

Electronic Journal of Graph Theory and Applications

16-vertex graphs with automorphism groups A_4 and A_5 from the icosahedron

Peteris Daugulis

Institute of Life Sciences and Technologies, Daugavpils University, Parades 1, Daugavpils, Latvia

peteris.daugulis@du.lv

Abstract

The article deals with the problem of finding vertex-minimal graphs with a given automorphism group. We exhibit two undirected 16-vertex graphs having automorphism groups A_4 and A_5 . It improves Babai's bound for A_4 and the graphical regular representation bound for A_5 . The graphs are constructed using projectivisation of the vertex-face graph of the icosahedron.

Keywords: graph, icosahedron, hemi-icosahedron, automorphism group, alternating group Mathematics Subject Classification : 05C25, 05E18, 05C35.

This article addresses a problem in graph representation theory of finite groups - finding undirected graphs with a given automorphism group and minimal number of vertices. Denote by $\mu(G)$ the minimal number of vertices of undirected graphs having automorphism group isomorphic to G, $\mu(G) = \min_{\Gamma:Aut(\Gamma)\simeq G} |V(\Gamma)|$. It is known [1] that $\mu(G) \leq 2|G|$, for any finite group G which is not cyclic of order 3, 4 or 5. See Babai [2] for an exposition of this area. There are groups which admit a graphical regular representation, for such groups $\mu(G) \leq |G|$. For some recent work see [4].

For alternating groups $A_n \mu(A_n)$ is known for $n \ge 13$, see Liebeck [6]. If $n \equiv 0$ or $1 \pmod{4}$, then $\mu(A_n) = 2^n - n - 2$. Additionally, for $n \ge 5$ A_n admits a graphical regular representation, see [8]. Thus for A_5 the best published estimate until now seemed to be $\mu(A_5) \le 60$.

In this paper we exhibit graphs $\Gamma_i = (V, E_i), i \in \{4, 5\}$, such that |V| = 16 and $Aut(\Gamma_i) \simeq A_i$.

Received: 13 February 2019, Revised: 17 February 2020, Accepted: 1 March 2020.

 Γ_4 (also denoted Ξ_I) improves Babai's bound for A_4 . Γ_5 (also denoted Π_I) has fewer vertices than the graphical regular representation of A_5 . Γ_5 is listed in [3] together with the order of its automorphism group. The new graphs are based on projectivisation of the vertex-face incidence relation of the regular icosahedron.

We use standard notation for undirected graphs, see Diestel [5]. A bipartite graph Γ with vertex partition sets V_1 and V_2 is denoted as $\Gamma = (V_1, V_2, E)$. Given a polyhedron P, we denote its vertex, edge and face sets as V = V(P), E = E(P) and F = F(P), respectively. We can think of P as the triple (V, E, F). If S is a subset of \mathbb{R}^3 not containing the origin, then its image under the projectivisation map to $P(\mathbb{R}^3)$ is denoted by $\pi(S)$ or $[S], [S] = \bigcup_{x \in S} [x]$.

1. Main results

In this section we define objects used for our construction - projective vertex-face graphs. We prove that the automorphism group of the projective vertex-face graph of the regular icosahedron is A_5 . We further show that after adding three extra edges we get a graph with the automorphism group A_4 .

1.1. Vertex-face graphs of polyhedra

Definition 1.1. Let P = (V, E, F) be a polyhedron. An undirected bipartite graph $\Gamma_P = (V, F, I)$ is the **vertex-face graph of** P if $v \sim f$ iff $v \in V$, $f \in F$ and $v \in f$. In other words, Γ_P corresponds to the vertex-face incidence relation in $V \times F$.

Definition 1.2. Let S = (V, E, F) be a centrally symmetric polyhedron. Let S be positioned in \mathbb{R}^3 so that its center is at (0, 0, 0). We call the undirected bipartite graph $\Pi_S = ([V], [F], I_p)$ **projective vertex-face graph** if for any $v_p \in [V]$, $f_p \in [F]$ we have $v_p \sim f_p$ iff $v \in f$ for some $v \in \pi^{-1}(v_p)$ and $f \in \pi^{-1}(f_p)$.

1.2. Projective vertex-face graph of the icosahedron and A_5

Let I = (V, E, F) be the regular icosahedron. Define $\Gamma_5 = \Pi_I$, it is shown in Fig.1, an adjacency matrix of Π_I is given in Appendix A. Π_I can be interpreted in terms of the hemi-icosahedron, see [7].

Fig.1. - Π_I .

Proposition 1.1. Let I be the regular icosahedron. Then $Aut(\Pi_I) \simeq A_5$.

Proof. We prove that $Rot(I) \simeq Aut(\Pi_I)$ in two steps. First we show that there is a subgroup in $Aut(\Pi_I)$ isomorphic to Rot(I) - the group of rotational symmetries of I, rotations of \mathbb{R}^3 preserving V and E. It is known that $Rot(I) \simeq A_5$. There is an injective group morphism $f : Rot(I) \xrightarrow{f_1} Aut(\Gamma_I) \xrightarrow{f_2} Aut(\Pi_I)$. $f_1 : Rot(I) \to Aut(\Gamma_I)$ maps every $\rho \in Rot(I)$ to $f_1(\rho) \in Aut(\Gamma_I)$ which is the permutation of $V \cup F$ induced by ρ : $f_1(\rho)(x) = \rho(x)$ for any $x \in V \cup F$. Rotations of I preserve the vertex-face incidence relation and f_1 is a group morphism. $f_2 : Aut(\Gamma_I) \to Aut(\Pi_I)$ maps every $\varphi \in Aut(\Gamma_I)$ to $\varphi_P \in Aut(\Pi_I)$ defined by the rule $\varphi_P([x]) = [\varphi(x)]$ for any $x \in V(\Gamma_I)$. Projectivization and composition commute therefore f_2 is a group morphism. f is injective class.

In the second step we prove that $|Aut(\Pi_I)| \le 60$ by a counting argument. Every vertex $v \in [V]$ is contained in a subgraph $\sigma(v)$ shown in Fig.2.

All Π_I -vertices in [V] have degree 5, all Π_I -vertices in [F] have degree 3. It follows that [V]and [F] both are unions of $Aut(\Pi_I)$ -orbits. v can be mapped by a Π_I -automorphism in at most 6 possible ways. After fixing the image of v it follows by $Aut(\Pi_I)$ -invariance of [V] that the subgraph $\sigma(v)$ can be mapped in at most 10 ways. Any permutation of [V] by an automorphism determines a unique permutation of [F]. Thus $|Aut(\Pi_I)| \leq 60$. We have proved that $Aut(\Pi_I) = f(Rot(I)) \simeq A_5$.

Remark 1.1. A graph isomorphic to Π_I is listed without discussion of its construction and automorphism group in [3] as ET16.5.

1.3. A modification of the projective vertex-face graph of the icosahedron and A_4

Since A_5 has subgroups isomorphic to A_4 , we can try to modify Π_I so that the automorphism group of the modified graph is isomorphic to A_4 . We find generators for a subgroup $H \leq Rot(I)$, such that $H \simeq A_4$, and add three extra edges to Π_I which are permuted only by elements of H.

Denote by I_1 the polyhedral (1-skeleton) graph of I, $Aut(I_1) \simeq Sym(I) \simeq A_5 \times \mathbb{Z}_2$.

Proposition 1.2. Choose a 6-subset of vertices $W = \{O, A, B, C, D, E\} \subseteq V(I)$ such that $I_1[W]$ is isomorphic to the 5-wheel, see Fig.3.

Define an undirected graph $\Gamma_4 = \Xi_I = ([V] \cup [F], I_p \cup J)$ by adding three edges to Π_I : $J = \{[A] \sim [C], [B] \sim [O], [D] \sim [E]\}$, see Fig.4, Fig.5 and Appendix B. Then $Aut(\Xi_I) \simeq A_4$.

Fig.4. - the extra edges.

Proof. Consider the subgroup $H = \langle a, b \rangle \leq Rot(I)$ generated by two rotations: a - a rotation of order 2 around the line passing through the center of the edge OB and the center of I, b - a rotation of order 3 around the line passing through the center of the face OCD and the center of I. We prove that $H \simeq A_4$ and $f(H) = Aut(\Xi_I)$ where f is as in Proposition 1.1.

To prove that $H \simeq A_4$ we investigate subgroups of A_5 generated by two elements of order 2 and 3. If $H' = \langle a', b' \rangle \leq A_5$, ord(a') = 2, ord(b') = 3, then there are 3 possibilities for the isomorphism type of the functional graph ("cycle type") of the pair (a', b'): $(a_1, b_1) = ((12)(34), (345))$, $(a_2, b_2) = ((12)(34), (134))$ or $(a_3, b_3) = ((12)(34), (135))$. It can be checked that $\langle a_1, b_1 \rangle \simeq \Sigma_3$, $\langle a_2, b_2 \rangle \simeq A_4$, $\langle a_3, b_3 \rangle \simeq A_5$. Additionally, $ord(a_1b_1) = 2$, $ord(a_2b_2) = 3$, $ord(a_3b_3) = 5$. Now, in our case ord(ab) = 3, thus $H = \langle a, b \rangle \simeq \langle a_2, b_2 \rangle \simeq A_4$.

Next we prove that $Aut(\Xi_I) = f(H)$. Note that O, A, B, C, D, E in Fig.3 and Fig.4 represent [V].

First we prove that $f(H) \leq Aut(\Xi_I)$. Ξ_I differs from Π_I by three extra edges. Elements of f(H) permute Π_I -edges so we only need to check that they permute the new edges. The restrictions

of f(a) and f(b) to [V] are, respectively, ([O][B]) and ([O][C][D])([A][E][B]) (in cycle notation). It follows that f(b) cyclically permutes the three extra edges and f(a) fixes them.

To prove that $Aut(\Xi_I) \leq f(H)$ we observe that only [F]-type vertices have degree 3 in both Π_I and Ξ_I , only V-type vertices have degree 5 in Π_I . Thus any $Aut(\Xi_I)$ -element as a permutation of $[V] \cup [F]$ belongs to $Aut(\Pi_I)$ and thus is the f-image of a Rot(I)-element. We show that for any rotation $r' \in Rot(I) \setminus H$, f(r') does not permute the three extra edges and thus $f(r') \notin Aut(\Xi_I)$. We have that $Rot(I) = \langle a, b, c \rangle$ where c is any rotation of order 5. Since |Rot(I) : H| = 5 it follows that any element of Rot(I) is in form c^nh where $h \in \langle a, b \rangle = H$. Let c be the rotation around the line passing through the center of I and O corresponding to the vertex permutation (ABCDE). The edge $[O] \sim [B]$ is the only extra edge having [O] as a vertex, all edges from [O] are rotationally permuted by $f(c^n)$, see Fig.4. It follows that nontrivial elements $f(c^n)$ do not permute the three extra edges in Ξ_I .

Remark 1.2. If D is the dodecahedron then $\Pi_D \simeq \Pi_I \simeq A_5$.

2. Appendices

A - An adjacency matrix of Π_I

Remark 2.1. In the standard ordering vertices $\{1, ..., 10\}$ correspond to [F] and vertices $\{11, ..., 16\}$ correspond to [V].

Г										1	1	1			
										1	1			1	
										1		1	1		
										1			1		1
										1				1	1
											1	1			1
											1		1	1	
											1		1		1
												1	1	1	
												1		1	1
1	1	1	1	1											
1	1				1	1	1								
1		1			1			1	1						
		1	1			1	1	1							
	1			1		1		1	1						
L			1	1	1		1		1						

B - *An adjacency matrix of* Ξ_I

References

- [1] L. Babai, On the minimum order of graphs with given group, *Canad. Math. Bull.* **17** (1974), 467–470.
- [2] L. Babai, Automorphism groups, isomorphism, reconstruction, In Graham, Ronald L.; Grotschel, Martin; Lovasz, Laszlo, *Handbook of Combinatorics I*, North-Holland (1995), 1447–1540.
- [3] M. Conder, Complete list of all connected edge-transitive bipartite graphs on up to 63 vertices, retrieved February 13, 2019, from https://www.math.auckland.ac.nz/ conder/ AllSmallETBgraphs-upto63-full.txt.
- [4] P. Daugulis, A note on another construction of graphs with 4n + 6 vertices and cyclic automorphism group of order 4n *Archivum Mathematicum* **53** (1) (2017), 13–18.
- [5] R. Diestel, *Graph Theory*. Graduate Texts in Mathematics, Vol.173 (2010), Springer-Verlag, Heidelberg.
- [6] M. Liebeck, On graphs whose full automorphism group is an alternating group or a finite classical group, *Proc. London Math. Soc.* **3** (47) (1983), 337–362.
- [7] P. McMullen and E. Schulte, 6C. Projective Regular Polytopes. Abstract Regular Polytopes (1st ed.) Cambridge University Press (2002), pp. 162-165, ISBN 0-521-81496-0.
- [8] M. E. Watkins, Graphical regular representations of alternating, symmetric, and miscellaneous small groups, *Aequationes Mathematicae* **11** (1) (1974), 40–50.