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Abstract

For a nonabelian group G, the non-commuting graph ΓG of G is defined as the graph with vertex-
setG−Z(G), where Z(G) is the center ofG, and two distinct vertices of ΓG are adjacent if they do
not commute in G. In this paper, we investigate the detour index, eccentric connectivity and total
eccentricity polynomials of the non-commuting graph on D2n. We also find the mean distance of
the non-commuting graph on D2n.
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1. Introduction

The concept of non-commuting graph of a finite group has been introduced by Abdollahi et al
in 2006 [1]. For a non-abelian group G, associate a graph ΓG with it such that the vertex-set of
ΓG is G − Z(G), where Z(G) is the center of G, and two distinct vertices x and y are adjacent
if they don’t commute in G, that is, xy 6= yx. Several works on assigning a graph to a group
and investigation of algebraic properties of group using the associated graph have been done, for
example, see [3, 7, 8, 12, 6, 2].
All graphs are considered to be simple, which are undirected with no loops or multiple edges. Let
Γ be any graph, the sets of vertices and edges of Γ are denoted by V (Γ) and E(Γ), respectively.
The cardinality of the vertex-set V (Γ) is called the order of the graph Γ and is denoted by |V (Γ)|
and the number of edges of the graph Γ is called the size of Γ, and denoted by |E(Γ)|. The graph
Γ is called split if V (Γ) = S ∪ K, where S is an independent set and the subgraph induced
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by K is a complete graph. For a vertex v in Γ, the number of edges incident to v is called the
degree of v and is denoted by degΓ(v). The eccentricity of a vertex v in Γ, denoted by ecc(v), is
the largest distance between v and any other vertex u in Γ. For vertices u and v in a graph Γ, a
u − v path in Γ is u − v walk with no vertices repeated. The shortest (longest) u − v path in a
graph Γ, denoted by d(u, v) (D(u, v)), is called the distance (detour distance) between vertices
u and v in Γ. The detour index, eccentric connectivity and total eccentricity polynomials are
defined as D(ΓΩ, x) =

∑
u,v∈V (Γ) x

D(u,v) [11], Ξ(Γ, x) =
∑

u∈V (Γ) degΓ(u)xecc(u) and Θ(Γ, x) =∑
u∈V (Γ) x

ecc(u) [10], respectively. The detour index dd(Γ), the eccentric connectivity index and
the total eccentricity ξc(Γ) of a graph Γ are the first derivatives of their corresponding polynomials
at x = 1, respectively. A transmission of a vertex v in Γ is σ(v,Γ) = Σu∈V (Γ)d(u, v). The
transmission of a graph Γ is σ(Γ) = Σu∈V (Γ)σ(u,Γ). The mean (average) distance of a graph Γ is
µ(Γ) = σ(Γ)

p(p−1)
, where p is the order of Γ, see [4, 5, 9]. In this paper, we study some properties of

non-commuting graph of dihedral groups. The dihedral group D2n of order 2n is defined by

D2n = 〈r, s : rn = s2 = 1, srs = r−1〉

for any n ≥ 3, and the center of D2n is Z(D2n) =

{
{e}, if n is odd;
{e, r n

2 }, if n is even. Throughout this

article, we assume that Ω1 = {ri : 1 ≤ i ≤ n}−Z(D2n), and Ω2 = {sri : 1 ≤ i ≤ n}. This article
is organized as follows: In the present section, we give some important definitions and notations.
In Section 2, we study some basic properties of the non-commuting graph ΓΩ of D2n. We see that
ΓΩ is a split graph if n is an odd integer.
In Section 3, we find the detour index, eccentric connectivity and total eccentricity polynomials of
the non-commuting graph ΓΩ. In Section 4, we find the mean distance of the graph ΓΩ.

2. Some properties of the non-commuting graph of D2n

Recall that, for any n ≥ 3, D2n = 〈r, s : rn = s2 = 1, srs = r−1〉, Ω1 = {ri : 1 ≤ i ≤
n} − Z(D2n), and Ω2 = {sri : 1 ≤ i ≤ n}.

We start with the following lemma, which has been proved in [1].

Lemma 2.1. Let G be any non-abelian finite group and a be any vertex of ΓG. Then degΓG
(a) =

|G| − |CG(a)|, where CG(a) is the centralizer of the element a in the group G.

According to the above lemma, we can state the following.

Theorem 2.1. In the graph ΓΩ, where Ω = Ω1 ∪ Ω2, we have
1. degΓΩ

(ri) = n for any n,

2. degΓΩ
(sri) =

{
2n− 2, if n is odd;
2n− 4, if n is even.

Proof. 1. Since CD2n(ri) = {ri : 1 ≤ i ≤ n}, then, from Lemma 2.1, degΓΩ
(ri) = |D2n| −

|CD2n(ri)| = 2n− n = n.
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2. If n is odd, thenCD2n(sri) = {e, sri} for all i, 1 ≤ i ≤ n. This follows that degΓΩ
(sri) = 2n−2

for all 1 ≤ i ≤ n. If n is even, then CD2n(sri) = {e, r n
2 , sri, sr

n
2

+i} for all 1 ≤ i ≤ n. Thus,
degΓΩ

(sri) = 2n− 4 for all 1 ≤ i ≤ n.

Theorem 2.2. Let ΓΩ be a non-commuting graph on D2n.
1. If Ω = Ω1, then ΓΩ = K l, where l = |Ω1|.
2. If Ω = Ω2, then

ΓΩ =

{
Kn, if n is odd;
Kn − n

2
K2, if n is even.

where n
2
K2 denotes n

2
copies of K2.

Proof. 1. The centralizer of ri, 1 ≤ i ≤ n, is CD2n(ri) = {ri : 1 ≤ i ≤ n} of size n, then there is
no edge between any pair of vertices in ΓΩ1 . Thus, ΓΩ1 = K l, where l = |Ω1|.
2. When n is odd. Since the element sri, where i = 1, 2, ..., n, has centralizer CD2n(sri) =
{e, sri} of size 2, so let Ω = Ω2 = {sr, sr2, ..., srn}. Then the subgraph ΓΩ = Kn is complete.
When n is even. Since CD2n(sri) = {e, r n

2 , sri, sr
n
2

+i} for all 1 ≤ i ≤ n. Then there is no edge
between the vertices sri and sr

n
2

+i in ΓΩ for all 1 ≤ i ≤ n. Therefore, ΓΩ = Kn − n
2
K2

Theorem 2.3. Let n ≥ 3 be an odd integer andH be a subset ofD2n−Z(D2n). Then ΓH = K1,n−1

if and only if H = {sri, r, r2, · · · , rn−1} for some i.

Proof. Suppose that ΓH = K1,n. By Theorem 2.1, H = {sri, r, r2, · · · , rn−1} for some i. Con-
versely, suppose H = {sri, r, r2, · · · , rn−1}. Then CH(sri) = {sri} and CH(rj) = {r, r2, · · · ,
rn−1} for 1 ≤ j<n. Thus, ΓH = K1,n−1.

Corollary 2.1. Let n ≥ 3 be an odd integer and Ω = Ω1 ∪ Ω2. Then ΓΩ is a split graph.

Proof. The proof follows from Theorem 2.2 and Theorem 2.3.

Theorem 2.4. Let ΓΩ be a non-commuting graph on D2n, where Ω = Ω1 ∪ Ω2. We have

|E(ΓΩ)| =

{
3n(n−1)

2
, if n is odd;

3n(n−2)
2

, if n is even.

Proof. It is clear that Ω1 ∩ Ω2 = ∅ and Ω1 ∪ Ω2 = D2n − Z(D2n) = Ω. According to n, there are
two cases to consider.
Case 1. If n is odd, then the subgraph induced by Ω1 has no edges and the subgraph induced
by Ω2 is complete. Thus, the number of edges in ΓΩ is sum of the number of edges in 〈Ω2〉 and
the number of edges from set of vertices in Ω1 to set of vertices in Ω2. Therefore, |E(ΓΩ)| =
n(n−1)

2
+ n(n− 1) = 3n(n−1)

2
.

Case 2. If n is even, then the subgraph induced by Ω1 has no edges and the subgraph induced by
Ω2 has n(n−1)

2
− n

2
= n(n−2)

2
edges. Thus, the number of edges in ΓΩ is sum of the number of edges

in 〈Ω2〉 and the number of edges from set of vertices in Ω1 to set of vertices in Ω2. Therefore,
|E(ΓΩ)| = n(n−2)

2
+ n(n− 2) = 3n(n−2)

2
.
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3. Detour index, eccentric connectivity and total eccentricity polynomials of non-commuting
graphs on D2n

Theorem 3.1. Let ΓΩ be a non-commuting graph on D2n, where Ω = Ω1 ∪ Ω2. Then for any
u, v ∈ ΓΩ,

D(u, v) =

{
2n− 2, if n is odd;
2n− 3, if n is even.

Proof. There are two cases. When n is odd. From Theorem 2.2 and Theorem 2.3, we see that no
two vertices in Ω1 are adjacent, any pair of distinct vertices in Ω2 are adjacent, and each vertex in
Ω1 is adjacent to every vertex in Ω2. Then for all u, v ∈ Ω, there is a u− v path of length 2n− 2.
When n is even. Again, no two vertices in Ω1 are adjacent, each vertex in Ω1 is adjacent to every
vertex in Ω2, and any pair of distinct vertices u and v in Ω2 are adjacent if u, v /∈ {sri, sr n

2
+i} for

1 ≤ i ≤ n
2
. So, for all u, v ∈ Ω, there is a u− v path of length 2n− 3.

Theorem 3.2. Let ΓΩ be a non-commuting graph on D2n, where Ω = Ω1 ∪ Ω2. Then

D(ΓΩ, x) =

{
(n− 1)(2n− 1)x2n−2, if n is odd;
(n− 1)(2n− 3)x2n−3, if n is even.

Proof. Case 1. n is odd. Since |ΓΩ| = 2n− 1, there are
(

2n−1
2

)
= (n− 1)(2n− 1) possibilities of

distinct pairs of vertices. By Theorem 3.1, D(u, v) = 2n− 2 for any u, v ∈ ΓΩ. Then D(ΓΩ, x) =∑
{u,v} x

D(u,v) =
(

2n−1
2

)
x2n−2 = (n− 1)(2n− 1)x2n−2.

Case 2. n is even. We have that |ΓΩ| = 2n − 2 and the possibility of taking distinct pairs of
vertices form ΓΩ is

(
2n−2

2

)
= (n − 1)(2n − 3). From Theorem 3.1, we deduce that D(ΓΩ, x) =∑

{u,v} x
D(u,v) =

(
2n−2

2

)
x2n−3 = (n− 1)(2n− 3)x2n−3.

Corollary 3.1. For the graph ΓΩ,

dd(ΓΩ) =

{
2(n− 1)2(2n− 1), if n is odd;
(n− 1)(2n− 3)2, if n is even.

Proof. It is clear that dd(ΓΩ) = d
dx

(D(ΓΩ, x))|x=1. From Theorem 3.2, the result follows.

Theorem 3.3. Let ΓΩ be a non-commuting graph on D2n, where Ω = Ω1 ∪ Ω2.

1. When n is odd, then

ecc(v) =

{
2, if v ∈ Ω1;
1, if v ∈ Ω2.

2. When n is even, then ecc(v) = 2 for each v ∈ Ω.

Proof. 1. When n is odd. There is no edge between any pair of vertices in Ω1 and each vertex in
Ω2 is adjacent to every vertex in Ω. So the maximum distance between any vertex of Ω1 and the
other vertices in Ω is 2 and the maximum distance between any vertex of Ω2 and the other vertices
in Ω is 1.
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2. When n is even. Again, There is no edge between any pair of vertices in Ω1. Also, each vertex
in Ω1 is adjacent to every vertex in Ω2. Thus, ecc(v) = 2 for each v ∈ Ω1. By Theorem 2.2, the
subgraph ΓΩ2 is not a complete graph because there is no edge between the vertices sri and sri+

n
2 .

This means that the maximum distance between any vertex in Ω2 and any other vertex in Ω is 2, so
ecc(v) = 2 for each v ∈ Ω2.

From the above theorem, we can have the following.

Theorem 3.4. Let ΓΩ be a non-commuting graph on D2n, where Ω = Ω1 ∪ Ω2. Then
1.

Ξ(ΓΩ, x) =

{
n(n− 1)x2 + 2n(n− 1)x, if n is odd;
3n(n− 2)x2, if n is even.

2.

Θ(ΓΩ, x) =

{
(n− 1)x2 + nx, if n is odd;
2(n− 1)x2, if n is even.

Proof. The proof follows directly from Theorem 2.1 and Theorem 3.3.

From the above theorem, one can obtain the eccentric connectivity index and the total eccen-
tricity of a graph ΓΩ from their corresponding polynomials by computing their first derivatives at
x = 1.

Corollary 3.2. Let ΓΩ be a non-commuting graph on D2n, where Ω = Ω1 ∪ Ω2. Then

ξc(ΓΩ) =

{
4n(n− 1), if n is odd;
6n(n− 2), if n is even.

4. The mean distance of the graph ΓΩ

Through this section we find the mean (average) distance of the graph ΓΩ.

Lemma 4.1. In the graph ΓΩ, where n is odd, the transmission of each vertex ri is σ(ri,ΓΩ) =
3n − 4 for all 1 ≤ i ≤ n − 1 and the transmission of a vertex sri is σ(sri,ΓΩ) = 2n − 2 for all
1 ≤ i ≤ n.

Proof. The vertex-set of the graph ΓΩ is V (ΓΩ) = {ri, srj : 1 ≤ i < n, 1 ≤ j ≤ n}. Then
|V (ΓΩ)| = 2n− 1, where n is odd. A vertex ri is adjacent with all vertices srj for all 1 ≤ j ≤ n,
so, d(ri, srj) = 1 for all 1 ≤ i ≤ n− 1 and all 1 ≤ j ≤ n. While a vertex ri is not adjacent to rj

for all i 6= j, 1 ≤ i ≤ n − 1 and 1 ≤ j ≤ n, then d(ri, rj) = 2 for all 1 ≤ i ≤ n − 1, 1 ≤ j ≤ n
and i 6= j. So,

σ(ri,ΓΩ) = Σ1≤j<n
j 6=i

d(ri, rj) + Σ1≤j≤nd(ri, srj) = 2(n− 2) + n = 3n− 4

for all 1 ≤ i ≤ n − 1. On the other hand every vertex sri is adjacent with srj for all i 6= j,
1 ≤ i, j ≤ n. Therefore, d(sri, srj) = 1, for all i 6= j, 1 ≤ i, j ≤ n. Also, every vertex sri is
adjacent with rj , then d(sri, rj) = 1 for all 1 ≤ i ≤ n, 1 ≤ j ≤ n− 1. So,

σ(sri,ΓΩ) = Σ1≤i,j≤n
i 6=j

d(sri, srj) + Σ1≤j<nd(sri, rj) = (n− 1) + (n− 1) = 2n− 2,

for all 1 ≤ i ≤ n.

237



www.ejgta.org

On the Non-Commuting Graph of Dihedral Group | S.M.S. Khasraw et al.

Lemma 4.2. In the graph ΓΩ, where n is even, the transmission of each vertex ri is σ(ri,ΓΩ) =
3n − 6 for all 1 ≤ i ≤ n − 1 and the transmission of a vertex sri is σ(sri,ΓΩ) = 2n − 2 for all
1 ≤ i ≤ n.

Proof. Let M = {1, 2, . . . , n− 1}− {n/2}. Then the vertex-set of the graph ΓΩ, where n is even,
is V (ΓΩ) = {ri, srj : i ∈ M, 1 ≤ j ≤ n}. So, |V (ΓΩ)| = 2n − 2. A vertex ri is adjacent with
all vertices srj for all i ∈ M and all 1 ≤ j ≤ n. Thus, d(ri, srj) = 1 for all i ∈ M and all
1 ≤ j ≤ n. Notice that every two vertices ri and rj are non-adjacent for all i, j ∈ M and i 6= j,
then d(ri, rj) = 2 for all i, j ∈M and i 6= j. So,

σ(ri,ΓΩ) = Σj∈S
j 6=i
d(ri, rj) + Σ1≤j≤nd(ri, srj) = 2(n− 3) + n = 3n− 6

for all i ∈ M . Also, every vertex sri is adjacent with srj for all i 6= j, 1 ≤ i ≤ n/2, and all
j ∈ {1, 2, . . . , n− 1}− {i+ n/2}, then d(sri, srj) = 1, for all j ∈ {1, 2, . . . , n− 1}− {i+ n/2},
and d(sri, sri+n/2) = 2, for all 1 ≤ i ≤ n/2. Since each vertex sri is adjacent with all vertices rj ,
for all 1 ≤ i ≤ n, and j ∈M , then d(sri, rj) = 1. Therefore,

σ(sri,ΓΩ) = Σ1≤j≤n
j 6=i

d(sri, srj) + Σj∈Sd(sri, rj) = (n− 2) + 2 + (n− 2) = 2n− 2,

for all 1 ≤ i ≤ n.

Theorem 4.1. The mean distance of the graph ΓΩ, where n is odd, is µ(ΓΩ) = 5n−4
4n−2

.

Proof. By Lemma 4.1, we see that the transmission of the graph ΓΩ is

σ(ΓΩ) = Σn−1
i=1 σ(ri,ΓΩ) + Σn

i=1σ(sri,ΓΩ)

= (n− 1)(3n− 4) + n(2n− 2)

= 5n2 − 9n+ 4.

Notice that |V (ΓΩ)| = 2n− 1. Therefore, µ(ΓΩ) = σ(ΓΩ)
|V (ΓΩ)|(|V (ΓΩ)|−1)

= 5n2−9n+4
(2n−1)(2n−2)

= 5n−4
4n−2

.

Theorem 4.2. The mean distance of the graph ΓΩ, where n is even, is µ(ΓΩ) = 5n2−14n+12
(2n−2)(2n−3)

.

Proof. By using Lemma 4.2, we can find the transmission of the graph ΓΩ which is

σ(ΓΩ) = Σn−1
i=1
i 6=n/2

σ(ri,ΓΩ) + Σn
i=1σ(sri,ΓΩ)

= (n− 2)(3n− 6) + n(2n− 2)

= 5n2 − 14n+ 12.

Notice that |V (ΓΩ)| = 2n− 2. Therefore, µ(ΓΩ) = σ(ΓΩ)
|V (ΓΩ)|(|V (ΓΩ)|−1)

= 5n2−14n+12
(2n−2)(2n−3)

.
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