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Abstract
The article deals with the problem of finding vertex-minimal graphs with a given automorphism
group. We exhibit two undirected 16-vertex graphs having automorphism groups A4 and A5. It
improves Babai’s bound for A4 and the graphical regular representation bound for A5. The graphs
are constructed using projectivisation of the vertex-face graph of the icosahedron.
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This article addresses a problem in graph representation theory of finite groups - finding undi-
rected graphs with a given automorphism group and minimal number of vertices. Denote by µ(G)
the minimal number of vertices of undirected graphs having automorphism group isomorphic to
G, µ(G) = min

Γ:Aut(Γ)'G
|V (Γ)|. It is known [1] that µ(G) ≤ 2|G|, for any finite group G which is

not cyclic of order 3, 4 or 5. See Babai [2] for an exposition of this area. There are groups which
admit a graphical regular representation, for such groups µ(G) ≤ |G|. For some recent work see
[4].

For alternating groups An µ(An) is known for n ≥ 13, see Liebeck [6]. If n ≡ 0 or 1(mod 4),
then µ(An) = 2n − n − 2. Additionally, for n ≥ 5 An admits a graphical regular representation,
see [8]. Thus for A5 the best published estimate until now seemed to be µ(A5) ≤ 60.

In this paper we exhibit graphs Γi = (V,Ei), i ∈ {4, 5}, such that |V | = 16 and Aut(Γi) ' Ai.
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Γ4 (also denoted ΞI) improves Babai’s bound for A4. Γ5 (also denoted ΠI) has fewer vertices
than the graphical regular representation of A5. Γ5 is listed in [3] together with the order of its
automorphism group. The new graphs are based on projectivisation of the vertex-face incidence
relation of the regular icosahedron.

We use standard notation for undirected graphs, see Diestel [5]. A bipartite graph Γ with vertex
partition sets V1 and V2 is denoted as Γ = (V1, V2, E). Given a polyhedron P , we denote its vertex,
edge and face sets as V = V (P ), E = E(P ) and F = F (P ), respectively. We can think of P
as the triple (V,E, F ). If S is a subset of R3 not containing the origin, then its image under the
projectivisation map to P (R3) is denoted by π(S) or [S], [S] =

⋃
x∈S[x].

1. Main results

In this section we define objects used for our construction - projective vertex-face graphs. We
prove that the automorphism group of the projective vertex-face graph of the regular icosahedron
is A5. We further show that after adding three extra edges we get a graph with the automorphism
group A4.

1.1. Vertex-face graphs of polyhedra

Definition 1.1. Let P = (V,E, F ) be a polyhedron. An undirected bipartite graph ΓP = (V, F, I)
is the vertex-face graph of P if v ∼ f iff v ∈ V , f ∈ F and v ∈ f . In other words, ΓP

corresponds to the vertex-face incidence relation in V × F .

Definition 1.2. Let S = (V,E, F ) be a centrally symmetric polyhedron. Let S be positioned
in R3 so that its center is at (0, 0, 0). We call the undirected bipartite graph ΠS = ([V ], [F ], Ip)
projective vertex-face graph if for any vp ∈ [V ], fp ∈ [F ] we have vp ∼ fp iff v ∈ f for some
v ∈ π−1(vp) and f ∈ π−1(fp).

1.2. Projective vertex-face graph of the icosahedron and A5

Let I = (V,E, F ) be the regular icosahedron. Define Γ5 = ΠI , it is shown in Fig.1, an adja-
cency matrix of ΠI is given in Appendix A. ΠI can be interpreted in terms of the hemi-icosahedron,
see [7].

Fig.1. - ΠI .
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Proposition 1.1. Let I be the regular icosahedron. Then Aut(ΠI) ' A5.

Proof. We prove that Rot(I) ' Aut(ΠI) in two steps. First we show that there is a subgroup in
Aut(ΠI) isomorphic toRot(I) - the group of rotational symmetries of I , rotations of R3 preserving
V and E. It is known that Rot(I) ' A5. There is an injective group morphism f : Rot(I)

f1→
Aut(ΓI)

f2→ Aut(ΠI). f1 : Rot(I) → Aut(ΓI) maps every ρ ∈ Rot(I) to f1(ρ) ∈ Aut(ΓI)
which is the permutation of V ∪ F induced by ρ: f1(ρ)(x) = ρ(x) for any x ∈ V ∪ F . Rotations
of I preserve the vertex-face incidence relation and f1 is a group morphism. f2 : Aut(ΓI) →
Aut(ΠI) maps every ϕ ∈ Aut(ΓI) to ϕP ∈ Aut(ΠI) defined by the rule ϕP ([x]) = [ϕ(x)] for any
x ∈ V (ΓI). Projectivization and composition commute therefore f2 is a group morphism. f is
injective since there is no nontrivial rotation of I sending each vertex to another vertex in the same
projective class.

In the second step we prove that |Aut(ΠI)| ≤ 60 by a counting argument. Every vertex v ∈ [V ]
is contained in a subgraph σ(v) shown in Fig.2.

v

Fig.2. - σ(v).

All ΠI-vertices in [V ] have degree 5, all ΠI-vertices in [F ] have degree 3. It follows that [V ]
and [F ] both are unions of Aut(ΠI)-orbits. v can be mapped by a ΠI-automorphism in at most
6 possible ways. After fixing the image of v it follows by Aut(ΠI)-invariance of [V ] that the
subgraph σ(v) can be mapped in at most 10 ways. Any permutation of [V ] by an automorphism
determines a unique permutation of [F ]. Thus |Aut(ΠI)| ≤ 60. We have proved that Aut(ΠI) =
f(Rot(I)) ' A5.

Remark 1.1. A graph isomorphic to ΠI is listed without discussion of its construction and auto-
morphism group in [3] as ET16.5.

1.3. A modification of the projective vertex-face graph of the icosahedron and A4

Since A5 has subgroups isomorphic to A4, we can try to modify ΠI so that the automorphism
group of the modified graph is isomorphic to A4. We find generators for a subgroup H ≤ Rot(I),
such that H ' A4, and add three extra edges to ΠI which are permuted only by elements of H .

Denote by I1 the polyhedral (1-skeleton) graph of I , Aut(I1) ' Sym(I) ' A5 × Z2.

Proposition 1.2. Choose a 6-subset of vertices W = {O,A,B,C,D,E} ⊆ V (I) such that I1[W ]
is isomorphic to the 5-wheel, see Fig.3.
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Fig.3. - I1[W ].

Define an undirected graph Γ4 = ΞI = ([V ] ∪ [F ], Ip ∪ J) by adding three edges to ΠI:
J = {[A] ∼ [C], [B] ∼ [O], [D] ∼ [E]}, see Fig.4, Fig.5 and Appendix B. Then Aut(ΞI) ' A4.

[E] [D]

[A] [C]

[B]

[O]

Fig.4. - the extra edges.

Fig.5. - ΞI .

Proof. Consider the subgroup H = 〈a, b〉 ≤ Rot(I) generated by two rotations: a - a rotation of
order 2 around the line passing through the center of the edge OB and the center of I , b - a rotation
of order 3 around the line passing through the center of the face OCD and the center of I . We
prove that H ' A4 and f(H) = Aut(ΞI) where f is as in Proposition 1.1.

To prove that H ' A4 we investigate subgroups of A5 generated by two elements of order 2
and 3. IfH ′ = 〈a′, b′〉 ≤ A5, ord(a′) = 2, ord(b′) = 3, then there are 3 possibilities for the isomor-
phism type of the functional graph (”cycle type”) of the pair (a′, b′): (a1, b1) = ((12)(34), (345)),
(a2, b2) = ((12)(34), (134)) or (a3, b3) = ((12)(34), (135)). It can be checked that 〈a1, b1〉 ' Σ3,
〈a2, b2〉 ' A4, 〈a3, b3〉 ' A5. Additionally, ord(a1b1) = 2, ord(a2b2) = 3, ord(a3b3) = 5. Now,
in our case ord(ab) = 3, thus H = 〈a, b〉 ' 〈a2, b2〉 ' A4.

Next we prove that Aut(ΞI) = f(H). Note that O,A,B,C,D,E in Fig.3 and Fig.4 represent
[V ].

First we prove that f(H) ≤ Aut(ΞI). ΞI differs from ΠI by three extra edges. Elements of
f(H) permute ΠI-edges so we only need to check that they permute the new edges. The restrictions
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of f(a) and f(b) to [V ] are, respectively, ([O][B]) and ([O][C][D])([A][E][B]) (in cycle notation).
It follows that f(b) cyclically permutes the three extra edges and f(a) fixes them.

To prove thatAut(ΞI) ≤ f(H) we observe that only [F ]-type vertices have degree 3 in both ΠI

and ΞI , only V -type vertices have degree 5 in ΠI . Thus any Aut(ΞI)-element as a permutation of
[V ] ∪ [F ] belongs to Aut(ΠI) and thus is the f -image of a Rot(I)-element. We show that for any
rotation r′ ∈ Rot(I)\H , f(r′) does not permute the three extra edges and thus f(r′) 6∈ Aut(ΞI).
We have that Rot(I) = 〈a, b, c〉 where c is any rotation of order 5. Since |Rot(I) : H| = 5 it
follows that any element of Rot(I) is in form cnh where h ∈ 〈a, b〉 = H . Let c be the rotation
around the line passing through the center of I and O corresponding to the vertex permutation
(ABCDE). The edge [O] ∼ [B] is the only extra edge having [O] as a vertex, all edges from
[O] are rotationally permuted by f(cn), see Fig.4. It follows that nontrivial elements f(cn) do not
permute the three extra edges in ΞI .

Remark 1.2. If D is the dodecahedron then ΠD ' ΠI ' A5.

2. Appendices

A - An adjacency matrix of ΠI

Remark 2.1. In the standard ordering vertices {1, ..., 10} correspond to [F ] and vertices {11, .., 16}
correspond to [V ]. 

1 1 1
1 1 1
1 1 1
1 1 1
1 1 1

1 1 1
1 1 1
1 1 1

1 1 1
1 1 1

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

1 1 1 1 1
1 1 1 1 1

1 1 1 1 1


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B - An adjacency matrix of ΞI



1 1 1
1 1 1
1 1 1
1 1 1
1 1 1

1 1 1
1 1 1
1 1 1

1 1 1
1 1 1

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

1 1 1 1 1 1
1 1 1 1 1 1

1 1 1 1 1 1


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