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Abstract

The article deals with the problem of finding vertex-minimal graphs with a given automorphism
group. We exhibit two undirected 16-vertex graphs having automorphism groups A, and A;. It
improves Babai’s bound for A, and the graphical regular representation bound for A;. The graphs
are constructed using projectivisation of the vertex-face graph of the icosahedron.
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This article addresses a problem in graph representation theory of finite groups - finding undi-
rected graphs with a given automorphism group and minimal number of vertices. Denote by p(G)
the minimal number of vertices of undirected graphs having automorphism group isomorphic to

G, i(G) = FAm(in) . |[V(T')|. Tt is known [1] that u(G) < 2|G|, for any finite group G which is
cAut(I')~

not cyclic of order 3,4 or 5. See Babai [2] for an exposition of this area. There are groups which
admit a graphical regular representation, for such groups p(G) < |G|. For some recent work see
[4].

For alternating groups A,, 11(A,) is known for n > 13, see Liebeck [6]. If n = 0 or 1(mod 4),
then u(A,) = 2" — n — 2. Additionally, for n > 5 A,, admits a graphical regular representation,
see [8]. Thus for A; the best published estimate until now seemed to be ;(As) < 60.

In this paper we exhibit graphs I'; = (V, E;), i € {4,5}, such that |V'| = 16 and Aut(I';) ~ A;.
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I'y (also denoted =;) improves Babai’s bound for A4. I'; (also denoted I1;) has fewer vertices
than the graphical regular representation of As. I's is listed in [3] together with the order of its
automorphism group. The new graphs are based on projectivisation of the vertex-face incidence
relation of the regular icosahedron.

We use standard notation for undirected graphs, see Diestel [S5]. A bipartite graph I with vertex
partition sets V; and V5 is denoted as I" = (V4, V5, ). Given a polyhedron P, we denote its vertex,
edge and face sets as V = V(P), E = E(P) and F' = F(P), respectively. We can think of P
as the triple (V, E, F'). If S is a subset of R not containing the origin, then its image under the
projectivisation map to P(R?) is denoted by 7(S) or [S], [S] = U, cg[z].

1. Main results

In this section we define objects used for our construction - projective vertex-face graphs. We
prove that the automorphism group of the projective vertex-face graph of the regular icosahedron
is As. We further show that after adding three extra edges we get a graph with the automorphism
group Ay.

1.1. Vertex-face graphs of polyhedra

Definition 1.1. Let P = (V| E, F) be a polyhedron. An undirected bipartite graph I'p = (V, F, I)
is the vertex-face graph of Pif v ~ fiff v € V, f € F and v € f. In other words, I'p
corresponds to the vertex-face incidence relation in V' x F'.

Definition 1.2. Let S = (V, E, F) be a centrally symmetric polyhedron. Let S be positioned
in R? so that its center is at (0,0,0). We call the undirected bipartite graph Il = ([V], [F], I,))
projective vertex-face graph if for any v, € [V], f, € [F] we have v, ~ f, iff v € f for some
ver v, and f € m(f,).

1.2. Projective vertex-face graph of the icosahedron and As
Let I = (V, E, F) be the regular icosahedron. Define I's = II;, it is shown in Fig.1, an adja-

cency matrix of II; is given in Appendix A. II; can be interpreted in terms of the hemi-icosahedron,
see [7].

Flgl - H[.
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Proposition 1.1. Let I be the regular icosahedron. Then Aut(Il;) ~ As.

Proof. We prove that Rot(I) ~ Aut(Il;) in two steps. First we show that there is a subgroup in

Aut(I1;) isomorphic to Rot(I) - the group of rotational symmetries of 7, rotations of R? preserving

V and E. It is known that Rot(I) ~ As. There is an injective group morphism f : Rot([) LN

Aut(Ty) ZEY Aut(IT;). f1 : Rot(I) — Aut(T';) maps every p € Rot(I) to f1(p) € Aut(T;)
which is the permutation of V' U F induced by p: fi(p)(z) = p(z) for any = € V U F. Rotations
of I preserve the vertex-face incidence relation and f; is a group morphism. fo : Aut(I';) —
Aut(I1;) maps every ¢ € Aut(I'r) to pp € Aut(Il;) defined by the rule pp([z]) = [¢(x)] for any
x € V(I';). Projectivization and composition commute therefore f, is a group morphism. f is
injective since there is no nontrivial rotation of I sending each vertex to another vertex in the same
projective class.

In the second step we prove that | Aut(I1;)| < 60 by a counting argument. Every vertex v € [V]
is contained in a subgraph o(v) shown in Fig.2.

Fig.2. - o(v).

All TI;-vertices in [V] have degree 5, all II;-vertices in [F] have degree 3. It follows that [V]
and [F'] both are unions of Aut(Il;)-orbits. v can be mapped by a II;-automorphism in at most
6 possible ways. After fixing the image of v it follows by Aut(Il;)-invariance of [V] that the
subgraph o(v) can be mapped in at most 10 ways. Any permutation of [V/] by an automorphism
determines a unique permutation of [F]. Thus |Aut(Il;)| < 60. We have proved that Aut(Il;) =
f(Rot(I)) =~ As. O

Remark 1.1. A graph isomorphic to II; is listed without discussion of its construction and auto-
morphism group in [3] as ET16.5.

1.3. A modification of the projective vertex-face graph of the icosahedron and A,

Since Aj has subgroups isomorphic to A4, we can try to modify II; so that the automorphism
group of the modified graph is isomorphic to A,. We find generators for a subgroup H < Rot([),
such that H ~ A4, and add three extra edges to II; which are permuted only by elements of H.

Denote by /; the polyhedral (1-skeleton) graph of I, Aut(l;) ~ Sym(I) ~ As X Zs.

Proposition 1.2. Choose a 6-subset of vertices W = {0, A, B,C, D, E} C V(I) such that I,[W]
is isomorphic to the 5-wheel, see Fig.3.
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Define an undirected graph 'y = Z; = ([V| U [F], I, U J) by adding three edges to 11;:
J =A{[A] ~ [C],[B] ~ [O], D] ~ [E|}, see Fig.4, Fig.5 and Appendix B. Then Aut(Z;) ~ A,.

Fig.4. - the extra edges.

Fig.5. - Z;.

Proof. Consider the subgroup H = (a,b) < Rot(I) generated by two rotations: « - a rotation of
order 2 around the line passing through the center of the edge O B and the center of I, b - a rotation
of order 3 around the line passing through the center of the face OC'D and the center of /. We
prove that H ~ A, and f(H) = Aut(Z;) where f is as in Proposition 1.1.

To prove that H ~ A, we investigate subgroups of A; generated by two elements of order 2
and 3. If H' = (d’,0') < As, ord(a’) = 2, ord(b') = 3, then there are 3 possibilities for the isomor-
phism type of the functional graph ("cycle type”) of the pair (a’,V'): (a1,b1) = ((12)(34), (345)),
(az,b2) = ((12)(34), (134)) or (a3, bs) = ((12)(34), (135)). It can be checked that (a, by) ~ 33,
(ag,be) ~ Ay, (as,bs) ~ As. Additionally, ord(aiby) = 2, ord(asbe) = 3, ord(asbs) = 5. Now,
in our case ord(ab) = 3, thus H = (a, b) ~ (aq, be) ~ A,.

Next we prove that Aut(=Z;) = f(H). Note that O, A, B, C, D, E in Fig.3 and Fig.4 represent
V].
First we prove that f(H) < Aut(Z;). Z; differs from II; by three extra edges. Elements of
f(H) permute I1;-edges so we only need to check that they permute the new edges. The restrictions
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of f(a) and f(b) to [V] are, respectively, ([O][B]) and ([O][C][D])([A][E][B]) (in cycle notation).
It follows that f(b) cyclically permutes the three extra edges and f(a) fixes them.

To prove that Aut(Z;) < f(H) we observe that only [F]-type vertices have degree 3 in both I1;
and =, only V-type vertices have degree 5 in I1;. Thus any Aut(=;)-element as a permutation of
[V] U [F] belongs to Aut(Il;) and thus is the f-image of a Rot(I)-element. We show that for any
rotation ' € Rot(I)\H, f(r") does not permute the three extra edges and thus f(r') ¢ Aut(Z;).
We have that Rot(I) = (a,b,c) where c is any rotation of order 5. Since |Rot(]) : H| = 5 it
follows that any element of Rot([) is in form ¢"h where h € (a,b) = H. Let ¢ be the rotation
around the line passing through the center of I and O corresponding to the vertex permutation
(ABCDE). The edge [O] ~ [B] is the only extra edge having [O] as a vertex, all edges from
[O] are rotationally permuted by f(c"), see Fig.4. It follows that nontrivial elements f(c™) do not
permute the three extra edges in =;. 0

Remark 1.2. If D is the dodecahedron then I1p ~ II; ~ As.

2. Appendices

A - An adjacency matrix of 11

Remark 2.1. In the standard ordering vertices {1, ..., 10} correspond to [F| and vertices {11, .., 16}
correspond to [V].

= =] =] = =
[
—
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B - An adjacency matrix of =

e I Y
—
=
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