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Abstract

For a poset P = (X,≤P ), the strict-double-bound graph of P is the graph sDB(P ) on V (sDB(P ))
=X for which vertices u and v of sDB(P ) are adjacent if and only if u 6= v and there exist elements
x, y ∈ X distinct from u and v such that x ≤P u ≤P y and x ≤P v ≤P y. The strict-double-
bound number ζ(G) of a graph G is defined as min{ n ; sDB(P ) ∼= G ∪Kn for some poset P}.
We obtain an upper bound of strict-double-bound numbers of graphs with a cut-set generating a
complete subgraph. We also estimate upper bounds of strict-double-bound numbers of chordal
graphs.
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1. Introduction

In this paper we consider finite graphs with no loops and no multiple edges, and finite posets.
For a graph G and S ⊆ V (G), 〈S〉V is the induced subgraph on S and G − S = 〈V (G) − S〉V .
The graph Kn is a graph with n vertices and no edges.

A clique in a graph G is the vertex set of a maximal complete subgraph of G. A family Q =
{Q1, Q2, . . . , Qm} is an edge clique cover ofG if eachQi is a clique ofG and for each uv ∈ E(G),
there exists Qi ∈ Q such that u, v ∈ Qi.
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A partially ordered set (poset) P = (X,≤P ) consists of a non-empty setX and a binary relation
≤P on X which satisfy reflexive law, anti-symmetric law and transitive law:

1. For all u ∈ X , u ≤P u : reflexive law.
2. If u ≤P v and v ≤P u, then u = v : anti-symmetric law.
3. If u ≤P v and v ≤P w, then u ≤P w : transitive law.

For u, v ∈ P , u and v are comparable if u ≤P v or v ≤P u, and otherwise u and v are incompara-
ble.

For a poset P, let Max(P ) be the set of all maximal elements of P and Min(P ) be the set of all
minimal elements of P. For a poset P and an element v ∈ V (P ), UP (v) = {u ∈ V (P ); v ≤P u}
and LP (v) = {u ∈ V (P );u ≤P v}. For a poset P and elements u and v of P , u ‖ v denotes that
u is incomparable with v in P .

McMorris and Zaslavsky [6] introduced concepts of some kinds of graphs on posets, that is, up-
per bound graphs, strict upper bound graphs, double bound graphs and strict-double-bound graphs.
Langley et. al [4] and Scott [10] dealt with interval strict upper bound graphs and chordal strict
upper bound graphs. Cheston and Jap [1] studied upper bound graphs from the viewpoint of algo-
rithms.

We consider strict-double-bound graphs and strict-double-bound numbers. For a poset P =
(X,≤P ), the strict-double-bound graph (sDB-graph) of P is the graph sDB(P ) on V (sDB(P )) =
X for which vertices u and v of sDB(P ) are adjacent if and only if u 6= v and there exist elements
x, y ∈ X distinct from u and v such that x ≤P u ≤P y and x ≤P v ≤P y. We say that a graph G is
a strict-double-bound graph if there exists a poset whose strict-double-bound graph is isomorphic
to G. Note that maximal elements and minimal elements of a poset P are isolated vertices of
sDB(P ). So, a connected graph with at least two vertices is not a strict-double-bound graph. Scott
[11] showed the following result.

Theorem 1.1 (Scott [11]). Any graph that is the disjoint union of a non-trivial component and
enough number of isolated vertices is a strict-double-bound graph.

Therefore, we introduced the strict-double-bound number of a graph in [8]. The strict-double-
bound number ζ(G) of a graph G is defined as min{ n ; sDB(P ) ∼= G ∪Kn for some poset P}.

Scott [11] obtained the following result, using a concept of transitive double competition num-
bers.

Theorem 1.2 (Scott [11]). For a non-trivial connected graph G and a minimal edge clique cover
Q of G,

⌈
2
√
|Q|

⌉
≤ ζ(G) ≤ |Q|+ 1.

In [7] we obtain the following result.

Proposition 1.1 (Ogawa et. al [7]). Let G be a connected graph with at least two vertices and P a
poset with sDB(P ) ∼= G ∪Kζ(G). Then |Max(P ) ∪Min(P )| = ζ(G).

By Theorem 1.2, we obtained that ζ(Kn) = 2 for n ≥ 2. We already obtained strict-double-
bound numbers of K1,n, Pn, Cn and Wn in [3] and [8]. We also gave an upper bound of strict-
double-bound numbers of non-trivial trees in [8].
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The sum G + H of two graphs G and H is the graph with the vertex set V (G + H) =
V (G) ∪ V (H) and the edge set E(G + H) = E(G) ∪ E(H) ∪ {uv ;u ∈ V (G), v ∈ V (H)}. In
[3] we also obtained the following result on the sum operation.

Theorem 1.3 (Konishi et. al [3]). For a graphG with at least two vertices and no isolated vertices,
ζ(Kn +G) = ζ(G) for n ≥ 1.

We consider another operation on graphs. The union G ∪ H of two graphs G and H is the
graph with the vertex set V (G∪H) = V (G)∪V (H) and the edge set E(G∪H) = E(G)∪E(H).
In this paper, we consider graphs with a cut-set generating a complete graph. Using concepts of
cut-sets and union of graphs, we estimate a strict-double-bound number of a graph.

2. Cut-vertices and strict-double-bound numbers

In this section we consider connected graphs and cut-vertices. We obtain the following result.
For a graph G, k(G) is the number of connected components. For a graph G, a vertex v of G is
called a cut-vertex if k(G− v) > k(G).

Theorem 2.1. Let G be a connected graph with a cut-vertex s and G− s has two components G1

and G2. For i = 1, 2, let Hi = 〈V (Gi) ∪ {s}〉V and P (Hi) be a poset such that sDB(P (Hi)) ∼=
Hi ∪Kζ(Hi). Then ζ(G) ≤ ζ(H1) + ζ(H2) − 1.

Proof. For i = 1, 2, let αi be a minimal element of P (Hi) such that αi ≤P (Hi) s. We construct a
poset Q as follows:

1. V (Q) = V (P (H1)) ∪ V (P (H2)) − {α2},
2. x ≤Q x for all x ∈ V (Q),
3. for x ∈Min(P (H1)) ∪ (Min(P (H2)) − {α2}) and y ∈ V (Q), x ≤Q y if x ≤P (Hi) y,
4. for x ∈ V (Q) and y ∈Max(P (H1)) ∪Max(P (H2)), x ≤Q y if x ≤P (Hi) y,
5. for x ∈ V (Q) − (Max(P (H1)) ∪ Min(P (H1)) ∪ Max(P (H2)) ∪ Min(P (H2))) and γ ∈

Max(P (H2)), α1 ≤Q x ≤Q γ and α1 ≤Q γ if α2 ≤P (H2) x ≤P (H2) γ.

Note that H1 ∪H2 = G. We show that sDB(Q) ∼= G ∪Km, where m = ζ(H1) + ζ(H2) − 1. We
consider the following cases.

Case 1. u, v ∈ V (P (Hi))− (Max(P (Hi)) ∪Min(P (Hi))) and uv ∈ E(Hi) (i = 1, 2)
Then there exist a ∈ Min(P (Hi)) and b ∈ Max(P (Hi)) ⊆ Max(Q) such that a ≤P (Hi) u ≤P (Hi) b
and a ≤P (Hi) v ≤P (Hi) b.

Subcase 1.1. a 6= α2

Then a ∈ Min(Q). So a ≤Q u ≤Q b and a ≤Q v ≤Q b. And uv ∈ E(sDB(Q)).
Subcase 1.2. a = α2

Then α1 ≤Q u ≤Q b and α1 ≤Q v ≤Q b. And uv ∈ E(sDB(Q)). Case 2. u, v ∈ V (P (Hi)) −
(Max(P (Hi)) ∪Min(P (Hi))) and uv /∈ E(Hi) (i = 1, 2)
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If LP (H2)(u) ∩ LP (H2)(v) = ∅ for u, v ∈ V (P (H2)), then α2 /∈ LP (H2)(u) ∩ LP (H2)(v) and
LQ(u) ∩ LQ(v) = ∅. Thus for uv /∈ E(Hi), LQ(u) ∩ LQ(v) = ∅ or UQ(u) ∩ UQ(v) = ∅. So
uv /∈ E(sDB(Q)).

Case 3. u ∈ V (P (H1))−(Max(P (H1))∪Min(P (H1))) and v ∈ V (P (H2))−(Max(P (H2))∪
Min(P (H2)))
Then UQ(u) ⊆ UP (H1)(u), UQ(v) ⊆ UP (H2)(v) and UP (H1)(u) ∩ UP (H2)(v) = ∅. Thus UQ(u) ∩
UQ(v) = ∅ and uv /∈ E(sDB(Q)).

Therefore sDB(Q) ∼= G ∪Km, where m = ζ(H1) + ζ(H2) − 1.

3. Cut-sets and strict-double-bound numbers

In this section we consider connected graphs and cut-sets inducing complete subgraphs. For
a graph G, a vertex subset S of V (G) is called a cut-set if k(G − S) > k(G). For a poset P
and S ⊆ V (P ), Max(P ;S) = (

⋃
v∈S UP (v)) ∩ Max(P ), Min(P ;S) = (

⋃
v∈S LP (v)) ∩ Min(P )

and NoMin(P ;S) = {c ∈ Min(P ) ; c ‖ v for all v ∈ S}. Then NoMin(P ;S) = Min(P ) −
Min(P ;S).

We obtain the following result.

Theorem 3.1. Let G be a connected graph with a cut-set S, where the induced subgraph 〈S〉V
is a complete subgraph and G − S has components G1, G2, . . . , Gk. For i = 1, 2, . . . , k, let Hi

= 〈V (Gi) ∪ S〉V and P (Hi) be a poset such that sDB(P (Hi)) ∼= Hi ∪ Kζ(Hi). Then ζ(G) ≤∑k
i=1 |Max(P (Hi))| + max{|Min(P (Hi);S)| ; i = 1, 2, . . . , k} + max{|NoMin(P (Hi);S)| ;

i = 1, 2, . . . , k}.

Proof. For i = 1, 2, . . . , k, let Min(P (Hi);S) = {αi,1, αi,2, . . . , αi,pi} and NoMin(P (Hi);S) =
{βi,1, βi,2, . . . , βi,qi}. We assume that for i = 1, 2, . . . , k, |Min(P (H1);S)| ≥ |Min(P (Hi);S)|
and |NoMin(P (Ht);S)| ≥ |NoMin(P (Hi);S)|. We construct a poset Q as follows:

1. V (Q) =
⋃k
i=1 V (P (Hi)) −

⋃
i 6=1Min(P (Hi);S) −

⋃
i 6=tNoMin(P (Hi);S)

= (
⋃k
i=1 (Max(P (Hi)) ∪ V (Hi))) ∪Min(P (H1);S) ∪ NoMin(P (Ht);S),

2. x ≤Q x for all x ∈ V (Q),
3. for x ∈Min(P (H1);S) ∪ NoMin(P (Ht);S) and y ∈ V (Q), x ≤Q y if x ≤P (Hi) y,
4. for x ∈ V (Q) and y ∈

⋃k
i=1Max(P (Hi)), x ≤Q y if x ≤P (Hi) y,

5. for i = 1, 2, . . . , k, ifw ∈ V (P (Hi))− (Max(P (Hi))∪Min(P (Hi))), αi,j ∈Min(P (Hi);S),
γ ∈ Max(P (Hi)) and αi,j ≤P (Hi) w ≤P (Hi) γ, then α1,j ≤Q w ≤Q γ and α1,j ≤Q γ,

6. for i = 1, 2, . . . , k, ifw ∈ V (P (Hi))− (Max(P (Hi))∪Min(P (Hi))), βi,j ∈NoMin(P (Hi);
S), γ ∈ Max(P (Hi)) and βi,j ≤P (Hi) w ≤P (Hi) γ, then βt,j ≤Q w ≤Q γ and βt,j ≤Q γ.

Note that H1 ∪ H2 ∪ . . . ∪ Hk = G. We show that sDB(Q) ∼= G ∪ Km, where m = (
∑k

i=1

|Max(P (Hi))|) + |Min(P (H1);S)| + |NoMin(P (Ht);S)|. We consider the following cases.
Case 1. u, v ∈ V (P (H1))− (Max(P (H1)) ∪Min(P (H1))) and uv ∈ E(H1)

Then there exist a ∈ Min(P (H1)) and b ∈ Max(P (H1)) ⊆ Max(Q) such that a ≤P (H1) u ≤P (H1)

b and a ≤P (H1) v ≤P (H1) b.
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Subcase 1.1. a ∈ Min(P (H1);S)
Then a ∈ Min(Q). So a ≤Q u ≤Q b and a ≤Q v ≤Q b. And uv ∈ E(sDB(Q)).

Subcase 1.2. a ∈ NoMin(P (H1);S) Then a = β1,j . So βt,j ≤Q u ≤Q b and βt,j ≤Q v ≤Q b.
And uv ∈ E(sDB(Q)).

Case 2. u, v ∈ V (P (Ht))− (Max(P (Ht)) ∪Min(P (Ht))) and uv ∈ E(Ht)
Then there exist a ∈ Min(P (Ht)) and b ∈ Max(P (Ht)) ⊆ Max(Q) such that a ≤P (Ht) u ≤P (Ht) b
and a ≤P (Ht) v ≤P (Ht) b.

Subcase 2.1. a ∈ Min(P (Ht);S)
Then a = αt,j . So α1,j ≤Q u ≤Q b and α1,j ≤Q v ≤Q b. And uv ∈ E(sDB(Q)).

Subcase 2.2. a ∈ NoMin(P (Ht);S)
Then a ∈ Min(Q). So a ≤Q u ≤Q b and a ≤Q v ≤Q b. And uv ∈ E(sDB(Q)).

Case 3. u, v ∈ V (P (Hi))− (Max(P (Hi)) ∪Min(P (Hi))), uv ∈ E(Hi) and i 6= 1, t
Then there exist a ∈ Min(P (Hi)) and b ∈ Max(P (Hi)) ⊆ Max(Q) such that a ≤P (Hi) u ≤P (Hi) b
and a ≤P (Hi) v ≤P (Hi) b.

Subcase 3.1. a ∈ Min(P (Hi);S)
Then a = αi,j . So α1,j ≤Q u ≤Q b and α1,j ≤Q v ≤Q b. And uv ∈ E(sDB(Q)).

Subcase 3.2. a ∈ NoMin(P (Hi);S)
Then a = βi,j . So βt,j ≤Q u ≤Q b and βt,j ≤Q v ≤Q b. And uv ∈ E(sDB(Q)).

Case 4. u, v ∈ V (P (Hi))− (Max(P (Hi)) ∪Min(P (Hi))) and uv /∈ E(Hi)
Then LP (Hi)(u) ∩Min(P (Hi)) = {αi,l1 , αi,l2 , . . . , αi,ls} ∪ {βi,f1 , βi,f2 , . . . , βi,fd} and LP (Hi)(v) ∩
Min(P (Hi)) = {αi,g1 , αi,g2 , . . . , αi,go} ∪ {βi,h1 , βi,h2 , . . . , βi,hr}. ThusLQ(u) = {α1,l1 , α1,l2 , . . . , α1,ls}
∪ {βt,f1 , βt,f2 , . . . , βt,fd} and LQ(v) = {α1,g1 , α1,g2 , . . . , α1,go} ∪ {βt,h1 , βt,h2 , . . . , βt,hr}. Since
uv /∈ E(Hi), LP (Hi)(u) ∩ LP (Hi)(v) = ∅ or UP (Hi)(u) ∩ UP (Hi)(v) = ∅. So LQ(u) ∩ LQ(v) = ∅ or
UQ(u) ∩ UQ(v) = ∅. Thus uv /∈ E(sDB(Q)).

Case 5. u ∈ V (P (Hi))− (Max(P (Hi))∪Min(P (Hi))∪S), v ∈ V (P (Hj))− (Max(P (Hj))∪
Min(P (Hj)) ∪ S) and i 6= j
Then UQ(u) ⊆ UP (Hi)(u), UQ(v) ⊆ UP (Hj)(v) and UP (Hi)(u) ∩ UP (Hj)(v) = ∅. Thus UQ(u) ∩
UQ(v) = ∅ and uv /∈ E(sDB(Q)).

Case 6. u, v ∈ S
Since S ⊆ V (P (H1)) − (Max(P (H1)) ∪Min(P (H1))) and uv ∈ E(H1), uv ∈ E(sDB(Q)) by
Case 1.

Thus sDB(Q) ∼= G ∪Km, where m =
∑k

i=1 |Max(P (Hi))| + |Min(P (H1);S)| + |NoMin(

P (Ht); S)|. Therefore ζ(G) ≤
∑k

i=1 |Max(P (Hi))| + |Min(P (H1);S)| + |NoMin(P (Ht);S)|
=
∑k

i=1 |Max(P (Hi))|+maxi=1,2,...,k |Min(P (Hi);S)|+maxi=1,2,...,k |NoMin(P (Hi);S)|.

4. Chordal graphs

A graph is called a chordal graph if every cycle of length greater than 3 has a chord. We already
know the following result in [2].

Theorem 4.1. For a graph G, G is a chordal graph if and only if every minimal cut-set induces a
complete subgraph of G.
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Since a minimal cut-set of a chordal graph generates a complete subgraph, we have the follow-
ing result on chordal graphs by Theorem 3.1.

Proposition 4.1. Let G be a connected chordal graph.
(1) If G is a complete graph, then ζ(G) = 2.
(2) IfG is a non-complete graph, then ζ(G)≤

∑k
i=1 |Max(P (Hi))|+max{ |Min(P (Hi);S)| ; i =

1, 2, . . . , k}+max{ |NoMin(P (Hi);S)| ; i = 1, 2, . . . , k}, where S ⊆ V (G) is a minimal cut-set,
G1, G2. . . . , Gk are components of G− S, Hi = 〈V (Gi) ∪ S〉V for i = 1, 2, . . . , k and P (Hi) is a
poset such that sDB(P (Hi)) ∼= Hi ∪Kζ(Hi) for i = 1, 2, . . . , k.

5. k-trees

In this section we consider k-trees. A k-tree is a chordal graph that can be constructed from
a complete graph Kk by a sequence of vertex additions in which the neighborhood of each new
vertex is a complete subgraph with k vertices of the current graph. Further k-trees other than
complete graphs are called non-clique k-trees. And k-trees are connected graphs. In [5] and [9]
Lin et. al reported some properties of k-trees.

Let G(Kk; v1, v2, . . . , vm) be a k-tree with the vertex additions sequence v1, v2, . . . , vm. Let PZ
be a poset with V (PZ) = {z1, u0, u1, . . . , uk, z2}, z1 ≤PZ

uj ≤PZ
z2, z1 ≤PZ

z2, z1 ≤PZ
z1,

uj ≤PZ
uj and z2 ≤PZ

z2 for j = 0, 1, . . . , k. Then sDB(PZ) ∼= Kk+1 ∪ K2. We obtain the
following result by Theorem 3.1.

Proposition 5.1. LetG(Kk; v1, v2, · · · , vm) be a k-tree with the vertex addition sequence v1, v2, · · · ,
vm. Then ζ(G(Kk; v1, v2, . . . , vm)) ≤m+ 1.

Proof. The proof is by induction on the length of a vertex addition sequence. Since G(Kk; v1) ∼=
Kk+1, ζ(G(Kk; v1)) = ζ(Kk+1) = 2≤ 1+1. By induction hypothesis, ζ(G(Kk; v1, v2, . . . , vm−1))
≤ m. Let P be a poset such that sDB(P ) ∼= G(Kk; v1, v2, . . . , vm−1) ∪Kn, where n = ζ(G(Kk;
v1, v2, . . . , vm−1)) ≤ m. Let S be the neighborhood of vm of G(Kk; v1, v2, . . . , vm). Then S is
a cut-set of G(Kk; v1, v2, . . . , vm) and generates a complete subgraph with k vertices. Using the
proof methods of Theorem 3.1, we can construct a poset Q from P and PZ such that sDB(Q) ∼=
G(Kk; v1, v2, . . . , vm) ∪ K l. Since sDB(PZ) ∼= Kk+1 ∪ K2, NoMin(PZ ;S) = ∅, Min(PZ ;S) =
{z1} and Max(PZ) = {z2}, l = ζ(G(Kk; v1, v2, . . . , vm−1)) + 1 ≤m+ 1.
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