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Abstract

For a poset P = (X, <p), the strict-double-bound graph of P is the graph sDB(P) on V (sDB(P))
= X for which vertices u and v of sSDB(P) are adjacent if and only if u # v and there exist elements
x,y € X distinct from u and v such that v <p v <p y and x <p v <p y. The strict-double-
bound number ((G) of a graph G is defined as min{ n ; sDB(P) = G U K, for some poset P}.
We obtain an upper bound of strict-double-bound numbers of graphs with a cut-set generating a
complete subgraph. We also estimate upper bounds of strict-double-bound numbers of chordal
graphs.
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1. Introduction

In this paper we consider finite graphs with no loops and no multiple edges, and finite posets.
For a graph G and S C V(G), (S)y is the induced subgraph on S and G — S = (V(G) — S)v.
The graph K, is a graph with n vertices and no edges.

A clique in a graph G is the vertex set of a maximal complete subgraph of G. A family Q =
{Q1,Q2, ...,Q.n}is an edge clique cover of G if each Q); is a clique of GG and for each uv € E(G),
there exists ; € Q such that u,v € Q;.
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A partially ordered set (poset) P = (X, <p) consists of a non-empty set X and a binary relation
<p on X which satisfy reflexive law, anti-symmetric law and transitive law:

1. Forall u € X, u <p u : reflexive law.
2. fu <pwvandv <p u, then u = v : anti-symmetric law.
3. If u <povand v <p w, then u <p w : transitive law.

For u,v € P, u and v are comparable if u <p v or v <p u, and otherwise v and v are incompara-
ble.

For a poset P, let Max(P) be the set of all maximal elements of P and Min(P) be the set of all
minimal elements of P. For a poset P and an element v € V(P), Up(v) = {u € V(P);v <p u}
and Lp(v) = {u € V(P);u <p v}. For a poset P and elements u and v of P, u || v denotes that
u is incomparable with v in P.

McMorris and Zaslavsky [6] introduced concepts of some kinds of graphs on posets, that is, up-
per bound graphs, strict upper bound graphs, double bound graphs and strict-double-bound graphs.
Langley et. al [4] and Scott [10] dealt with interval strict upper bound graphs and chordal strict
upper bound graphs. Cheston and Jap [1] studied upper bound graphs from the viewpoint of algo-
rithms.

We consider strict-double-bound graphs and strict-double-bound numbers. For a poset P =
(X, <p), the strict-double-bound graph (sDB-graph) of P is the graph sDB(P) on V (sDB(P)) =
X for which vertices v and v of sSDB(P) are adjacent if and only if u # v and there exist elements
x,y € X distinct from v and v such that x <p u <p yand x <p v <p y. We say that a graph G is
a strict-double-bound graph if there exists a poset whose strict-double-bound graph is isomorphic
to GG. Note that maximal elements and minimal elements of a poset P are isolated vertices of
sDB(P). So, a connected graph with at least two vertices is not a strict-double-bound graph. Scott
[11] showed the following result.

Theorem 1.1 (Scott [11]). Any graph that is the disjoint union of a non-trivial component and
enough number of isolated vertices is a strict-double-bound graph.

Therefore, we introduced the strict-double-bound number of a graph in [8]. The strict-double-
bound number ((G) of a graph G is defined as min{ n ; sDB(P) = G U K, for some poset P}.

Scott [11] obtained the following result, using a concept of transitive double competition num-
bers.

Theorem 1.2 (Scott [11]). For a non-trivial connected graph G and a minimal edge clique cover

Qof G, |2/1Q1| <¢(G) < ]Ql + 1.
In [7] we obtain the following result.

Proposition 1.1 (Ogawa et._al [7]). Let G be a connected graph with at least two vertices and P a
poset with sDB(P) = G U K¢ ). Then | Max(P) U Min(P)| = ((G).

By Theorem 1.2, we obtained that ((K,,) = 2 for n > 2. We already obtained strict-double-
bound numbers of K ,, F,, C, and W,, in [3] and [8]. We also gave an upper bound of strict-
double-bound numbers of non-trivial trees in [8].
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The sum G + H of two graphs G and H is the graph with the vertex set V(G + H) =
V(G)UV(H) and the edge set E(G + H) = E(G)U E(H)U{ww ;u € V(G),v € V(H)}. In
[3] we also obtained the following result on the sum operation.

Theorem 1.3 (Konishi et. al [3]). For a graph G with at least two vertices and no isolated vertices,
(K, +G)={((G)forn>1.

We consider another operation on graphs. The union G U H of two graphs G and H is the
graph with the vertex set V(GUH) = V(G)UV (H) and the edge set E(GUH) = E(G)UE(H).
In this paper, we consider graphs with a cut-set generating a complete graph. Using concepts of
cut-sets and union of graphs, we estimate a strict-double-bound number of a graph.

2. Cut-vertices and strict-double-bound numbers

In this section we consider connected graphs and cut-vertices. We obtain the following result.
For a graph G, k(G) is the number of connected components. For a graph G, a vertex v of G is
called a cut-vertex if k(G —v) > k(G).

Theorem 2.1. Let G be a connected graph with a cut-vertex s and G — s has two components G,
and Gy. Fori=1,2, let H; = (V(G;) U {s})v and P(H;) be a poset such that sDB(P(H;)) =
H; U K¢,y Then ((G) < ((Hi) + ((Hz) — 1.

Proof. Fori = 1,2, let o; be a minimal element of P(H;) such that o; <p(g,) s. We construct a
poset ) as follows:

V(Q) = V(P(H,)) UV (P(Hy)) — {aa},

z <gaforallz € V(Q),

for x € Min(P(H,)) U (Min(P(H3)) — {ae}) andy € V(Q), x <g y if v <pm,) ys

forz € V(Q) and y € Max(P(H,)) UMax(P(H,)), x <q yif v <pm,) ¥,

for x € V(Q) — (Max(P(H,)) U Min(P(H,)) U Max(P(H,)) U Min(P(H,))) and vy €
Max(P(H3)), o <g x <g yand oy <q 7 if oy <p(m,) © <p(a) 7-

Note that H; U Hy = G. We show that sDB(Q) = G U K ,,, where m = ((H,) + ((H) — 1. We
consider the following cases.

Case 1. u,v € V(P(H;)) — (Max(P(H;)) UMin(P(H;))) and uwv € E(H;) (i = 1,2)
Then there exist a € Min(P(H;)) and b € Max(P(H;)) € Max(Q) suchthata <p,) v <pm,) b
and a SP(HZ) [ SP(HZ) b.

Subcase 1.1. a # a»
Then a € Min(Q). Soa <g u <g banda <g v <g b. And uv € E(sDB(Q)).

Subcase 1.2. a = oy
Then oy <g u <g band a; <g v <g b. And uv € E(sDB(Q)). Case 2. u,v € V(P(H;)) —
(Max(P(H;)) UMin(P(H;))) and uwv ¢ E(H;) (i = 1,2)

A e
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If LP(HQ)( ) N LP(HQ)( ) = @ for u, v € V(P(HQ)), then (05) ¢ LP(HQ)(U) N LP(HQ)(U) and
LQ(U) N LQ( ) = @ Thus for uv ¢ E( ) LQ( ) N LQ(U) = @ or UQ(U) N UQ(U) = @ So
uv & E(sDB(Q)).

Case3. u € V(P(H;))— (Max(P(H,))UMin(P(H,))) andv € V(P(Hs))— (Max(P(H,))U
Min(P(Hz)))

Then Uq(u) € Upy)(u), Ug(v) € Upm,)(v) and Upg,)(u) N Up(ry)(v) = 0. Thus Ug(u) N
Uq(v) =0 and uwv ¢ E(sDB(Q)).
Therefore sDB(Q) = G U K ,, where m = ((H;) + ((Hy) — 1. O

3. Cut-sets and strict-double-bound numbers

In this section we consider connected graphs and cut-sets inducing complete subgraphs. For
a graph G, a vertex subset S of V(G) is called a cut-set if k(G — S) > k(G). For a poset P
and S C V(P), Max(P; S) = (U,es Ur(v)) N Max(P), Min(P;S) = (U,es Lr(v)) N Min(P)
and NoMin(P;S) = {c € Min(P) ; ¢ || v forall v € S}. Then NoMin(P;S) = Min(P) —
Min(P; S).

We obtain the following result.

Theorem 3.1. Let G be a connected graph with a cut-set S, where the induced subgraph (S)y
is a complete subgraph and G — S has components G1,Gs,...,Gy. Fori=1,2,... k, let H;
= (V(G;) U S)y and P(H;) be a poset such that SDB(P(H)) H; U Kg(H) Then ((G) <
Zle | Max(P(H;))| + max{| Min(P(H,);S)| ;i = 1,2,...,k} + max{| NoMin(P(H;); S)| ;
i=1,2,... kh

Proof. Fori = 1,2,... k, let Min(P(H,);S) = {a;1, 52, ..., q;,p, } and NoMin(P(H;);S) =
{Bi1, Biz, -, Big - We assume that for i =1, 2, ..., k, | Min(P(H;); S)| > |Min(P(H;); S)|
and | NoMin(P(H;); S)| > | NoMin(P(H;); S)|. We construct a poset () as follows:

V(Q) = Ule V(P(H;)) — Ui;él Min(P(H;); S) — Ui;ét NoMin(P(H;); 5)
= (UL, (Max(P(H,)) UV (H;))) UMin(P(H,);S) U NoMin(P(H,); ),
z <gazforallz € V(Q),
for x € Min(P(H,); ) U NoMin(P(H,);S)andy € V(Q), xz <g vy if x <pm,) ¥s
forz € V(Q) and y € S, Max(P(H,)), = <q yif = <p(H) Y
fori =1,2,...,k ifw e V(P(H;)) — (Max(P(H;)) UMin(P(H,))), a; ; € Min(P(H,); S),
v € Max(P(H; )) and o; ; <pem,) w <pm,) V- then oy ; <g w <o vand oy ; <g 7,
6. fori =1,2,...,k ifw € V(P(H;)) — (Max(P(H;)) UMin(P(H,))), 8., € NoMin(P(H,);
S), v € Max(P(HZ)) and 3 ; <p,) w <pm,) 7> then B¢ ; <qg w <g vand 3 ; <g 7.

A

Note that H; U Hy U ... U Hy = G. We show that sDB(Q) = G U K,,, where m = (3% |

| Max(P(H;))|) + | Min(P(H,); S)| + | NoMin(P(H;); S)|. We consider the following cases.
Case 1. u,v € V(P(H,)) — (Max(P(H,)) U Min(P(H,))) and uv € E(H,)

Then there exist a € Min(P(H;)) and b € Max(P(H;)) C Max(Q) such thata <p,) © <pu,)

band a SP(Hl) v SP(Hl) b.
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Subcase 1.1. a € Min(P(H;); S)
Then a € Min(Q). Soa <g u <g band a <g v <g b. And uwv € E(sDB(Q)).

Subcase 1.2. a € NoMin(P(H;);S) Thena = (1. So f; <o u <g band 3;; <g v <g b.
And uv € E(sDB(Q)).

Case 2. u,v € V(P(H;)) — (Max(P(H;)) UMin(P(H;))) and uv € E(Hy)
Then there exist a € Min(P(H;)) and b € Max(P(H;)) € Max(Q) such that a <p(g,) © <pu,) b
and a <p(m,) v <p(m,) b.

Subcase 2.1. a € Min(P(H;); S)
Thena = oy ;. Soaq j <gu <gbanday; <o v <gb. And uv € E(sDB(Q)).

Subcase 2.2. a € NoMin(P(H,); S)
Then a € Min(Q). Soa <gu <gbanda <g v <g b. And uv € E(sDB(Q)).

Case 3. u,v € V(P(H;)) — (Max(P(H;)) UMin(P(H;))), uv € E(H;)and i # 1,t
Then there exist a € Min(P(H;)) and b € Max(P(H;)) € Max(Q) such that a <pu,) u <p,) b
and a SP(Hl) v SP(HZ) b.

Subcase 3.1. a € Min(P(H;);S)
Thena = o, j. Soayj <gu <gband a;; <o v <g b. And uv € E(sDB(Q)).

Subcase 3.2. « € NoMin(P(H;);S)
Then a = ;. So fij <g u <g band 3, ; <o v <g b. And wv € E(sDB(Q)).

Case 4. u,v € V(P(H;)) — (Max(P(H;)) UMin(P(H;))) and uv ¢ E(H;)
Then Lp(Hl)(u) N MlIl(P(HJ) = {ai,ll, gy - - - ,C‘éus} @) {ﬁi,fuﬁi,fz? R 7ﬁi,fd} and LP(H1)<U) M
MIH(P(HZ)) = {Oé@gl, Qjggy e 7ai,go} U {/B’i,h17/8i,h27 ey 62'7}“}. Thus LQ(U) = {Oél,lp Q1 1y, - 7a1,ls}
U {6t,f1a Bt,fw ce 7Bt,fd} and LQ(U) = {041791, a1 goy - - - ,OngO} U {/Bt,h17 Btﬁw e 76@]%}. Since
wv & E(H;), Lpg,)(w) N Lpgy (v) = 0 or Upg,y (u) 0 Up,) (v) = 0. So Lg(u) N L(v) =0 or
Ug(u) N Ug(v) = 0. Thus uv ¢ E(sDB(Q)).

Case 5. u € V(P(H;)) — (Max(P(H;))UMin(P(H;))US),v € V(P(H;)) — (Max(P(H;))U
Min(P(H;))US) and i # j
Then Ug(u) € Upa,(u), Ug(v) € Upa,)(v) and Upm,)(u) N Upw,y(v) = 0. Thus Ug(u) N
Ug(v) = 0 and uv ¢ E(sDB(Q)).

Case 6. u,v € S
Since S C V(P(H;)) — (Max(P(H;)) UMin(P(H,))) and uv € E(H;), uv € E(sDB(Q)) by
Case 1.

Thus sDB(Q) = G U K,,, where m = Zle | Max(P(H;))| + |Min(P(H,);S)| + | NoMin(
P(H,); S)|. Therefore ((G) < >_F | | Max(P(H,))| + | Min(P(Hy); S)| + | NoMin(P(H,); S)|
= Z?:l | Max(P(H;))| + max;=1 2 k| NoMin(P(H;); S)|. O

,,,,,,,,,,

4. Chordal graphs

A graph is called a chordal graph if every cycle of length greater than 3 has a chord. We already
know the following result in [2].

Theorem 4.1. For a graph G, G is a chordal graph if and only if every minimal cut-set induces a
complete subgraph of G.
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Since a minimal cut-set of a chordal graph generates a complete subgraph, we have the follow-
ing result on chordal graphs by Theorem 3.1.

Proposition 4.1. Let G be a connected chordal graph.

(1) If G is a complete graph, then ((G) = 2.

(2) If G is a non-complete graph, then ((G) < Zle | Max(P(H;))| +max{ | Min(P(H,); 5)|; i =
1,2,...,k} +max{ | NoMin(P(H;); 5)|; : =1,2,...,k}, where S C V(G) is a minimal cut-set,
Gy, Gs. ..., Gg are components of G — S, H; = (V(G;) U S)y fori=1,2,... kand P(H;) is a
poset such that sDB(P(H;)) = H; U K¢, fori =1,2,... k.

5. k-trees

In this section we consider k-trees. A k-tree is a chordal graph that can be constructed from
a complete graph K, by a sequence of vertex additions in which the neighborhood of each new
vertex is a complete subgraph with k& vertices of the current graph. Further k-trees other than
complete graphs are called non-clique k-trees. And k-trees are connected graphs. In [5] and [9]
Lin et. al reported some properties of k-trees.

Let G(Ky; vy, v9, ... ,0,) be a k-tree with the vertex additions sequence vy, vs, . . . , Uy,. Let Py
be a poset with V(Py) = {z1,u0,u1, ..., uk, 22}, 21 <p, uj <p, 22, 21 <p, 22, 21 <p, 21,
u; <p, uj and zo <p, 2z, for j = 0,1,..., k. Then sDB(Pz) = Ky U K,. We obtain the
following result by Theorem 3.1.

Proposition 5.1. Let G(Kj; v1,vq, - - , Uy, ) be a k-tree with the vertex addition sequence vy, va, - - -
U Then ((G(Ky;v1,vs,...,05)) <m+ 1.

Proof. The proof is by induction on the length of a vertex addition sequence. Since G(Kj;vq) =
Kit1, ((G(Ky;v1)) = ((Kg41) =2 < 14 1. By induction hypothesis, (G (K; v1,va, . .., Upn-1))
< m. Let P be a poset such that sDB(P) = G(Kj; vy, Vs, ..., Um_1) U K, where n = ((G(Kj;
U1, Vo, « ..y Um—1)) < m. Let S be the neighborhood of v,, of G(Kj;vy,vs,...,vy). Then S is
a cut-set of G(Ky;vy,vs,...,0,) and generates a complete subgraph with k vertices. Using the
proof methods of Theorem 3.1, we can construct a poset () from P and Py such that sDB(Q) =
G(Kg;v1,02, ..., ) U K. Since sDB(Py) = K1 U Ky, NoMin(Py; S) = 0, Min(Pyz; S) =
{z1} and Max(Pz) = {22}, | = ((G(Ky;v1,v2,...,0m-1)) +1 <m+ 1. O
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