

Electronic Journal of Graph Theory and Applications

On the non-commuting graph of dihedral group

Sanhan Muhammad Salih Khasraw*, Ivan Dler Ali, Rashad Rashid Haji

Department of Mathematics, College of Education, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq

sanhan.khasraw@su.edu.krd, evan.ali1@su.edu.krd, rashad.haji@su.edu.krd

Abstract

For a nonabelian group G, the non-commuting graph Γ_G of G is defined as the graph with vertexset G - Z(G), where Z(G) is the center of G, and two distinct vertices of Γ_G are adjacent if they do not commute in G. In this paper, we investigate the detour index, eccentric connectivity and total eccentricity polynomials of the non-commuting graph on D_{2n} . We also find the mean distance of the non-commuting graph on D_{2n} .

Keywords: dihedral group, non-commuting graph, detour distance, mean distance Mathematics Subject Classification : 05C12, 05C25, 05C31, 05C40 DOI: 10.5614/ejgta.2020.8.2.3

1. Introduction

The concept of non-commuting graph of a finite group has been introduced by Abdollahi *et al* in 2006 [1]. For a non-abelian group G, associate a graph Γ_G with it such that the vertex-set of Γ_G is G - Z(G), where Z(G) is the center of G, and two distinct vertices x and y are adjacent if they don't commute in G, that is, $xy \neq yx$. Several works on assigning a graph to a group and investigation of algebraic properties of group using the associated graph have been done, for example, see [3, 7, 8, 12, 6, 2].

All graphs are considered to be simple, which are undirected with no loops or multiple edges. Let Γ be any graph, the sets of vertices and edges of Γ are denoted by $V(\Gamma)$ and $E(\Gamma)$, respectively. The cardinality of the vertex-set $V(\Gamma)$ is called the *order* of the graph Γ and is denoted by $|V(\Gamma)|$ and the number of edges of the graph Γ is called the *size* of Γ , and denoted by $|E(\Gamma)|$. The graph Γ is called *split* if $V(\Gamma) = S \cup K$, where S is an independent set and the subgraph induced

Received: 20 February 2019, Revised: 1 March 2020, Accepted: 29 March 2020.

^{*}Corresponding author

by K is a complete graph. For a vertex v in Γ , the number of edges incident to v is called the *degree* of v and is denoted by $deg_{\Gamma}(v)$. The *eccentricity* of a vertex v in Γ , denoted by ecc(v), is the largest distance between v and any other vertex u in Γ . For vertices u and v in a graph Γ , a u - v path in Γ is u - v walk with no vertices repeated. The shortest (longest) u - v path in a graph Γ , denoted by d(u, v) (D(u, v)), is called the *distance (detour distance)* between vertices u and v in Γ . The *detour index*, *eccentric connectivity* and *total eccentricity polynomials* are defined as $D(\Gamma_{\Omega}, x) = \sum_{u, v \in V(\Gamma)} x^{D(u,v)}$ [11], $\Xi(\Gamma, x) = \sum_{u \in V(\Gamma)} deg_{\Gamma}(u)x^{ecc(u)}$ and $\Theta(\Gamma, x) = \sum_{u \in V(\Gamma)} x^{ecc(u)}$ [10], respectively. The *detour index* $dd(\Gamma)$, the *eccentric connectivity index* and the *total eccentricity* $\xi^c(\Gamma)$ of a graph Γ are the first derivatives of their corresponding polynomials at x = 1, respectively. A *transmission* of a vertex v in Γ is $\sigma(v, \Gamma) = \sum_{u \in V(\Gamma)} d(u, v)$. The transmission of a graph Γ is $\sigma(\Gamma) = \sum_{u \in V(\Gamma)} \sigma(u, \Gamma)$. The *mean (average) distance* of a graph Γ is $\mu(\Gamma) = \frac{\sigma(\Gamma)}{p(p-1)}$, where p is the order of Γ , see [4, 5, 9]. In this paper, we study some properties of non-commuting graph of dihedral groups. The dihedral group D_{2n} of order 2n is defined by

$$D_{2n} = \langle r, s : r^n = s^2 = 1, srs = r^{-1} \rangle$$

for any $n \ge 3$, and the center of D_{2n} is $Z(D_{2n}) = \begin{cases} \{e\}, & \text{if } n \text{ is odd;} \\ \{e, r^{\frac{n}{2}}\}, & \text{if } n \text{ is even.} \end{cases}$ Throughout this article, we assume that $\Omega_1 = \{r^i : 1 \le i \le n\} - Z(D_{2n})$, and $\Omega_2 = \{sr^i : 1 \le i \le n\}$. This article is organized as follows: In the present section, we give some important definitions and notations. In Section 2, we study some basic properties of the non-commuting graph Γ_{Ω} of D_{2n} . We see that Γ_{Ω} is a split graph if n is an odd integer.

In Section 3, we find the detour index, eccentric connectivity and total eccentricity polynomials of the non-commuting graph Γ_{Ω} . In Section 4, we find the mean distance of the graph Γ_{Ω} .

2. Some properties of the non-commuting graph of D_{2n}

Recall that, for any $n \ge 3$, $D_{2n} = \langle r, s : r^n = s^2 = 1$, $srs = r^{-1} \rangle$, $\Omega_1 = \{r^i : 1 \le i \le n\} - Z(D_{2n})$, and $\Omega_2 = \{sr^i : 1 \le i \le n\}$.

We start with the following lemma, which has been proved in [1].

Lemma 2.1. Let G be any non-abelian finite group and a be any vertex of Γ_G . Then $deg_{\Gamma_G}(a) = |G| - |C_G(a)|$, where $C_G(a)$ is the centralizer of the element a in the group G.

According to the above lemma, we can state the following.

Theorem 2.1. In the graph Γ_{Ω} , where $\Omega = \Omega_1 \cup \Omega_2$, we have 1. $deg_{\Gamma_{\Omega}}(r^i) = n$ for any n, 2. $deg_{\Gamma_{\Omega}}(sr^i) = \begin{cases} 2n-2, & \text{if } n \text{ is odd;} \\ 2n-4, & \text{if } n \text{ is even.} \end{cases}$

Proof. 1. Since $C_{D_{2n}}(r^i) = \{r^i : 1 \le i \le n\}$, then, from Lemma 2.1, $deg_{\Gamma_{\Omega}}(r^i) = |D_{2n}| - |C_{D_{2n}}(r^i)| = 2n - n = n$.

2. If n is odd, then $C_{D_{2n}}(sr^i) = \{e, sr^i\}$ for all $i, 1 \le i \le n$. This follows that $deg_{\Gamma_{\Omega}}(sr^i) = 2n-2$ for all $1 \le i \le n$. If n is even, then $C_{D_{2n}}(sr^i) = \{e, r^{\frac{n}{2}}, sr^i, sr^{\frac{n}{2}+i}\}$ for all $1 \le i \le n$. Thus, $deg_{\Gamma_{\Omega}}(sr^i) = 2n-4$ for all $1 \le i \le n$. \Box

Theorem 2.2. Let Γ_{Ω} be a non-commuting graph on D_{2n} .

1. If $\Omega = \Omega_1$, then $\Gamma_{\Omega} = \overline{K}_l$, where $l = |\Omega_1|$. 2. If $\Omega = \Omega_2$, then $\Gamma_{\Omega} = \begin{cases} K_n, & \text{if } n \text{ is odd;} \\ K_n - \frac{n}{2}K_2, & \text{if } n \text{ is even.} \end{cases}$

where $\frac{n}{2}K_2$ denotes $\frac{n}{2}$ copies of K_2 .

Proof. 1. The centralizer of r^i , $1 \le i \le n$, is $C_{D_{2n}}(r^i) = \{r^i : 1 \le i \le n\}$ of size n, then there is no edge between any pair of vertices in Γ_{Ω_1} . Thus, $\Gamma_{\Omega_1} = \overline{K}_l$, where $l = |\Omega_1|$.

2. When *n* is odd. Since the element sr^i , where i = 1, 2, ..., n, has centralizer $C_{D_{2n}}(sr^i) = \{e, sr^i\}$ of size 2, so let $\Omega = \Omega_2 = \{sr, sr^2, ..., sr^n\}$. Then the subgraph $\Gamma_{\Omega} = K_n$ is complete.

When *n* is even. Since $C_{D_{2n}}(sr^i) = \{e, r^{\frac{n}{2}}, sr^i, sr^{\frac{n}{2}+i}\}$ for all $1 \le i \le n$. Then there is no edge between the vertices sr^i and $sr^{\frac{n}{2}+i}$ in Γ_{Ω} for all $1 \le i \le n$. Therefore, $\Gamma_{\Omega} = K_n - \frac{n}{2}K_2$

Theorem 2.3. Let $n \ge 3$ be an odd integer and H be a subset of $D_{2n} - Z(D_{2n})$. Then $\Gamma_H = K_{1,n-1}$ if and only if $H = \{sr^i, r, r^2, \cdots, r^{n-1}\}$ for some i.

Proof. Suppose that $\Gamma_H = K_{1,n}$. By Theorem 2.1, $H = \{sr^i, r, r^2, \cdots, r^{n-1}\}$ for some *i*. Conversely, suppose $H = \{sr^i, r, r^2, \cdots, r^{n-1}\}$. Then $C_H(sr^i) = \{sr^i\}$ and $C_H(r^j) = \{r, r^2, \cdots, r^{n-1}\}$ for $1 \le j < n$. Thus, $\Gamma_H = K_{1,n-1}$.

Corollary 2.1. Let $n \ge 3$ be an odd integer and $\Omega = \Omega_1 \cup \Omega_2$. Then Γ_{Ω} is a split graph.

Proof. The proof follows from Theorem 2.2 and Theorem 2.3.

Theorem 2.4. Let Γ_{Ω} be a non-commuting graph on D_{2n} , where $\Omega = \Omega_1 \cup \Omega_2$. We have

$$|E(\Gamma_{\Omega})| = \begin{cases} \frac{3n(n-1)}{2}, & \text{if } n \text{ is odd;} \\ \frac{3n(n-2)}{2}, & \text{if } n \text{ is even.} \end{cases}$$

Proof. It is clear that $\Omega_1 \cap \Omega_2 = \emptyset$ and $\Omega_1 \cup \Omega_2 = D_{2n} - Z(D_{2n}) = \Omega$. According to *n*, there are two cases to consider.

Case 1. If *n* is odd, then the subgraph induced by Ω_1 has no edges and the subgraph induced by Ω_2 is complete. Thus, the number of edges in Γ_{Ω} is sum of the number of edges in $\langle \Omega_2 \rangle$ and the number of edges from set of vertices in Ω_1 to set of vertices in Ω_2 . Therefore, $|E(\Gamma_{\Omega})| = \frac{n(n-1)}{2} + n(n-1) = \frac{3n(n-1)}{2}$.

Case 2. If *n* is even, then the subgraph induced by Ω_1 has no edges and the subgraph induced by Ω_2 has $\frac{n(n-1)}{2} - \frac{n}{2} = \frac{n(n-2)}{2}$ edges. Thus, the number of edges in Γ_{Ω} is sum of the number of edges in $\langle \Omega_2 \rangle$ and the number of edges from set of vertices in Ω_1 to set of vertices in Ω_2 . Therefore, $|E(\Gamma_{\Omega})| = \frac{n(n-2)}{2} + n(n-2) = \frac{3n(n-2)}{2}$.

3. Detour index, eccentric connectivity and total eccentricity polynomials of non-commuting graphs on D_{2n}

Theorem 3.1. Let Γ_{Ω} be a non-commuting graph on D_{2n} , where $\Omega = \Omega_1 \cup \Omega_2$. Then for any $u, v \in \Gamma_{\Omega}$,

$$D(u,v) = \begin{cases} 2n-2, & \text{if } n \text{ is odd;} \\ 2n-3, & \text{if } n \text{ is even.} \end{cases}$$

Proof. There are two cases. When n is odd. From Theorem 2.2 and Theorem 2.3, we see that no two vertices in Ω_1 are adjacent, any pair of distinct vertices in Ω_2 are adjacent, and each vertex in Ω_1 is adjacent to every vertex in Ω_2 . Then for all $u, v \in \Omega$, there is a u - v path of length 2n - 2. When n is even. Again, no two vertices in Ω_1 are adjacent, each vertex in Ω_1 is adjacent to every vertex in Ω_2 , and any pair of distinct vertices u and v in Ω_2 are adjacent if $u, v \notin \{sr^i, sr^{\frac{n}{2}+i}\}$ for $1 \le i \le \frac{n}{2}$. So, for all $u, v \in \Omega$, there is a u - v path of length 2n - 3.

Theorem 3.2. Let Γ_{Ω} be a non-commuting graph on D_{2n} , where $\Omega = \Omega_1 \cup \Omega_2$. Then

$$D(\Gamma_{\Omega}, x) = \begin{cases} (n-1)(2n-1)x^{2n-2}, & \text{if } n \text{ is odd;} \\ (n-1)(2n-3)x^{2n-3}, & \text{if } n \text{ is even.} \end{cases}$$

Proof. Case 1. n is odd. Since $|\Gamma_{\Omega}| = 2n - 1$, there are $\binom{2n-1}{2} = (n-1)(2n-1)$ possibilities of distinct pairs of vertices. By Theorem 3.1, D(u, v) = 2n - 2 for any $u, v \in \Gamma_{\Omega}$. Then $D(\Gamma_{\Omega}, x) = \sum_{\{u,v\}} x^{D(u,v)} = \binom{2n-1}{2} x^{2n-2} = (n-1)(2n-1)x^{2n-2}$.

Case 2. n is even. We have that $|\Gamma_{\Omega}| = 2n - 2$ and the possibility of taking distinct pairs of vertices form Γ_{Ω} is $\binom{2n-2}{2} = (n-1)(2n-3)$. From Theorem 3.1, we deduce that $D(\Gamma_{\Omega}, x) = \sum_{\{u,v\}} x^{D(u,v)} = \binom{2n-2}{2} x^{2n-3} = (n-1)(2n-3)x^{2n-3}$.

Corollary 3.1. For the graph Γ_{Ω} ,

$$dd(\Gamma_{\Omega}) = \begin{cases} 2(n-1)^2(2n-1), & \text{ if } n \text{ is odd;} \\ (n-1)(2n-3)^2, & \text{ if } n \text{ is even.} \end{cases}$$

Proof. It is clear that $dd(\Gamma_{\Omega}) = \frac{d}{dx}(D(\Gamma_{\Omega}, x))|_{x=1}$. From Theorem 3.2, the result follows.

Theorem 3.3. Let Γ_{Ω} be a non-commuting graph on D_{2n} , where $\Omega = \Omega_1 \cup \Omega_2$.

1. When n is odd, then

$$ecc(v) = \begin{cases} 2, & \text{if } v \in \Omega_1; \\ 1, & \text{if } v \in \Omega_2. \end{cases}$$

2. When n is even, then ecc(v) = 2 for each $v \in \Omega$.

Proof. 1. When *n* is odd. There is no edge between any pair of vertices in Ω_1 and each vertex in Ω_2 is adjacent to every vertex in Ω . So the maximum distance between any vertex of Ω_1 and the other vertices in Ω is 2 and the maximum distance between any vertex of Ω_2 and the other vertices in Ω is 1.

2. When n is even. Again, There is no edge between any pair of vertices in Ω_1 . Also, each vertex in Ω_1 is adjacent to every vertex in Ω_2 . Thus, ecc(v) = 2 for each $v \in \Omega_1$. By Theorem 2.2, the subgraph Γ_{Ω_2} is not a complete graph because there is no edge between the vertices sr^i and $sr^{i+\frac{n}{2}}$. This means that the maximum distance between any vertex in Ω_2 and any other vertex in Ω is 2, so ecc(v) = 2 for each $v \in \Omega_2$.

From the above theorem, we can have the following.

Theorem 3.4. Let Γ_{Ω} be a non-commuting graph on D_{2n} , where $\Omega = \Omega_1 \cup \Omega_2$. Then 1.

$$\Xi(\Gamma_{\Omega}, x) = \begin{cases} n(n-1)x^2 + 2n(n-1)x, & \text{if } n \text{ is odd;} \\ 3n(n-2)x^2, & \text{if } n \text{ is even.} \end{cases}$$

2.

$$\Theta(\Gamma_{\Omega}, x) = \begin{cases} (n-1)x^2 + nx, & \text{if } n \text{ is odd;} \\ 2(n-1)x^2, & \text{if } n \text{ is even.} \end{cases}$$

Proof. The proof follows directly from Theorem 2.1 and Theorem 3.3.

From the above theorem, one can obtain the eccentric connectivity index and the total eccentricity of a graph Γ_{Ω} from their corresponding polynomials by computing their first derivatives at x = 1.

Corollary 3.2. Let Γ_{Ω} be a non-commuting graph on D_{2n} , where $\Omega = \Omega_1 \cup \Omega_2$. Then

$$\xi^{c}(\Gamma_{\Omega}) = \begin{cases} 4n(n-1), & \text{if } n \text{ is odd;} \\ 6n(n-2), & \text{if } n \text{ is even.} \end{cases}$$

4. The mean distance of the graph Γ_{Ω}

Through this section we find the mean (average) distance of the graph Γ_{Ω} .

Lemma 4.1. In the graph Γ_{Ω} , where *n* is odd, the transmission of each vertex r^i is $\sigma(r^i, \Gamma_{\Omega}) = 3n - 4$ for all $1 \le i \le n - 1$ and the transmission of a vertex sr^i is $\sigma(sr^i, \Gamma_{\Omega}) = 2n - 2$ for all $1 \le i \le n$.

Proof. The vertex-set of the graph Γ_{Ω} is $V(\Gamma_{\Omega}) = \{r^i, sr^j : 1 \le i < n, 1 \le j \le n\}$. Then $|V(\Gamma_{\Omega})| = 2n - 1$, where *n* is odd. A vertex r^i is adjacent with all vertices sr^j for all $1 \le j \le n$, so, $d(r^i, sr^j) = 1$ for all $1 \le i \le n - 1$ and all $1 \le j \le n$. While a vertex r^i is not adjacent to r^j for all $i \ne j, 1 \le i \le n - 1$ and $1 \le j \le n$, then $d(r^i, r^j) = 2$ for all $1 \le i \le n - 1, 1 \le j \le n$ and $i \ne j$. So,

$$\sigma(r^{i}, \Gamma_{\Omega}) = \sum_{\substack{1 \le j < n \\ j \ne i}} d(r^{i}, r^{j}) + \sum_{1 \le j \le n} d(r^{i}, sr^{j}) = 2(n-2) + n = 3n - 4$$

for all $1 \le i \le n - 1$. On the other hand every vertex sr^i is adjacent with sr^j for all $i \ne j$, $1 \le i, j \le n$. Therefore, $d(sr^i, sr^j) = 1$, for all $i \ne j, 1 \le i, j \le n$. Also, every vertex sr^i is adjacent with r^j , then $d(sr^i, r^j) = 1$ for all $1 \le i \le n, 1 \le j \le n - 1$. So,

$$\sigma(sr^{i}, \Gamma_{\Omega}) = \sum_{\substack{1 \le i, j \le n \\ i \ne j}} d(sr^{i}, sr^{j}) + \sum_{1 \le j < n} d(sr^{i}, r^{j}) = (n-1) + (n-1) = 2n-2,$$

for all $1 \leq i \leq n$.

www.eigta.org

Lemma 4.2. In the graph Γ_{Ω} , where *n* is even, the transmission of each vertex r^i is $\sigma(r^i, \Gamma_{\Omega}) = 3n - 6$ for all $1 \le i \le n - 1$ and the transmission of a vertex sr^i is $\sigma(sr^i, \Gamma_{\Omega}) = 2n - 2$ for all $1 \le i \le n$.

Proof. Let $M = \{1, 2, ..., n-1\} - \{n/2\}$. Then the vertex-set of the graph Γ_{Ω} , where *n* is even, is $V(\Gamma_{\Omega}) = \{r^i, sr^j : i \in M, 1 \le j \le n\}$. So, $|V(\Gamma_{\Omega})| = 2n - 2$. A vertex r^i is adjacent with all vertices sr^j for all $i \in M$ and all $1 \le j \le n$. Thus, $d(r^i, sr^j) = 1$ for all $i \in M$ and all $1 \le j \le n$. Notice that every two vertices r^i and r^j are non-adjacent for all $i, j \in M$ and $i \ne j$, then $d(r^i, r^j) = 2$ for all $i, j \in M$ and $i \ne j$. So,

$$\sigma(r^{i}, \Gamma_{\Omega}) = \sum_{\substack{j \in S \\ j \neq i}} d(r^{i}, r^{j}) + \sum_{1 \le j \le n} d(r^{i}, sr^{j}) = 2(n-3) + n = 3n - 6$$

for all $i \in M$. Also, every vertex sr^i is adjacent with sr^j for all $i \neq j, 1 \leq i \leq n/2$, and all $j \in \{1, 2, ..., n-1\} - \{i+n/2\}$, then $d(sr^i, sr^j) = 1$, for all $j \in \{1, 2, ..., n-1\} - \{i+n/2\}$, and $d(sr^i, sr^{i+n/2}) = 2$, for all $1 \leq i \leq n/2$. Since each vertex sr^i is adjacent with all vertices r^j , for all $1 \leq i \leq n$, and $j \in M$, then $d(sr^i, r^j) = 1$. Therefore,

$$\sigma(sr^{i}, \Gamma_{\Omega}) = \sum_{\substack{1 \le j \le n \\ j \ne i}} d(sr^{i}, sr^{j}) + \sum_{j \in S} d(sr^{i}, r^{j}) = (n-2) + 2 + (n-2) = 2n-2,$$

for all $1 \leq i \leq n$.

Theorem 4.1. The mean distance of the graph Γ_{Ω} , where n is odd, is $\mu(\Gamma_{\Omega}) = \frac{5n-4}{4n-2}$.

Proof. By Lemma 4.1, we see that the transmission of the graph Γ_{Ω} is

$$\sigma(\Gamma_{\Omega}) = \sum_{i=1}^{n-1} \sigma(r^i, \Gamma_{\Omega}) + \sum_{i=1}^n \sigma(sr^i, \Gamma_{\Omega})$$
$$= (n-1)(3n-4) + n(2n-2)$$
$$= 5n^2 - 9n + 4.$$

Notice that $|V(\Gamma_{\Omega})| = 2n - 1$. Therefore, $\mu(\Gamma_{\Omega}) = \frac{\sigma(\Gamma_{\Omega})}{|V(\Gamma_{\Omega})|(|V(\Gamma_{\Omega})|-1)} = \frac{5n^2 - 9n + 4}{(2n-1)(2n-2)} = \frac{5n-4}{4n-2}$. \Box

Theorem 4.2. The mean distance of the graph Γ_{Ω} , where *n* is even, is $\mu(\Gamma_{\Omega}) = \frac{5n^2 - 14n + 12}{(2n-2)(2n-3)}$

Proof. By using Lemma 4.2, we can find the transmission of the graph Γ_{Ω} which is

$$\sigma(\Gamma_{\Omega}) = \sum_{\substack{i=1\\i\neq n/2}}^{n-1} \sigma(r^i, \Gamma_{\Omega}) + \sum_{i=1}^n \sigma(sr^i, \Gamma_{\Omega})$$
$$= (n-2)(3n-6) + n(2n-2)$$
$$= 5n^2 - 14n + 12.$$

Notice that $|V(\Gamma_{\Omega})| = 2n - 2$. Therefore, $\mu(\Gamma_{\Omega}) = \frac{\sigma(\Gamma_{\Omega})}{|V(\Gamma_{\Omega})|(|V(\Gamma_{\Omega})|-1)} = \frac{5n^2 - 14n + 12}{(2n - 2)(2n - 3)}$.

Acknowledgement

The authors thank the anonymous referee for his/her careful reading.

www.ejgta.org

References

- [1] A. Abdollahi, S. Akbari and H.R. Maimani, Non-commuting graph of a group, *J. Algebra* **298** (2006), 468–492.
- [2] M.R. Alfuraidan and Y.F. Zakariya, Inverse graphs associated with finite groups, *Electron. J. Graph Theory Appl.* **5** (1) (2017), 142–154.
- [3] F. Ali, M. Salman and S. Huang, On the commuting graph of dihedral group, *Comm. Algebra* 44 (6) (2016), 2389–2401.
- [4] I. Althöfer, Average distances in undirected graphs and the removal of vertices, *J. Combin. Theory Ser. B* **48** (1) (1990), 140–142.
- [5] H.J. Bandelt and H.M. Mulder, Distance-hereditary graphs, *J. Combin. Theory Ser. B* **41** (2) (1986), 182–208.
- [6] S. Bera, On the intersection power graph of a finite group, *Electron. J. Graph Theory Appl.* **6** (1) (2018), 178–189.
- [7] E.A. Bertram, Some applications of graph theory to finite groups, *Discrete Math.* **44** (1) (1983), 31–43.
- [8] E.A. Bertram, M. Herzog and A. Mann, On a graph related to conjugacy classes of groups, *Bull. Lond. Math. Soc.* **22** (6) (1990), 569–575.
- [9] D. Bienstock and E. Györi, Average distance in graphs with removed elements, J. Graph Theory **12** (3) (1988), 375–390.
- [10] T. Došlic, M. Ghorbani and M.A. Hosseinzadeh, Eccentric connectivity polynomial of some graph operations, *Util. Math.* 84 (2011), 197–209.
- [11] R.J. Shahkoohi, O. Khormali and A. Mahmiani, The polynomial of detour index for a graph, *World Applied Sciences Journal* 15 (10) (2011), 1473–1483.
- [12] E. Vatandoost and M. Khalili, Domination number of the non-commuting graph of finite groups, *Electron. J. Graph Theory Appl.* **6** (2) (2018), 228–237.