B, C appear an even number of times in 7', then we recolor the edges vvsy, vov3, v4v5 With a new
color F and we obtain an odd facial 4-edge-coloring. Otherwise we apply Lemma 2.3.

Case 2.2.2 The vertices v, and v4 have degree at most 3.

Since T # T, v or vy has degree 2. Consequently, 7" has at most five edges. So it has an odd
facial 5-edge-coloring.

Case 3. P has exactly three edges, i.e. P = v10503v4.

In this case, color the edge vovz with A and all other edges with B and C' so that facially
adjacent edges receive different colors. If the color B (resp. (') appears on an even number of
edges, then we recolor one edge of color B (resp. C') with a new color D (resp. E).

Case 4. The length of P is at most 2.
In this case 7' is a star. It is easy to see that every star has an odd facial 5-edge-coloring. U

Corollary 2.1. Let T be a tree on an even number of edges. If T # T, then X'.(T) € {2,4}.
Moreover, it is easy to check whether X' (T) = 2 or x.(T) = 4.

Proof. Since T # T has an even number of edges, every its odd facial edge-coloring uses an even
number of colors. By Theorem 2.2 we have x/ (7)) < 5. Consequently, x/(7) € {2,4}.
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Clearly, if a tree has a facial 2-edge-coloring, then this coloring is unique. If each color class
has an odd number of elements, then X/ (7") = 2, otherwise x/(7") = 4. O

Note that a tree 7" has a facial 2-edge-coloring if and only if every internal vertex of 7' is even.
Corollary 2.2. If T is a tree on an odd number of edges, then X' (T) € {1, 3,5}.

A challenging open problem in this direction is the following.
Problem 1. Characterize all trees that admit an odd facial 3-edge-coloring.

Note that there are infinitely many trees with x/(7") = 3 and also infinitely many trees with
X, (T) = 5. Let G, be a tree obtained from a path P = vyv; ... v4.3 on 4k + 3 vertices, k > 0,
so that we add 2k + 1 new vertices and join each vertex vq;, ¢ = 1,3,...,2k + 1, with one of
them, see Figure 3 for illustration. Since the vertices vy, vy, . . . , V412 have degree three and they
cover all edges of G, every color appears on 2k + 1 edges in any facial 3-edge-coloring of Gy,
so x.(Gk) = 3. Let Hj, be a tree obtained from G, so that we add two new vertices and join both
of them with vy 3, see Figure 3 for illustration. It is not hard to see that A} has no odd facial
3-edge-coloring. Since Hj, has an odd number of edges, Corollary 2.2 implies that x/ (Hy) = 5.

S NS AU SNV VO B I

Figure 3. The graphs G; and H;.

2.3. Odd facial total-coloring of trees
Let x”(G) denote the minimum number of colors required in an odd facial total-coloring of a
plane graph G.

Theorem 2.3. Every tree T' on at least three vertices admits an odd facial total-coloring with
exactly five colors, i.e. X!(T') < 5. Moreover, this bound is tight.

Proof. Suppose there is a counterexample to Theorem 2.3. Let 7" be a counterexample with the
minimum number of vertices.

The only tree on three vertices is a path on three vertices. Clearly, it has an odd facial 5-total-
coloring. There are two trees on four vertices. They are depicted in Figure 4 and they also have an
odd facial 5-total-coloring.

1
5

*——& — 06—
1 231451 1 3 2 41

Figure 4. Trees on four vertices and their odd facial total-colorings.

So we can assume that 7" has at least five vertices. Let P = vyvs...v,_1v, be a longest path
in T'. There are two possibilities: either the vertices v, and v,,_; have degree two or at least one of
them has degree at least three in 7'.
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Case 1. Both vertices v, and v,,_; have degree two.

Let 7" = T — {vy, v, } be the tree obtained from 7" by removing the vertices v; and v,,. The
tree 7" admits an odd facial total-coloring with five colors, since it has fewer vertices than 7. This
coloring can be extended to an odd facial 5-total-coloring of 7" in the following way: First we color
the edges v,v9, v,_1v, With the same color distinct from the colors of vy, Vov3, Vs _2Un_1, Up_1.
Thereafter we color the vertices vy, v,, with the same color distinct from the colors of vy, v,_1, V1 5.
Case 2. v, or v,,_1 has degree at least three.

Every tree on at least three vertices admits a facial total-coloring with exactly four colors, see
[7]. Let ¢ be such a coloring of 7" with colors 1,2, 3,4. In the following we show that ¢ can be
modified to an odd facial 5-total-coloring.

First observe that 7" has an odd number of elements (vertices and edges). Therefore in c one or
three colors are used an odd number of times. If three colors are used an odd number of times in c,
say 1, 2, 3, then it is sufficient to recolor one element of color 4 with (a new) color 5.

Now assume that only one color, say 1, is used an odd number of times.

Case 2.1 7' has a pendant edge e = xy of color 1, where x is a leaf.

Since c is a facial total-coloring we have ¢(z) # 1, ¢(y) # 1, and ¢(x) # c(y). Without loss of
generality, we can assume that c¢(x) = 2 and ¢(y) = 3. In this case it suffices to recolor z with 4
and recolor y with (a new) color 5.

Case 2.2 No pendant edge of 7" has color 1.

Let e; = ujus and es = wusug be two facially adjacent pendant edges in 7" (such two edges
exist because vy or v,,_1 has degree at least three).

We distinguish four cases.
Case 2.2.1 c(ug) =1

In this case, the colors ¢(uy), c(ey), c(ez), and c¢(ug) are distinct from 1. W.l.o.g., assume that
c(uy) = 2 and ¢(e;) = 3. It suffices to recolor u; with 4 and recolor e; with (a new) color 5.

Uy 2 4
€1 3 5
Uz = 1 N 1
) €2 €2
u3 us3 us3
Case 2.2.2 c(uy) = c(us) =1
In this case, {c(e1), c(uz), c(ea)} = {2,3,4}. W.lo.g., assume that c¢(e;) = 2, ¢(uy) = 3, and
c(e9) = 4. Tt suffices to recolor u; with 4, uy with 5, and ug with 2.
Case 2.2.3 1 & {c(u1), c(uz), c(us)}
In this case, {c(u1),c(e1),c(uz)} = {2,3,4}. W.lo.g., assume that c(uy) = 2, c(e;) = 3, and

c(ug) = 4. Then necessarily, c(e2) = 2 and c(u3) = 3. It suffices to recolor uy with 5, u; and us
with 1.
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Uy 1 4
el 2 2
U2 = 3 - 5
us3 1 2
Uy 2 1
el 3 3
Uz = 4 — )
- %
us3 3 1

Case 2.2.4 1 € {c(uy1), c(u3)} and c(uy) # c(us)
W.Lo.g., assume that c(u;) = 1. Then {c(uz), c(e2), c(us)} = {2,3,4}. W.lo.g., assume that
c(ug) = 2, ¢(e2) = 3, and c(u3) = 4. Then necessarily, c¢(e;) = 4. It suffices to recolor uy with 5,

up with 3, and us with 1.
Uy 1 3
€1 4 4
Uz% = 2% — 5%
€2 3 3
usg 4 1

So T’ is not a counterexample. [

Corollary 2.3. If T is a tree on at least two vertices, then X" (T) € {3,5}. Moreover, it is easy to
check whether x(T) = 3 or x2(T') = 5.

Proof. Since T' has an odd number of elements (vertices and edges), every its odd facial total-
coloring uses an odd number of colors. Hence, Theorem 2.3 implies x”(T") € {3,5}.

Clearly, if a tree has a facial total-coloring with 3 colors, then this coloring is unique. If each
color class has an odd number of elements, then x(7") = 3, otherwise x7(1") = 5. O

3. Remarks

Note that odd facial edge-coloring of a plane graph G is closely related to edge decomposition
of the dual graph G* into odd subgraphs (subgraphs with all vertices having odd degree), see e.g.
[4]. Edge decompositions of graphs into odd (even) subgraphs or characterization of odd (even)
factors of graphs have recently drawn a substantial amount of attention, see e.g. [10].
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