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Abstract

A bipartite graph G with partite sets X and Y is called consecutively super edge-magic if there
exists a bijective function f : V (G) ∪ E (G) → {1, 2, . . . , |V (G)|+ |E (G)|} with the property
that f (X) = {1, 2, . . . , |X|}, f (Y ) = {|X|+ 1, |X|+ 2, . . . , |V (G)|} and f (u)+f (v)+f (uv)
is constant for each uv ∈ E (G). The question studied in this paper is for which bipartite graphs
it is possible to add a finite number of isolated vertices so that the resulting graph is consecutively
super edge-magic. If it is possible for a bipartite graph G, then we say that the minimum such
number of isolated vertices is the consecutively super edge-magic deficiency of G; otherwise, we
define it to be +∞. This paper also includes a detailed discussion of other concepts that are closely
related to the consecutively super edge-magic deficiency.
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1. Introduction

We generally follow the notation and terminology pertaining to graphs of [5]. All graphs
considered here are finite, simple and undirected. We will denote the set of vertices and edges of
a graph G by V (G) and E (G), respectively. For two graphs G1 and G2 with disjoint vertex sets,

Received: 19 February 2019, Revised: 1 November 2019, Accepted: 14 November 2019.

71



www.ejgta.org

The consecutively super edge-magic deficiency of graphs and related concepts | R. Ichishima et al.

the union G ∼= G1 ∪G2 has V (G) = V (G1) ∪ V (G2) and E (G) = E (G1) ∪ E (G2). If a graph
G consists of m disjoint copies of a graph H , then we write G ∼= mH . For integers a and b with
a ≤ b, we will denote the set {x ∈ Z : a ≤ x ≤ b} by writing [a, b], where Z denotes the set of all
integers.

In a seminal paper published in 1970, Kotzig and Rosa [21] introduced the notion of edge-
magic labelings. These labelings were originally called magic valuations by them. These were
rediscovered in 1996 by Ringel and Lladó [28] who coined one of the now popular terms for them:
edge-magic labelings. More recently, they have also been referred to as edge-magic total labelings
by Wallis [30]. For a graph G, a bijective function f : V (G) ∪ E(G) → [1, |V (G)|+ |E (G)|] is
called an edge-magic labeling if f(u) + f(v) + f(uv) is a constant (called the valence) for each
uv ∈ E(G). If such a labeling exists, then G is called an edge-magic graph. In 1998, Enomoto et
al. [6] defined a slightly restricted version of an edge-magic labeling f of a graph G by requiring
that f (V (G)) = [1, |V (G)|]. Such a labeling was called by them a super edge-magic labeling.
Thus, a super edge-magic graph is a graph that admits a super edge-magic labeling.

It is worth mentioning that Acharya and Hegde [1] had introduced the concept of strongly in-
dexable graph. It turns out that the concepts of strongly indexable graph and super edge-magic
graph are equivalent. Lately, super edge-magic labelings and super edge-magic graphs have been
called by Wallis [30] strong edge-magic total labelings and strongly edge-magic graphs, respec-
tively. Moreover, according to the latest version of the survey on graph labelings by Gallian [13]
available to the authors, Hegde and Shetty [15] showed that the properties of being super edge-
magic and strongly k-indexable (see [13] for the definition) are equivalent.

In 2001, Muntaner-Batle [24] introduced the concept of special super edge-magic labeling of a
bipartite graph. Let G be a bipartite graph with partite sets X and Y . If G has a super edge-magic
labeling f with the property that f (X) = [1, |X|] and f (Y ) = [|X|+ 1, |V (G)|], then f is called
a special super edge-magic labeling. Oshima [26] subsequently called such labelings consecutively
super edge-magic. In this paper, we prefer to use the latter terminology to emphasize the property
that a consecutively super edge-magic labeling uses consecutive integers in each partite set. We
also refer a bipartite graph with a consecutively super edge-magic labeling as a consecutively super
edge-magic graph.

The following lemma found in [24] is particularly useful in showing that dense bipartite graphs
are not consecutively super edge-magic.

Lemma 1.1. If G is a consecutively super edge-magic graph, then

|E (G)| ≤ |V (G)| − 1.

The following lemma found in [24] provides us with a necessary and sufficient condition for a
bipartite graph to be consecutively super edge-magic.

Lemma 1.2. Let G be a bipartite graph with partite sets X and Y . Then G is consecutively super
edge-magic if and only if there exists a bijective function f : V (G) → [1, |V (G)|] such that
f (X) = [1, |X|], f (Y ) = [|X|+ 1, |V (G)|] and the set

{f(u) + f(v) : uv ∈ E(G)}

consists of |E (G)| consecutive integers.
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For every graph G, Kotzig and Rosa [21] proved that there exists an edge-magic graph H such
that H ∼= G∪ nK1 for some nonnegative integer n. This motivated them to define the edge-magic
deficiency. The edge-magic deficiency µ(G) of a graph G is the smallest nonnegative integer n
for which G ∪ nK1 is edge-magic. Inspired by Kotzig-Rosa notion, Figueroa-Centeno et al. [11]
defined the concept of super edge-magic deficiency µs(G) of a graph G to be either the smallest
nonnegative integer n with the property that G ∪ nK1 is super edge-magic or +∞ if there exists
no such integer n. If G is a graph with µs(G) = 0, then G is super edge-magic. Thus, the super
edge-magic deficiency of a graph G is a measure of how close G is to being super edge-magic.

Kotzig and Rosa [21] found an upper bound for the edge-magic deficiency of a graph of order
p, namely, µ(G) ≤ Fp+2 − 2 −

(
p+1
2

)
, where Fp is the p-th term of the Fibonacci sequence. This

implies that every graph has finite edge-magic deficiency. However, not all graphs have finite super
edge-magic deficiency. In order to see this, it suffices to consider the following lemma taken from
[11].

Lemma 1.3. If G is a graph such that the degrees of all vertices are even and |E (G)| ≡ 2
(mod 4), then µs (G) = +∞.

We now provide the definition for a parameter introduced in [27], the consecutively super edge-
magic deficiency, used to measure the closeness of a graph to be consecutively super edge-magic.
The consecutively super edge-magic deficiency µc(G) of a graph G is defined to be either the
smallest nonnegative integer n with the property that G ∪ nK1 is consecutively super edge-magic
or +∞ if there exists no such integer n.

As an immediate consequence of the above three definitions, we have the following relations
taking place among three parameters.

Lemma 1.4. For every graph G,

µ (G) ≤ µs (G) ≤ µc (G) .

For a thorough study of graph labeling problems, see the survey by Gallian [13]. For more
information on super edge-magic graphs and related topics, see the books by Bača and Miller [2],
López and Muntaner-Batle [22] and Marr and Wallis [23].

We end this introduction by summarizing the work conducted in this paper. In Section 2,
we introduced some additional concepts (called the alpha-number and strong alpha-number), and
supply relations among these parameters and the consecutively super edge-magic deficiency. In
Section 3, we show that if a graph G admits a consecutively super edge-magic labeling and m
is odd, then mG admits a consecutively super edge-magic labeling, and we provide an explicit
formula for a consecutively super edge-magic labeling of mG. This result allows us to construct
infinite families of consecutively super edge-magic graphs using a single graph as a seed. In
addition, we present results concerning the consecutively super edge-magic deficiency of the union
of graphs. In particular, we show that if G1 and G2 are two graphs with µc (G1) ≤ µc (G2) < +∞,
then µc (G1 ∪G2) < +∞. Moreover, we give some results on the alpha-number of the union
of graphs. In Section 4, we compute the consecutively super edge-magic deficiency and (strong)
alpha-number for some classes of forests. In Section 5, we provide a brief discussion of forests
regarding to the parameters studied in this paper or in the past, and propose new conjectures on the
consecutively super edge-magic deficiency of forests.
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2. Relations Among Parameters

We start with some necessary definitions for presenting our results included in this section.
The graph labeling method that has received the most attention over the years was originated

with a paper by Rosa [29] in 1967 who called them β-valuations. A few years later, Golomb [14]
called these labelings graceful and this is the term that has been used since then. For a graph G,
an injective function f : V (G) → [0, |E (G)|] is called a graceful labeling if each uv ∈ E(G)
is labeled |f(u) − f(v)| and the resulting edge labels are distinct. Rosa [29] also introduced the
concept of α-valuations (a particular type of graceful labelings) as a tool for decomposing the
complete graph into isomorphic subgraphs. A graceful labeling f is called an α-valuation if there
exists an integer λ so that min {f(u), f(v)} ≤ λ < max{f(u), f(v)} for each uv ∈ E(G). Rosa
[29] pointed out that a graph that admits an α-valuation is necessarily bipartite and therefore cannot
contain a cycle of odd length.

It has demonstrated in [18] that α-valuations are sometimes useful for computing the super
edge-magic deficiency of certain graphs. In particular, they proved that if G is a graph without
isolated vertices that has an α-valuation, then µs (G) ≤ |E (G)|− |V (G)|+1. This bound is sharp
in the sense that there are infinitely many graphs G for which µs (G) = |E (G)| − |V (G)| + 1.
Indeed, all complete bipartite graphs (see [7]) and some 2-regular bipartite graphs (see [10, 11, 18,
19]) attain the bound.

The gracefulness grac(G) of a graph G is the smallest positive integer n for which there exists
an injective function f : V (G) → [0, n] such that each uv ∈ E (G) is labeled |f (u)− f (v)| and
the resulting set of edge labels consists of distinct integers. It is easy to see that grac(G) ≤ 2p−1−1
for every graph G of order p. This implies that every graph has finite gracefulness. If G is a graph
of size q with grac(G) = q, then G is graceful. Thus, the gracefulness of a graph G is a measure
of how close G is to being graceful. This definition first appeared in a paper by Golomb [14]. For
further knowledge on the gracefulness of graphs, the authors suggest that the reader consults the
results in [3, 20].

The concept of gracefulness motivated the authors to define the beta-number and strong beta-
number in [17]. The beta-number β (G) of a graph G is the smallest positive integer n for which
there exists an injective function f : V (G) → [0, n] such that each uv ∈ E (G) is labeled
|f (u)− f (v)| and the resulting set of edge labels is [c, c+ |E (G)| − 1] for some positive inte-
ger c. The beta-number of G is +∞, otherwise. If c = 1, then the resulting beta-number is called
the strong beta-number of G and it is denoted by βs (G). It is clear that if G is a graph with
β (G) = |E (G)|, then G is graceful. It is also true that if G is a graph with βs (G) = |E (G)|, then
G is graceful. Thus, the beta-number and strong beta-number of a graph G are measures of how
close G is to being graceful.

We now provide the definitions for a new type of parameter (called the alpha-number) intro-
duced in [27] and its restriction. They play an important role in the study of consecutively super
edge-magic deficiency. The alpha-number α (G) of a graphG is defined to be the smallest positive
integer n such that β (G) = n with the additional property that there exists an integer λ so that
min {f(u), f(v)} ≤ λ < max{f(u), f(v)} for each uv ∈ E(G). The alpha-number is defined to
be +∞, otherwise. If c = 1, then the resulting alpha-number is called the strong alpha-number of
G and it is denoted by αs (G). These parameters can be regarded as measures of how close a graph
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is to having an α-valuation.
The four parameters described in this section make up a string of inequalities as the following

lemma indicates.

Lemma 2.1. For every graph G of order p and size q,

max {p− 1, q} ≤ grac (G) ≤ β (G) ≤ α (G) ≤ αs (G) .

With the above definitions in hand, we can now state the following result established in [27],
which shows the connection between the alpha-number of a graph and its consecutively super
edge-magic deficiency.

Theorem 2.1. If G is a graph of order p, then

α (G) = µc (G) + p− 1.

The preceding theorem indicates that the problems of determining the alpha-number and the
consecutively super edge-magic deficiency are in fact equivalent. It is also immediate from the
same result that for any graph G, α (G) = +∞ if and only if µc (G) = +∞.

The following corollary gives us an inequality relating the strong alpha-number of a graph and
its consecutively super edge-magic deficiency. This result is easily obtained by substituting c = 1
into the equation c = x+ n+ p− q − s+ 2 given in the proof of Theorem 2.1 (see [27]).

Corollary 2.1. Assume that a graph G∪nK1 has a consecutively super edge-magic labeling f for
which µc (G) = n. If G ∪ nK1 has the partite sets X and Y such that n = |E (G)| − |V (G)| −
|X|+ s− 1, where s = min {f (u) + f (v) : uv ∈ E (G)}, then

αs (G) ≤ µc (G) + |V (G)| − 1.

It is worth mentioning that the bound presented in Corollary 2.1 is sharp (for instance, see
Corollary 4.4 in Section 4).

If G is a graph with an α-valuation, then it is clear that α (G) = |E (G)|. In this case, this
fact together with Theorem 2.1 gives us an exact formula for the consecutively super edge-magic
deficiency of such graphs in terms of its order and size.

Corollary 2.2. If G is a graph with an α-valuation, then

µc (G) = |E (G)| − |V (G)|+ 1.

The above corollary is relatively important, since various classes of graphs have been proved
to admit α-valuations (see [13] for a detailed list of results).
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3. Results on Unions of Graphs

In their investigation of (super) edge-magic properties of disconnected graphs, Figueroa-Centeno
et al. [11] proved that if G is a (super) edge-magic bipartite or tripartite graph, then mG is (super)
edge-magic whenm is odd. In the following theorem, we present a consecutively super edge-magic
analogue of the mentioned result.

Theorem 3.1. If G is a consecutively super edge-magic graph and m is odd, then mG is consecu-
tively super edge-magic.

Proof. Without loss of generality, assume that m is odd and m ≥ 3. Since G is a consecutively
super edge-magic graph, it follows that G is bipartite. Thus, if we let U and V denote the two
partite sets of G, then we have E (G) = UV , where the juxtaposition of two partite sets denotes
the edges between those two sets. Take f : V (G) → [1, |V (G)|] to be an arbitrary consecutively
super edge-magic labeling of G, and define H ∼= mG to be the graph with

V (H) =
m⋃
i=1

(Ui ∪ Vi) and E (G) =
m⋃
i=1

UiVi,

where xi ∈ Xi for each i ∈ [1,m] if and only if x ∈ X (X is one of the sets U or V ).
Now, consider the vertex labeling g : V (H)→ [1,m |V (G)|] such that

g (xi) =


mf (x)−m+ i if x ∈ U and i ∈ [1,m],
mf (x)− (i− 1) /2 if x ∈ V and i is odd,
mf (x)− (m− 1 + i) /2 if x ∈ V and i is even.

Then g extends to a consecutively super edge-magic labeling ofH with valencems−3 (m− 1) /2+
m |V (G) ∪ E (G)|, where s = min {f (u) + f (v) : uv ∈ E (G)}. To show this, notice first that

g (U) = [1,m |U |] and g (V ) = [m |U |+ 1,m |V (G)|] ,

since
f (U) = [1, |U |] and f (V ) = [|U |+ 1, |V (G)|] .

Next, to see that g (u) + g (v) + g (uv) = ms − 3 (m− 1) /2 + m |V (G) ∪ E (G)| for every
uv ∈ E (H), where u ∈ U and v ∈ V , notice that if we let c = ms− 3 (m− 1) /2, then we have

{g (u) + g (v) : uv ∈ E (H)} = [c, c+ |E (H)| − 1] .

Therefore, we conclude by means of Lemma 1.2 that mG is consecutively super edge-magic
when m is odd and m ≥ 3.

It is interesting to notice that Theorem 3.1 can be deduced from the results found in [12] with
relative ease. However, the proof given in this paper provides us with an explicit formula for the
consecutively super edge-magic labeling announced in the statement of Theorem 3.1.

The preceding theorem also yields the following corollary.
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Corollary 3.1. If G is a bipartite graph and m is odd, then µc (mG) ≤ mµc (G).

Proof. LetG be a bipartite graph and letm be odd. Also, assume that µc (G) < +∞, otherwise the
result is trivial. Then G ∪ nK1 is consecutively super edge-magic for some nonnegative integer n.
SinceG∪nK1 is certainly bipartite, it follows from Theorem 3.1 thatm (G ∪ nK1) ∼= mG∪mnK1

is consecutively super edge-magic, which implies that µc (mG) ≤ mµc (G).

The following result is an immediate consequence of Theorem 2.1 and Corollary 3.1.

Corollary 3.2. If G is a bipartite graph and m is odd, then

α (mG) ≤ mα (G) +m− 1.

For a nontrivial tree that has an α-valuation, we have the following result.

Corollary 3.3. If T is a nontrivial tree of order p that has an α-valuation, then

α (mT ) = mp− 1,

where m is odd.

Proof. Let T be a nontrivial tree of order p that has an α-valuation, and assume that m is odd.
Then α (T ) = |E (T )| = p− 1. This together with Corollary 3.2 implies that α (mT ) ≤ mp− 1.
On the other hand, the reverse inequality quickly follows from Lemma 2.1.

The following result is easily obtained from Corollary 3.2 and Lemma 2.1.

Corollary 3.4. If F is a forest of order p such that α (F ) = p− 1, then

α (mF ) = mp− 1,

where m is odd.

The union of two graphs with finite super edge-magic deficiency does not always have finite
super edge-magic deficiency. In fact, the cycle C3 of length 3 is clearly super edge-magic, but we
can see from Lemma 1.3 that µs (2C3) = +∞. However, if two graphs are both consecutively
super edge-magic, the situation is different as the next theorem indicates.

Theorem 3.2. If G1 and G2 are consecutively super edge-magic graphs, then

µc (G1 ∪G2) < +∞.

Proof. Assume that G1 and G2 are consecutively super edge-magic graphs. For each i ∈ [1, 2], let
Xi and Yi be the partite sets of Gi, where |Xi| = xi and |Yi| = yi, and let fi be a consecutively
super edge-magic labeling of Gi. Now, without loss of generality, assume that fi has the property
that xi ≥ yi for each i ∈ [1, 2]. Otherwise, take a consecutively super edge-magic labeling gi given
by

gi (v) = xi + yi + 1− fi (v) ,
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where v ∈ Xi∪Yi and i ∈ [1, 2]. Moreover, assume that f1 and f2 have the property that 2x1+2 ≥
s1 and s2+|E (G2)|−1 ≥ x2+y2+1, respectively, where si = min {fi (u) + fi (v) : uv ∈ E (Gi)}
and i ∈ [1, 2]. Otherwise, take a consecutively super edge-magic labeling gi given by

gi (v) = xi + 1− fi (v) if v ∈ Xi

and
gi (v) = 2xi + yi + 1− fi (v) if v ∈ Yi

for each i ∈ [1, 2].
With the above properties of f1 and f2 in hand, consider the function f such that

f (v) =


f1 (v) if v ∈ X1,
f1 (v) + s2 − s1 + 2x1 + |E (G2)| if v ∈ Y1,
f2 (v) + x1 if v ∈ X2 ∪ Y2.

Then f extends to a consecutively super edge-magic labeling of G1 ∪G2 ∪ nK1 for some nonneg-
ative integer n. To show this, notice first that

fi (Xi) = {j : j ∈ [1, xi]} and fi (Yi) = {j : j ∈ [xi + 1, xi + yi]}

for each i ∈ [1, 2]. This implies that

{f (v) : v ∈ X1} = [1, x1] ,
{f (v) : v ∈ X2} = [x1 + 1, x1 + x2] ,
{f (v) : v ∈ Y2} = [x1 + x2 + 1, x1 + x2 + y2] ,
{f (v) : v ∈ Y1} = [s2 − s1 + 3x1 + |E (G2)|+ 1, s2 − s1 + 3x1 + |E (G2)|+ y1] .

Next, to see that f is an injective function, notice that

s2 − s1 + 3x1 + |E (G2)|+ 1 ≥ x1 + x2 + y2 + 1.

This is true as we indicate next, since f1 and f2 have the aforementioned properties.

s2 − s1 + 3x1 + |E (G2)|+ 1− (x1 + x2 + y2 + 1)

= s2 − s1 + 2x1 + |E (G2)| − x2 − y2
= (s2 + |E (G2)| − 1) + 1− x2 − y2 − s1 + 2x1

≥ (x2 + y2 + 1) + 1− x2 − y2 − s1 + 2x1

= 2x1 + 2− s1
≥ s1 − s1 = 0.

Finally, notice that the set

{f (u) + f (v) : uv ∈ E (G1 ∪G2)}
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consists of |E (G1 ∪G2)| consecutive integers, since

{f1 (u) + f1 (v) : uv ∈ E (G1)} = [s1, s1 + |E (G1)| − 1] ,
{f2 (u) + f2 (v) : uv ∈ E (G2)} = [s2, s2 + |E (G2)| − 1]

and

f (u) + f (v) =

{
f1 (u) + f1 (v) + s2 − s1 + 2x1 + |E (G2)| if uv ∈ E (G1),
f2 (u) + f2 (v) + 2x1 if uv ∈ E (G2).

As an immediate consequence of Theorems 2.1 and 3.2, we have the following result.

Corollary 3.5. If G1 and G2 are two graphs such that α (G1) = |V (G1)| − 1 and α (G2) =
|V (G2)| − 1, then α (G1 ∪G2) < +∞.

Theorem 3.2 yields the following corollary as well.

Corollary 3.6. If G1 and G2 are two graphs such that µc (G1) ≤ µc (G2) < +∞, then

µc (G1 ∪G2) < +∞.

Proof. Assume that G1 and G2 are two graphs such that µc (G1) ≤ µc (G2) < +∞. Then there
exists some nonnegative integers m and n such that G1 ∪mK1 and G2 ∪ nK1 are consecutively
super edge-magic. It follows from Theorem 3.2 that µc (G1 ∪G2 ∪ (m+ n)K1) < +∞, which
implies that µc (G1 ∪G2) < +∞.

Combining Theorem 2.1 with Corollary 3.6, we obtain the following result.

Corollary 3.7. If G1 and G2 are two graphs such that α (G1) ≤ α (G2) < +∞, then

α (G1 ∪G2) < +∞.

4. Results on Forests

In their 2006 paper, Figueroa-Centeno et al. [11] provided a constructive proof that nontrivial
trees and forests have finite super edge-magic deficiencies. In fact, they have verified those facts
by showing the stronger statement that nontrivial trees and forests have finite consecutively super
edge-magic deficiencies. In light of Theorem 2.1, this implies that nontrivial trees and forests
have finite alpha-numbers. In a series of papers [8, 9, 11], Figueroa-Centeno et al. studied the
super edge-magic properties of forests. Afterwards, they conjectured in [10] that µs (F ) ≤ 1 for
every forest F with two components. In this section, we present some consecutively super edge-
magic deficiency and (strong) alpha-number analogues of the super edge-magic deficiency results
on forests found in [10, 11].
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Theorem 4.1. For every positive integer m,

µc (mP2) =

{
0 if m is odd,
1 if m is even.

Proof. It is straightforward that P2 is a consecutively super edge-magic graph. It follows from
Theorem 3.1 that the forest mP2 is consecutively super edge-magic when m is odd. This implies
that µc (mP2) = 0 when m is odd.

Now, recall that Kotzig and Rosa [21] proved that the forest mP2 is super edge-magic if and
only if m is odd. This implies that µs (mP2) ≥ 1 when m is even. This together with Lemma 1.4
implies that µc (mP2) ≥ 1 when m is even. To establish the reverse inequality, define the forest
F ∼= mP2 ∪K1 with

V (F ) = {xi : i ∈ [1,m]} ∪ {yi : i ∈ [1,m]} ∪ {z} and E (F ) = {xiyi : i ∈ [1,m]} ,

and consider the vertex labeling f : V (F )→ [1, 2m+ 1] such that

f (w) =


i if w = xi and i ∈ [1,m],
3m/2 + 1 + i if w = yi and i ∈ [1,m/2],
m/2 + i if w = yi and i ∈ [m/2 + 1,m],
3m/2 + 1 if w = z.

It follows from Lemma 1.2 that f extends to a consecutively super edge-magic labeling of F with
valence 9m/2 + 3. To show this, notice first that the two partite sets of the vertex labels in F are
{f (xi) : i ∈ [1,m]} = [1,m] and

{f (yi) : i ∈ [1,m]} ∪ {z} = [m+ 1, 2m+ 1] .

Next, to see that f (u) + f (v) + f (uv) = 9m/2 + 3 for all uv ∈ E (F ), notice that

{f (u) + f (v) : uv ∈ E (F )} = [3m/2 + 2, 5m/2 + 1]

or, equivalently,
{f (u) + f (v) : uv ∈ E (F )} = [s, s+ |E (F )| − 1] ,

where s = 3m/2+2. Consequently, we conclude that µc (F ) ≤ 1 when m is even, completing the
proof.

For every positive integer m, it is known from [16] that β (mP2) = 2m when m ≡ 2 (mod 4)
and β (mP2) = 2m− 1 in all other cases. By letting G ∼= mP2 in Theorem 2.1, we now obtain the
following result from Theorem 4.1.

Corollary 4.1. For every positive integer m,

α (mP2) =

{
2m− 1 if m is odd,
2m if m is even.
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We next present a formula for the strong alpha-number of the forest mP2.

Theorem 4.2. For every positive integer m,

αs (mP2) =

{
2m− 1 if m = 1,
+∞ if m 6= 1.

Proof. The result is trivial for m = 1. Thus, assume that m ≥ 2 and suppose, to the contrary, that
αs (mP2) = n for some positive integer n. Then there exists an injective function f : V (mP2)→
[0, n] such that {|f (x)− f (y)| : xy ∈ E (mP2)} = [1,m]and there exists an integer λ so that
min {f (x) , f (y)} ≤ λ < max {f (x) , f (y)} for each xy ∈ E (mP2). It follows that such
a λ must be the smaller of the two vertex labels that yield the edge labeled 1. Let k1 be the
second largest vertex label in the smaller of the two partite sets of mP2. On the other hand, let
k2 be the second smallest vertex label in the larger of the two partite sets of mP2. Then we have
k1 ≤ λ − 1 and k2 ≥ λ + 2. This implies that k2 − k1 ≥ 3, that is, the second smallest edge
label is at least 3. Consequently, 2 /∈ {|f (x)− f (y)| : xy ∈ E (mP2)}, which contradicts the fact
that 2 ∈ {|f (x)− f (y)| : xy ∈ E (mP2)}. Therefore, we conclude that αs (mP2) = +∞ for all
m ≥ 2.

The preceding theorem indicates that extending the range of vertex labels of a forest does not
need to produce a finite strong alpha-number. This is unexpected in light of the aforementioned
fact that every forest has a finite alpha-number (see beginning of this section).

We next present a result on forests that consist of two disjoint copies of a star. For this purpose,
let Sm denote the star with m+ 1 vertices.

Theorem 4.3. For every two positive integers m and n, µc (Sm ∪ Sn) = 1.

Proof. First, we show that µc (Sm ∪ Sn) ≤ 1 for every two positive integers m and n. To do this,
define the forest F1

∼= Sm ∪ Sn ∪K1 with

V (F1) = {x, y, z} ∪ {xi : i ∈ [1,m]} ∪ {yi : i ∈ [1, n]}

and
E (F1) = {xxi : i ∈ [1,m]} ∪ {yyi : i ∈ [1, n]} ,

and consider the vertex labeling f : V (F1)→ [1,m+ n+ 3] such that

f (w) =


2 if w = x,
1 if w = y,
2 + i if w = xi and i ∈ [1,m],
m+ 3 if w = z,
m+ 3 + i if w = yi and i ∈ [1, n].

It follows from Lemma 1.2 that f extends to a consecutively super edge-magic labeling of F1 with
valence m+ n+ 4. To show this, notice first that the two partite sets of the vertex labels in F1 are
{f (x) , f (y)} = [1, 2] and

{f (xi) : i ∈ [1,m]} ∪ {f (yi) : i ∈ [1,m]} ∪ {f (z)} = [3,m+ n+ 3] .
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Next, to see that f (u) + f (v) + f (uv) = m+ n+ 4 for all uv ∈ E (F1), notice that

{f (u) + f (v) : uv ∈ E (F1)} = [5,m+ n+ 4]

or, equivalently,
{f (u) + f (v) : uv ∈ E (F1)} = [5, 5 + |E (F1)| − 1] .

This indicates that µc (F1) ≤ 1 for every two positive integers m and n.
To verify the inequality in the other direction, let F2

∼= Sm ∪ Sn be the forest with

V (F2) = {x, y} ∪ {xi : i ∈ [1,m]} ∪ {yi : i ∈ [1, n]}

and
E (F2) = {xxi : i ∈ [1,m]} ∪ {yyi : i ∈ [1, n]} ,

and suppose, to the contrary, that F2 has a consecutively super edge-magic labeling f . Then there
are two cases to concern with the possibilities of partite sets of F2.
Case 1. The sets A = {xi : i ∈ [1,m]} ∪ {y} and B = {x} ∪ {yi : i ∈ [1, n]} form the partite sets
of F2.
Case 2. The sets A = {x, y} and B = {xi : i ∈ [1,m]} ∪ {yi : i ∈ [1, n]} form the partite sets of
F2.

According to the vertex labels of each partite set of F2, each of Cases 1 and 2 divides into two
subcases as indicate next.
Subcase 1-1. The set of vertex labels of each partite set of F2 is

f (A) = [1,m+ 1] and f (B) = [m+ 2,m+ n+ 2] .

Subcase 1-2. The set of vertex labels of each partite set of F2 is

f (A) = [n+ 2,m+ n+ 2] and f (B) = [1, n+ 1] .

Subcase 2-1. The set of vertex labels of each partite set of F2 is

f (A) = [1, 2] and f (B) = [3,m+ n+ 2] .

Subcase 2-2. The set of vertex labels of each partite set of F2 is

f (A) = [m+ n+ 1,m+ n+ 2] and f (B) = [1,m+ n] .

Furthermore, according to the induced edge labels of F2, each of Subcases 1-1 and 1-2 in turn
divides into two subcases as indicate next.
Subcase 1-1-1. The set of induced edge labels of F2 is

{f (u) + f (v) : uv ∈ E (F2)} = [m+ 3, 2m+ n+ 2] .

Subcase 1-1-2. The set of induced edge labels of F is

{f (u) + f (v) : uv ∈ E (F2)} = [m+ 4, 2m+ n+ 3] .
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Subcase 1-2-1. The set of induced edge labels of F2 is

{f (u) + f (v) : uv ∈ E (F2)} = [n+ 4,m+ 2n+ 3] .

Subcase 1-2-2. The set of induced edge labels of F2 is

{f (u) + f (v) : uv ∈ E (F2)} = [n+ 3,m+ 2n+ 2] .

Similarly, according to the induced edge labels of F2, each of Subcases 2-1 and 2-2 in turn
divides into two subcases as indicate next.
Subcase 2-1-1. The set of induced edge labels of F2 is

{f (u) + f (v) : uv ∈ E (F2)} = [4,m+ n+ 3] .

Subcase 2-1-2. The set of induced edge labels of F2 is

{f (u) + f (v) : uv ∈ E (F2)} = [5,m+ n+ 4] .

Subcase 2-2-1. The set of induced edge labels of F2 is

{f (u) + f (v) : uv ∈ E (F2)} = [m+ n+ 3, 2m+ 2n+ 2] .

Subcase 2-2-2. The set of induced edge labels of F2 is

{f (u) + f (v) : uv ∈ E (F2)} = [m+ n+ 2, 2m+ 2n+ 1] .

Subcases 1-1-1, 1-1-2, 1-2-1 and 1-2-2 hold the following claim.
Claim 1. If one of Subcases 1-1-1, 1-1-2, 1-2-1 or 1-2-2 is satisfied, then all of these subcases are
satisfied.

Fist of all, we show that if Subcase 1-1-1 is true, then so is Subcase 1-1-2. To see this, define
the vertex labeling g such that

g (v) =

{
m+ 2− f (v) if v ∈ A,
2m+ n+ 4− f (v) if v ∈ B.

Then g extends to a consecutively super edge-magic labeling of F2 such that

g (A) = [1,m+ 1] and g (B) = [m+ 2,m+ n+ 2] ,

producing that
{g (u) + g (v) : uv ∈ E (F2)} = [m+ 4, 2m+ n+ 3] .

Next, to see that Subcase 1-1-1 implies Subcase 1-2-1, define the vertex labeling g such that

g (v) = m+ n+ 3− f (v)

for all v ∈ A ∪B. Then g extends to a consecutively super edge-magic labeling of F2 such that

g (A) = [n+ 2,m+ n+ 2] and g (B) = [1, n+ 1] ,

83



www.ejgta.org

The consecutively super edge-magic deficiency of graphs and related concepts | R. Ichishima et al.

producing that
{g (u) + g (v) : uv ∈ E (F2)} = [n+ 4,m+ 2n+ 3] .

Finally, to see that Subcase 1-1-1 implies Subcase 1-2-2, define the vertex labeling g such that

g (v) =

{
f (v) + n+ 1 if v ∈ A,
f (v)−m− 1 if v ∈ B.

Then g extends to a consecutively super edge-magic labeling of F2 such that

g (A) = [n+ 2,m+ n+ 2] and g (B) = [1, n+ 1] ,

producing that
{g (u) + g (v) : uv ∈ E (F2)} = [n+ 3,m+ 2n+ 2] .

Conversely, if one of Subcases 1-1-2, 1-2-1 or 1-2-2 is satisfied, then Subcase 1-1-1 is satisfied by
the aforementioned vertex labelings g. This completes the proof of Claim 1.

Subcases 2-1-1, 2-1-2, 2-2-1 and 2-2-2 hold the following claim.
Claim 2. If one of Subcases 2-1-1, 2-1-2, 2-2-1 or 2-2-2 is satisfied, then all of these subcases are
satisfied.

First of all, we show that if Subcase 2-1-1 is true, then so is Subcase 2-1-2. To see this, define
the vertex labeling g such that

g (v) =

{
3− f (v) if v ∈ A,
m+ n+ 5− f (v) if v ∈ B.

Then g extends to a consecutively super edge-magic labeling of F2 such that

g (A) = [1, 2] and g (B) = [3,m+ n+ 2] ,

producing that
{g (u) + g (v) : uv ∈ E (F2)} = [5,m+ n+ 4] .

Next, to see that Subcase 2-1-1 implies Subcase 2-2-1, define the vertex labeling g such that

g (v) = m+ n+ 3− f (v)

for all v ∈ A ∪B. Then g extends to a consecutively super edge-magic labeling of F2 such that

g (A) = [m+ n+ 1,m+ n+ 2] and g (B) = [1,m+ n] ,

producing that

{g (u) + g (v) : uv ∈ E (F2)} = [m+ n+ 3, 2m+ 2n+ 2] .

Finally, to see that Subcase 2-1-1 implies Subcase 2-2-2, define the vertex labeling g such that

g (v) =

{
f (v) +m+ n if v ∈ A,
f (v)− 2 if v ∈ B.
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Then g extends to a consecutively super edge-magic labeling of F2 such that

g (A) = [m+ n+ 1,m+ n+ 2] and g (B) = [1,m+ n] ,

producing that

{g (u) + g (v) : uv ∈ E (F2)} = [m+ n+ 2, 2m+ 2n+ 1] .

Conversely, if one of Subcases 2-1-2, 2-2-1 or 2-2-2 is satisfied, then Subcase 2-1-1 is satisfied by
the aforementioned vertex labelings g. This completes the proof of Claim 2.

The logically equivalent contrapositive of Claim 2 states that if one of Subcases 1-1-1, 1-1-2,
1-2-1 or 1-2-2 is not satisfied, then all of these subcases are not satisfied. Thus, we particularly
show the following claim.
Claim 3. Subcase 1-1-1 is not satisfied.

First, assume that f (y) = 1. Then f (x) 6= m + 2, and the sum of the induced edge labels of
F2 is ∑

uv∈E(F2)

(f (u) + f (v)) =
2m+n+2∑
i=m+3

i =
(m+ n) (3m+ n+ 5)

2
.

Since deg v = 1 for all v ∈ F2 − {x, y}, the sum of the vertex labels of F2 is

∑
v∈V (F2)

f (v) =
m+n+2∑

i=1

i =
(m+ n+ 2) (m+ n+ 3)

2
.

Our assumption together with the fact that∑
uv∈E(F2)

(f (u) + f (v)) =
∑

v∈V (F2)

f (v) + (m− 1) f (x) + (n− 1) f (y)

implies that m2+mn−n− 2 = (m− 1) f (x). Let h (m) = m2+mn−n− 2. To satisfy the last
equation with the property that f (x) is a positive integer, it is necessary that h (1) = 0; however,
h (1) = −1. Thus, Claim 3 is true when f (y) = 1.

Next, assume that f (x) = m+ 2. Then f (y) 6= 1, and our assumption and the fact that∑
uv∈E(F2)

(f (u) + f (v)) =
∑

v∈V (F2)

f (v) + (m− 1) f (x) + (n− 1) f (y)

implies thatmn−m−1 = (n− 1) f (y). Let h′ (n) = mn−m−1. To satisfy the last equation with
the property that f (y) is a positive integer, it is necessary that h′ (1) = 0; however, h′ (1) = −1.
Thus, Claim 3 is true when f (x) = m + 2. Hence, Claim 3 is established by the preceding
arguments.

The logically equivalent contrapositive of Claim 2 states that if one of Subcases 2-1-1, 2-1-2,
2-2-1 or 2-2-2 is not satisfied, then all of these subcases are not satisfied. Thus, we particularly
show the following claim.
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Claim 4. Subcase 2-1-1 is not satisfied.
If f (x) = 1 and f (y) = 2, then the sum of the induced edge labels of F2 is

∑
uv∈E(F2)

(f (u) + f (v)) =
m+n+3∑

i=4

i =
(m+ n) (m+ n+ 7)

2
.

Since deg v = 1 for all v ∈ V (F2)− {x, y}, the sum of the vertex labels of F2 is

∑
v∈V (F2)

f (v) =
m+n+2∑

i=1

i =
(m+ n+ 2) (m+ n+ 3)

2
.

The equation m+ n− 3 = (m− 1) f (x) + (n− 1) f (y) is also obtained from the fact that∑
uv∈E(F2)

(f (u) + f (v)) =
∑

v∈V (F2)

f (v) + (m− 1) f (x) + (n− 1) f (y) .

However, it follows from our assumption that

(m− 1) f (x) + (n− 1) f (y) = m+ 2n− 3.

This leads us to conclude that m+ n− 3 = m+ 2n− 3 so that n = 0, which is impossible. Thus,
Claim 4 is true when f (x) = 1 and f (y) = 2. It remains to consider the case that f (x) = 2 and
f (y) = 1. However, the argument for this case is entirely analogous to that of the preceding. This
completes the proof of Claim 4.

Therefore, it follows from all the claims that µc (F2) ≥ 1 for every two positive integers m and
n, proving the result.

The following corollary is an immediate consequence of Theorems 2.1 and 4.3.

Corollary 4.2. For every two positive integers m and n,

α (Sm ∪ Sn) = m+ n+ 2.

In light of the preceding result, it is now natural to explore the strong alpha-number of the
forest Sm ∪ Sn, which is contained in the following theorem.

Theorem 4.4. For every two positive integers m and n, αs (Sm ∪ Sn) = +∞.

Proof. Define the forest F ∼= Sm ∪ Sn as in the proof of the preceding theorem. Now, assume, to
the contrary, that αs (F ) = k for some positive integer k when m and n are positive integers. Then
there exists an injective function f : V (F )→ [0, k] such that

{|f (x)− f (y)| : xy ∈ E (F )} = [1,m+ n]

and there exists an integer λ so that min {f (x) , f (y)} ≤ λ < max {f (x) , f (y)} for every
xy ∈ E (F ). This means that one vertex in some pairs of adjacent vertices is labeled λ and the
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other vertex in the pair is labeled λ+1. Also, the integers 0, λ, λ+1 are necessary in the elements
of the set {f (v) : v ∈ V (F )}. From these observations, we distinguish two cases.
Case 1. Let F have partite sets U and V , where

U = {x, y} and V = {xi : i ∈ [1,m]} ∪ {yi : i ∈ [1, n]} ,

and, without loss of generality, assume that f (x) = 0 and f (y) = λ. It is true that if λ + 1 ∈
{f (xi) : i ∈ [1,m]}, then |f (x)− f (xi)| ≥ λ + 1 ≥ 2; so 1 /∈ {|f (x)− f (y)| : xy ∈ E (F )}.
Thus, λ + 1 ∈ {f (yi) : i ∈ [1, n]}, implying that 1 ∈ {|f (y)− f (yi)| : i ∈ [1, n]}. It is also
true that if λ + 2 ∈ {f (xi) : i ∈ [1,m]}, then |f (x)− f (xi)| ≥ λ + 2 ≥ 3. It follows that
2 /∈ {|f (x)− f (y)| : xy ∈ E (F )}. Thus, λ + 2 ∈ {f (yi) : i ∈ [1, n]}, implying that 2 ∈
{|f (y)− f (yi)| : i ∈ [1, n]}. Continuing in this manner, we see that l ∈ {|f (y)− f (yi)| : i ∈ [1, n]}
for any l ∈ [1, n]. Consequently, we obtain

{f (yi) : i ∈ [1, n]} = [λ+ 1, λ+ n]

and
{|f (y)− f (yi)| : i ∈ [1, n]} = [1, n] ,

which implies that f (xi) ≥ λ + n + 1 for any i ∈ [1,m]. This together with our assumption that
f (x) = 0 implies that |f (x)− f (xi)| ≥ λ + n + 1 for any i ∈ [1,m]. However, λ ≥ 1; so
|f (x)− f (xi)| ≥ n+2 for any i ∈ [1,m]. Hence, n+1 /∈ {|f (x)− f (y)| : xy ∈ E (F )}, which
is impossible.
Case 2. Let F have partite sets U and V , where

U = {x} ∪ {yi : i ∈ [1, n]} and V = {xi : i ∈ [1,m]} ∪ {y} .

Then there are two subcases to pursue.
Subcase 2-1. Let f (x) = λ. Then f (yi) ≤ λ − 1 ( i ∈ [1, n] ). It is true that if f (y) =
λ + 1, then |f (x)− f (xi)| ≥ 2 ( i ∈ [1,m] ) and |f (y)− f (yi)| ≥ 2 ( i ∈ [1, n] ). It follows
that 1 /∈ {|f (x)− f (y)| : xy ∈ E (F )}. Thus, λ + 1 ∈ {f (xi) : i ∈ [1,m]}, implying that 1 ∈
{|f (x)− f (xi)| : i ∈ [1,m]}. It is also true that if f (y) = λ + 2, then |f (x)− f (xi)| ≥ 3 ( i ∈
[1,m] ) and |f (y)− f (yi)| ≥ 3 ( i ∈ [1, n] ). It follows that 2 /∈ {|f (x)− f (y)| : xy ∈ E (F )}.
Thus, λ + 2 ∈ {f (xi) : i ∈ [1,m]}, implying that 2 ∈ {|f (x)− f (xi)| : i ∈ [1,m]}. Continuing
in this manner, we see that l ∈ {|f (x)− f (xi)| : i ∈ [1,m]} ( l ∈ [1,m] ). Consequently, we
obtain

{f (xi) : i ∈ [1,m]} = [λ+ 1, λ+m]

and
{|f (x)− f (xi)| : i ∈ [1,m]} = [1,m] ,

which implies that f (y) ≥ λ+m+ 1. This together with the fact that f (yi) ≤ λ− 1 ( i ∈ [1, n] )
implies that |f (y)− f (yi)| ≥ m+2 ( i ∈ [1, n] ). Hence,m+1 /∈ {|f (x)− f (y)| : xy ∈ E (F )},
which is impossible.
Subcase 2-2. Let f (x) = λ − l, where l ∈ [1, λ]. Then λ ∈ {f (yi) : i ∈ [1, n]}. It is true that if
λ+1 ∈ {f (xi) : i ∈ [1,m]}, then |f (x)− f (xi)| ≥ l+1 ≥ 2 ( i ∈ [1,m] ) and |f (y)− f (yi)| ≥
2 ( i ∈ [1, n] ). It follows that 1 /∈ {|f (x)− f (y)| : xy ∈ E (F )}. Thus, f (y) = λ+ 1.
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Now, consider the function g : V (F ) → [1, αs (F )] such that g (v) = αs (F ) − f (v) for all
v ∈ V (F ). Then g (u) ≥ αs (F )− λ for all u ∈ U and g (v) ≤ αs (F )− λ− 1 for all v ∈ V . In
particular, we have g (y) = αs (F )−λ− 1. It remains only to observe that an analogous argument
to the preceding subcase can be applied to obtain a contradiction.

Before presenting our next result, we mention the consecutively super edge-magic property of
paths obtained by Cattell [4]. For this purpose, let Pn denote the path with n vertices.

Theorem 4.5. For an end-vertex v of the path Pn, there exists a consecutively super edge-magic
labeling f of Pn such that f (v) = i for any i ∈ [1, n] if and only if n = 4s + 1 and f (v) /∈
{s+ 1, 3s+ 1}.

As the concept of induced subgraph will appear in the proof of our next result, we define this
concept for the sake of clarity. If S is a nonempty subset of the vertex set V (G) of a graph G, then
the subgraph 〈S〉 of G induced by S is the graph having vertex set S and whose edge set consists
of those edges of G incident with two elements of S. A subgraph H of G is called induced if
H ∼= 〈S〉 for some subset S of V (G).

We are now prepared to present the following theorem.

Theorem 4.6. For all positive integers m and n,

µc (Pm ∪ Sn) =

{
1 if m = 2 or 3,
0 if m 6= 2 or 3. .

Proof. Let F ∼= Pm ∪ Sn be the forest with

V (F ) = {xi : i ∈ [1,m]} ∪ {y} ∪ {yi : i ∈ [1, n]}

and
E (F ) = {xixi+1 : i ∈ [1,m− 1]} ∪ {yyi : i ∈ [1, n]} .

For m = 1, label the vertices of degree 1 of F with the first n positive integers, the isolated vertex
of F with n+1 and the remaining vertex with n+2. This gives a consecutively super edge-magic
labeling of F when m = 1. The result also follows from Theorem 4.3 when m = 2 or 3. Thus,
assume that m is an integer with m ≥ 4 and m 6= 6, and define the induced subgraphs of F as
follows. Let F1

∼= Pm−1 and F2
∼= Sn be the induced subgraphs of F with

V (F1) = {xi : i ∈ [1,m]} and V (F2) = {y} ∪ {yi : i ∈ [1, n]} .

For m ≥ 4 and m 6= 6, it follows from Theorem 4.5 that there exists a consecutively super edge-
magic labeling f1 of F1 with f1 (x2) = 2. On the other hand, there exists a consecutively super
edge-magic labeling f2 of F2 such that f2 (y) = n + 1 and f2 (yi) = i for each i ∈ [1, n]. With
these knowledge in hand, consider the vertex labeling f : V (F )→ [1,m+ n+ 1] such that

f (v) =


bm/2c+ n+ 1 if v = x1,
n+ 2 + f1 (v) if v = x2i−1 and i ∈ [2, dm/2e],
n+ f1 (v) if v = x2i and i ∈ [1, bm/2c],
bm/2c+ 1 + f2 (v) if v = y,
f2 (v) if v = yi and i ∈ [1, n].
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Then f extends to a consecutively super edge-magic labeling of F with valence bm/2c + 2m +
3n+ 3. In order to show this, notice first that if we let

U = {x2i : i ∈ [1, bm/2c]} ∪ {yi : i ∈ [1, n]}

and
V = {x2i−1 : i ∈ [2, dm/2e]} ∪ {y} ,

then U and V form the partite sets of F , and

f (U) = [1, bm/2c+ n] and f (V ) = [bm/2c+ n+ 1,m+ n+ 1] .

Next, to see that f (u)+ f (v)+ f (uv) = bm/2c+2m+3n+3 for all uv ∈ E (F ), where u ∈ U
and v ∈ V , notice that

{f (u) + f (v) : uv ∈ E (F )} = [bm/2c+ n+ 3, bm/2c+m+ 2n+ 1]

or, equivalently,
{f (u) + f (v) : uv ∈ E (F )} = [s, s+ |E (F )| − 1] ,

where s = bm/2c+n+3. It remains to notice that if m = 6, then the vertex labeling g : V (F )→
[1, n+ 7] such that (g (xi))

6
i=1 = (1, n+ 5, 4, n+ 7, 3, n+ 4), g (y) = 2, g (y1) = n + 6 and

g (yi) = i + 3 (i ∈ [2, n]) induces a consecutively super edge-magic labeling of F with valence
2n+ 19.

Therefore, we conclude by means of Lemma 1.2 that F is consecutively super edge-magic for
all positive integers m and n with m ≥ 4, which completes the proof.

Applying Theorems 2.1 and 4.6, we obtain the following result.

Corollary 4.3. For all positive integers m and n,

α (Pm ∪ Sn) =

{
m+ n+ 1 if m = 2 or 3,
m+ n if m 6= 2 or 3.

Let F ∼= Pm ∪ Sn, and consider the next cases. For the cases that m = 2 or 3, it follows by
Theorem 4.4 that αs (F ) = +∞. For the cases that m 6= 2 or 3, the consecutively super edge-
magic labeling of F found in the proof of Theorem 4.6 satisfies the hypothesis of Corollary 2.1.
This gives us the upper bound for αs (F ), whereas the lower bound is obtained from Lemma 2.1
and Corollary 4.3 in this case. Therefore, we have the following result.

Corollary 4.4. For every two positive integers m and n,

αs (Pm ∪ Sn) =

{
+∞ if m = 2 or 3,
m+ n if m 6= 2 or 3.
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5. Conclusions

We conclude this paper with some remarks on the conjectures stated in [10, 16] and three new
conjectures.

The authors conjectured in [16] that if F is a forest of order p, then grac (F ) is either p− 1 or
p. It follows from Lemma 2.1 that all the results on alpha-numbers of forests obtained in the last
section validate this conjecture. Moreover, as we mentioned in the beginning of the last section,
µc (F ) is finite for any forest F . Thus, we suspect the following conjecture to be true.

Conjecture 1. If F is a forest, then µc (F ) ≤ 1.

From the work found in the literature, the authors suspect that Conjecture 1 may be very hard to
solve. Hence, we also propose the following two conjectures that are weaker versions of Conjecture
1. To solve any of these two conjectures would be of great interest in the subject of graph labelings.

Conjecture 2. If F is a forest, then there exists a nonnegative integer k such that µc (F ) ≤ k.

Analogous to the conjecture proposed by Figueroa-Centeno et al. [10] that µs (F ) ≤ 1 for
every forest F with two components, we now propose the following conjecture.

Conjecture 3. If F is a forest with two components, then µc (F ) ≤ 1.

The authors conjectured in [16] that β (F ) ≤ p and βs (F ) ≤ p for every forest F of order
p. Of course, if Conjecture 1 is true, then it follows from Theorem 2.1 that α (F ) ≤ p for every
forest F of order p. Indeed, it follows from Lemma 2.1 that if Conjecture 1 is true, so are the
aforementioned conjectures on beta-number and strong beta-number. Moreover, by Lemma 1.4,
the truth of Conjecture 3 implies the truth of the aformentioned conjecture by Figueroa-Centeno et
al. [10].

For the reader interested in different research directions in the same topic, the authors would
like to recommend the paper by Ngurah and Simanjuntak [25].
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