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Abstract

An edge-colored graph G is rainbow k-connected, if there are k-internally disjoint rainbow paths
connecting every pair of vertices of G. The rainbow k-connection number of G, denoted by rck(G),
is the minimum number of colors needed for which there exists a rainbow k-connected coloring
for G. In this paper, we are able to find sharp lower and upper bounds for the rainbow 2-connection
number of Cartesian products of arbitrary 2-connected graphs and paths. We also determine the
rainbow 2-connection number of the Cartesian products of some graphs, i.e. complete graphs, fans,
wheels, and cycles, with paths.
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1. Introduction

All graphs considered in this paper are undirected, simple, and finite. Let G be a nontrivial
connected graph with an edge-coloring c : E(G) → {1, 2, . . . , `}, ` ∈ N, where adjacent edges
may receive the same color. An edge-colored path P in G is rainbow if no two edges of P are
colored the same. An edge-colored graph G is rainbow connected, if for any two distinct vertices of
G, there exists a rainbow path which connects them. An edge-coloring under which G is rainbow
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connected is called a rainbow coloring. The minimum number of colors for which there exists
a rainbow coloring of G is called the rainbow connection number of G, and denoted by rc(G).
These concepts were introduced by Chartrand et al. in [3].

Chakraborty et al. [2] investigated the computational complexity and algorithms for the rain-
bow connection number and they showed that finding the rainbow connection number of a graph
is NP-hard. Numerous authors have investigated bounds, algorithms, and computational complex-
ity of the rainbow connection number of some graphs. Some results about rainbow connection
number of certain graphs have been determined by some researchers, such as, complete graphs,
trees, complete bipartite graphs, and complete multipartite graphs [3], rocket graphs [21], pencil
graphs [24], flower graphs [14], origami graphs and pizza graphs [27], stellar graphs [23], and
some subdivided roof graphs [26]. In 2018, Septyanto and Sugeng [22] generalized the notion of
”color codes” that was originally used by Chartrand et al. [3] in their study of the rc of complete
bipartite graphs, so that it can be applied to any connected graph. Meanwhile, some results about
rainbow connection number of graphs resulted from graph operations were also investigated by
some researchers, such as Cartesian product [16, 1], strong product [1, 10], lexicographic product
[16, 1, 10], direct product [10], corona product [6], and amalgamation [8]. Interested readers can
see [17, 19] for details on this topic.

In 2009, the concept of rainbow k-connectivity was introduced by Chartrand et al. in [4] as
follows. Recall that a graph G is called k − connected if |V (G)| > k and G − X is connected
for every set X ⊆ V (G) with |X| < k [7]. It follows from Whitney’s Theorem [5], a graph G
is k-connected if and only if for every two distinct vertices x and y of G, the graph G contains k
internally disjoint x − y paths. An edge-coloring of G is called rainbow k-connected if, for any
two distinct vertices x and y of G, the graph contains k internally disjoint rainbow x−y paths. The
minimum number of colors for which there exists a rainbow k-connected coloring of G is called
the rainbow k-connection number of G, denoted by rck(G). In this case, the function rck(G) is
only defined for k-connected graphs.

The rainbow k-connection number for some basic graphs have been known, such as for com-
plete graphs, regular complete bipartite graphs [4], and complete multipartite graphs [15]. Some
upper bounds have also been derived for the rainbow k-connection number of dense graphs [9] and
random graphs [9, 12]. The concept of rainbow k-connectivity can also be applied in transferring
classified information in secured communication networks [4].

In particular, the exact values of rainbow 2-connection number of graphs have also investigated
by some researchers, i.e., complete graphs and regular complete bipartite graphs [4]. Some other
researchers also gave upper bounds for the rainbow 2-connection number for some graph classes,
i.e., 2-connected graphs [18] and Cayley graphs [20]. Moreover, Li and Liu [18] showed that if G
is a 2-connected graph, then rc2 ≤ order(G) with equality holds if and only if G is a cycle. In
[25], we derived upper bounds for the rainbow 2-connection number of the Cartesian product of
paths and cycles.

In this paper, we generalize our previous result by deriving sharp lower and upper bounds for
the rainbow 2-connection number of Cartesian products of 2-connected graphs and paths. We also
determine the rainbow 2-connection number of the Cartesian products between complete graphs,
fans, wheels, and cycles, with paths.
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2. Main results

The following definition of the Cartesian product of two graphs is taken from Hammack et
al. [11]. The Cartesian product of G and H is a graph, denoted by G2H , whose vertex set
is V (G) × V (H) and two vertices (x, y) and (x′, y′) are adjacent if x = x′ and yy′ ∈ E(H),
or xx′ ∈ E(G) and y = y′. Thus, V (G2H) = {(x, y)|x ∈ V (G) and y ∈ V (H)} and
E(G2H) = {(x, y)(x′, y′)|x = x′ and yy′ ∈ E(H), or xx′ ∈ E(G) and y = y′}. The vertex
set Gh = {(g, h) : g ∈ V (G)} for some fixed vertex h of H is called the layer of graph G or sim-
ply a G-layer through h. Similarly, gH = {(g, h) : h ∈ V (H)} is an H-layer through g. Clearly,
G-layer and H-layer induces a subgraph of G2H that is isomorphic to G and H , respectively.

We use the following definition of k-distance and k-diameter of a graph G from Hsu and Łuczak
[13] as follows.

Definition 1. [13] Let G be a k-connected graph and x, y be any two distinct vertices of G. Let
Pk(x, y) be a family of k disjoint paths between x and y, where

Pk(x, y) = {P1, P2, . . . , Pk}

with |P1| ≤ |P2| ≤ . . . ≤ |Pk| and |Pi| denotes the number of edges in Pi for 1 ≤ i ≤ k. The k-
distance between vertices x and y, denoted by dk(x, y), is defined as the minimum integer dk(x, y)
for which there are k internally disjoint paths of length at most dk(x, y) between x and y in G. The
k-diameter of G, denoted by diamk(G), is defined as max{dk(x, y)|x, y ∈ V (G)}.

Fact 2.1. [13] If G is k-connected, then

diamk(G) ≥ diamk−1(G) ≥ . . . ≥ diam1(G) = diam(G).

In [3], Chartrand et al. stated that the rainbow connection number of a non trivial connected
graph G is at least the diameter of G. By using Fact 2.1, we obtain lower bounds of the rainbow
k-connection number of G as follows.

Proposition 2.1. Let k be a positive integer. If G is a k-connected graph, then

diam(G) ≤ diamk(G) ≤ rck(G).

Proof. The first inequality follows from Fact 2.1.
Now, we want to prove for the second inequality. Suppose that diamk(G) = s and x, y are two
arbitrary vertices in G. If dk(x, y) = s, then we need at least s different colors to color k paths to
be rainbow paths. If dk(x, y) < s, then we can color all the k internally disjoint paths with some
other additional colors. Both cases show that rck(G) ≥ s.

For simplicity, we define [a, b] = {x ∈ Z|a ≤ x ≤ b} and

a mod∗ b =

{
a mod b, if a 6= kb for any k ∈ Z;
b, if a = kb for some k ∈ Z.
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In the main theorems, we shall follow the following notations: Pn is a path on n vertices, Cn

is a cycle on n vertices, Kn is a complete graph on n vertices, Wn = Cn +K1 is a wheel on n+ 1
vertices, and Fn = Pn +K1 is a fan on n+ 1 vertices.

The following theorem provides lower and upper bounds for rainbow 2-connection number of
Cartesian products of 2-connected graphs and paths.

Theorem 2.1. Let m be a positive integer at least 2. If G is a 2-connected graph, then

diam2(G2Pm) ≤ rc2(G2Pm) ≤ d m
rc2(G)

e(rc2(G)) +m− 1.

Proof. It is obvious that diam2(G2Pm) ≤ rc2(G2Pm).
Let V (G2Pm) = {g

hj

i |gi ∈ V (G), hj ∈ V (Pm), i ∈ [1, |V (G)|], j ∈ [1,m]}. Let E(G) = {ei|i ∈
[1, k]}. For j ∈ [1,m], let Ghj be a G-layer through hj and let ehj

i be an edge in Ghj with i ∈ [1, k].
Let c be a rainbow rc2(G)-coloring of G. Let rc2(G) = d.
We define a coloring c′ : E(G2Pm)→ [1, dm

d
e(d) +m− 1] as follows.

c′(e
hj

i ) =



c(ei), for j = 1 and i ∈ [1, k];

(c′(eh1
i ) + j − 1)mod∗ d, for j ∈ [2, d] and i ∈ [1, k];

c′(eh1
i ) + `d, for j = `d+ 1 and ` ∈ [1, dm

d
e − 1];

(c′(e`d+1
i ) + j − 1)mod∗ d+ `d, for j ∈

dm
d
e−1⋃

k=1

[kd+ 2, (k + 1)d]

and ` ∈ [1, dm
d
e − 1].

c(g
hj

i g
hj+1

i ) = dm
d
ed+ j, for j ∈ [1,m− 1] and i ∈ [1, |V (Ghj)].

We consider any two vertices x, y ∈ V (G2Pm).
Case 1. x, y ∈ V (Ghj) for j ∈ [1,m].
Clearly, there exist two internally disjoint x− y rainbow paths by coloring c′ which connect x and
y in Ghj .
Case 2. x ∈ V (Ghj) and y ∈ V (Ghr) for j, r ∈ [1,m] with j 6= r.

Subcase 2.1. If x = g
hj

l ∈ V (Ghj) and y = ghr
l ∈ V (Ghr) with j < r, then there exist two in-

ternally disjoint x− y rainbow paths, i.e. ghj

l , g
hj+1

l , . . . , ghr
l and g

hj

l , g
hj
s , g

hj+1
s , . . . , ghr

s , ghr
l where

g
hj

l g
hj
s ∈ E(Ghj) which connect ghj

l and ghr
l .

Subcase 2.2. If x = g
hj

l ∈ V (Ghj) and y = ghr
s ∈ V (Ghr) with j < r, then there exist two inter-

nally disjoint x−y rainbow paths, i.e. ghj

l , g
hj+1

l , . . . , ghr
l , . . . , ghr

s and g
hj

l , . . . , g
hj
s , g

hj+1
s . . . , ghr−1

s ,
ghr
s .

Hence, rc2(G2Pm) ≤ d m
rc2(G)

e(rc2(G)) +m− 1. Thus, we complete the proof.

Since diam2(Fn2Pm) = n + m − 2 for m ≥ 2, n ≥ 4 and rc2(Fn) = n − 1 for n ≥ 4, we
obtain that for m ≤ (n − 1), the lower and upper bounds of rc2(Fn2Pm) as written in Theorem
2.1 coincide. Hence, we get the following corollary.

Corollary 2.1. Let m and n be two positive integers with n ≥ 4,m ≥ 2, and m ≤ (n− 1). Then

rc2(Fn2Pm) = d m
(n−1)e(n− 1) +m− 1.
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Figure 1. A rainbow 2-connected coloring on F52P3.

As shown in Figure 1, we present a rainbow 2-connected coloring on Fn2Pm for n = 5 and
m = 3.

Although we could not extend the proof of Corollary 2.1 for m > n−1, we raised the following
conjecture.

Conjecture 1. Let m and n be two positive integers with n ≥ 4,m ≥ 2, and m > (n− 1). Then

rc2(Fn2Pm) = d m
(n−1)e(n− 1) +m− 1.

The following theorem gives an example of Cartesian products of 2-connected graphs and paths
whose rainbow 2-connection number achieves the lower bound of Theorem 2.1.

Theorem 2.2. If n ≥ 4 and m ≥ 2, then

rc2(Kn2Pm) = m+ 1 = diam2(Kn2Pm).

Proof. Since diam2(Kn2Pm) = m+1, it is clear that rc2(Kn2Pm) ≥ diam2(Kn2Pm) = m+1.
Let V (Kn2Pm) = {uj

i |1 ≤ i ≤ n, 1 ≤ j ≤ m} and E(Kn2Pm) = {uj
iu

j
i+1, u

j
iu

j
k, u

j
iu

j+1
i |1 ≤

i, k ≤ n, 1 ≤ j ≤ m− 1 where i 6= k, k 6= i+ 1, and uj
nu

j
n+1 = uj

nu
j
1}.

Next, we shall consider a proof of the upper bound. We define an edge-coloring c : E(Kn2Pm)→
[1,m+ 1] as follows.

c(uj
iu

j
i+1) =

{
1, for i ∈ [1, n] and j = 1;
j, for i ∈ [1, n] and j ∈ [2,m].

For i 6= k and i 6= k − 1, we define the following colors to the coloring c.

c(uj
iu

j
k) =

{
2, for i ∈ [1, n] and j = 1;
1, for i ∈ [1, n] and j ∈ [2,m].

c(uj
iu

j+1
i ) = 2 + j, for i ∈ [1, n] and j ∈ [1,m− 1].
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We shall show that the above coloring is a rainbow 2-connected (m + 1)-coloring of Kn2Pm.
Consider any two distinct vertices x, y ∈ V (Kn2Pm), we divided the proof into two cases.
Case 1. For x = uj

i and y = uj
k, x, y ∈ V (Kj

n), i ∈ [1, n], i 6= k, j ∈ [1,m], then, there exist two
internally disjoint x− y rainbow paths which connect them, i.e., uj

i , u
j
k and uj

i , u
j
k+1, u

j
k.

Case 2. For x ∈ V (Kj
n) and y ∈ V (K l

n), j 6= l, j, l ∈ [1,m], we divide into two subcases. For
x = uj

i ∈ V (Kj
n) and y = ul

i ∈ V (K l
n), i ∈ [1, n], there exist two internally disjoint rainbow

paths which connect x and y, i.e., uj
i , u

j+1
i , . . . , ul−1

i , ul
i and uj

i , u
j
i+2, u

j+1
i+2 , . . . , u

l
i+2, u

l
i. For x =

uj
i ∈ V (Kj

n) and y = ul
k ∈ V (K l

n), i 6= k, i, k ∈ [1, n], there exist two internally disjoint rainbow
paths which connect x and y, i.e., uj

i , u
j+1
i , . . . , ul

iu
l
k and uj

i , u
j
k, u

j+1
k , . . . , ul

k for k 6= i + 1 or
uj
i , u

j
i+1, u

j+1
i+1 , . . . , u

l
i+1 and uj

i , u
j
i+3 mod∗n, u

j+1
i+3 mod∗n, . . . , u

l
i+3 mod∗n, u

l
k for k = i + 1. So, this

completes the proof.

We present a rainbow 2-connected coloring on Kn2Pm for n = 5 and m = 3, as shown in
Figure 2.

Figure 2. A rainbow 2-connected coloring on K52P3.

In the next theorem, we give an example of Cartesian products of 2-connected graphs and paths
whose rainbow 2-connection number achieves the upper bound of Theorem 2.1.

Theorem 2.3. If n ≥ 4 and m ≥ 2, then

rc2(Wn2Pm) ≤ d m
dn
2
eed

n
2
e+m− 1,

and equality holds for n ∈ [4, 6] and m ≤ dn
2
e.

Proof. Since, rc2(Wn) = dn2 e, the upper bound is a direct consequence of Theorem 2.1.
Let V (Wn2Pm) = {uj

i |0 ≤ i ≤ n, 1 ≤ j ≤ m} and E(Wn2Pm) = {uj
iu

j
i+1|i ∈ [1, n − 1]

and j ∈ [1,m]}
⋃
{uj

1u
j
n|j ∈ [1,m]}

⋃
{uj

0u
j
i |i ∈ [1, n] and j ∈ [1,m]}

⋃
{uj

iu
j+1
i |i ∈ [0, n] and
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j ∈ [1,m− 1]}.
For n = 4, the lower bound is exactly the same with the upper bound since diam2(W42P2) = 3.
For n ∈ [5, 6], assume to the contrary that rc2(Wn2Pm) ≤ dn2 e+m− 2.
Let c′ be a rainbow 2-connectivity of Wn2Pm using dn

2
e + m − 2 colors. Consider two vertices

u1
1 and u3

3, then there exist three internally disjoint paths with length 4 which connect them, i.e.
u1
1, u

2
1, u

3
1, u

3
0, u

3
3;u

1
1, u

1
0, u

1
3, u

2
3, u

3
3; and u1

1, u
1
2, u

2
2, u

3
2, u

3
3. There are three combinations of paths

that need to be reviewed, but they all lead to a contradiction. First, we consider u1
1, u

2
1, u

3
1, u

3
0, u

3
3 and

u1
1, u

1
0, u

1
3, u

2
3, u

3
3 paths. Without loss of generality, color c′(u1

1u
2
1) = 1, c′(u2

1u
3
1) = 2, c′(u3

1u
3
0) = 3,

and c′(u3
0u

3
3) = 4. Hereafter, color c′(u1

1u
1
0) = 4, c′(u1

0u
1
3) = 3, c′(u1

3u
2
3) = 2, and c′(u2

3u
3
3) =

1. Next, consider vertices u1
2 and u3

4, then there exist three internally disjoint paths with length
4, i.e. u1

2, u
2
2, u

3
2, u

3
3, u

3
4;u

1
2, u

1
3, u

1
4, u

2
4, u

3
4; and u1

2, u
1
0, u

2
0, u

3
0, u

3
4. Consider paths u1

2, u
2
2, u

3
2, u

3
3, u

3
4

and u1
2, u

1
3, u

1
4, u

2
4, u

3
4. Without loss of generality, color c′(u1

2u
2
2) = 1, c′(u2

2u
3
2) = 2, c′(u3

2u
3
3) =

3, and c′(u3
3u

3
4) = 4. Then, color c′(u2

4u
3
4) = 1, c′(u1

4u
2
4) = 2, c′(u1

4u
1
3) = 3, and c′(u1

3u
1
2) =

4. Consider vertices u1
1 and u3

4, then there exist two internally disjoint paths with length 4, i.e.
u1
1, u

2
1, u

3
1, u

3
0, u

3
4 and u1

1, u
1
0, u

1
4, u

2
4, u

3
4. Since we have already colored u1

1, u
2
1, u

3
1, u

3
0 path, it forces

us to color c′(u3
0u

3
4) = 4 and c′(u1

0u
1
4) = 3. Consider vertices u1

3 and u1
5, then there exist two

internally disjoint paths with length 4, i.e. u1
3, u

2
3, u

3
3, u

3
0, u

3
5 and u1

3, u
1
4, u

2
4, u

3
4, u

3
5. The left edges

that have not colored yet are u3
4u

3
5 and u3

0u
3
5. It forces us to color c′(u3

4u
3
5) = 4 and c′(u3

0u
3
5) = 3.

But, there are no two internally disjoint rainbow paths which connect u3
3 and u3

4. Thus, we have a
contradiction. By using a similar process with previous two paths, whatever two internally disjoint
paths that we choose, we get a contradiction.

As shown in Figure 3, we present a rainbow 2-connected coloring on Wn2Pm for n = 5 and
m = 3.

Figure 3. A rainbow 2-connected coloring on W52P3.
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Despite the fact that we could not extend the proof of Theorem 2.3 for n ∈ [4, 6] and m > dn
2
e

or n ≥ 7, we raised the following conjecture.

Conjecture 2. If n ∈ [4, 6] and m > dn
2
e or n ≥ 7, then

rc2(Wn2Pm) = d m
dn
2
eed

n
2
e+m− 1.

Next, we consider the Cartesian products of cycles and paths, which is an improvement of our
result in [25]. Previously, rc2(Cn2Pm) ≤ dm2 en, a product of n and m, instead of a sum of n
and m. The upper bound in the next theorem is also much less than the general upper bound in
Theorem 2.1.

Theorem 2.4. If n ≥ 3 and m ≥ 2, then

rc2(Cn2Pm) ≤ n+m− 2,

where equality holds for n ∈ [3, 5].

Proof. Let V (Cn2Pm) = {uj
i |1 ≤ i ≤ n, 1 ≤ j ≤ m} and E(Cn2Pm) = {uj

iu
j
i+1, u

j
iu

j+1
i |1 ≤

i ≤ n, 1 ≤ j ≤ m where un+i = ui}.
First, we shall consider a proof of the upper bound. We define an edge-coloring c : E(Cn2Pm)→
[1, n+m− 2] as follows.

c(uj
iu

j
i+1) =


i, for i ∈ [1, n] and j = 1;
c(u1

i+1u
1
i+2), for i ∈ [1, n], j ∈ [2, n] and n = 3;

c(u1
i+1u

1
i+2), for i ∈ [1, n], j is even, j ≥ 2 and n ≥ 4;

(c(u2
iu

2
i+1) + 2) mod∗n, for i ∈ [1, n], j is odd, j ≥ 3 and n ≥ 4.

c(uj
iu

j+1
i ) =

{
(i+ 1) mod∗n, for i ∈ [1, n] and j = 1;
j + n− 1, for i ∈ [1, n] and j ∈ [2,m− 1].

We shall show that the above coloring is a rainbow 2-connected (n+m− 2)-coloring of Cn2Pm.
Consider two distinct vertices x, y ∈ V (Cn2Pm), we divide the proof into two cases.

Case 1. For x, y ∈ V (Cj
n), j ∈ [1,m], there exist two internally disjoint x − y rainbow paths

which connect them, i.e., uj
i , u

j
i+1, . . . , u

j
k and uj

i , u
j
i−1, . . . , u

j
1, u

j
n, u

j
n−1, . . . , u

j
k.

Case 2. For x ∈ V (Cj
n) and y ∈ V (C l

n), j 6= l, j, l ∈ [1,m], we divide into two subcases. For
x = uj

i ∈ V (Cj
n) and y = ul

i ∈ V (C l
n), i ∈ [1, n], there exist two internally disjoint rainbow paths

which connect x and y, i.e., uj
i , u

j+1
i , . . . , ul−1

i , ul
i and uj

i , u
j
i+1, u

j+1
i+1 , . . . , u

l
i+1, u

l
i. For x = uj

i ∈
V (Cj

n) and y = ul
k ∈ V (C l

n), i, k ∈ [1, n], i 6= k, there exist two internally disjoint rainbow paths
which connect x and y, i.e., uj

i , u
j
i+1, . . . , u

j
k, u

j+1
k , . . . , ul

k and uj
i , u

j+1
i , . . . , ul

i, u
l
i−1, . . . , u

l
1, u

l
n, . . . , u

l
k.

Thus, rc2(Cn2Pm) ≤ n+m− 2.
Now, we consider a proof of lower bound. We divide the proof into two cases.
Case 1. For n = 3, it is a direct consequence of Theorem 2.1, since diam2(C32Pm) = m+ 1.
Case 2. For n ∈ [4, 5], we want to show that rc2(Cn2Pm) ≥ n+m− 2. Without loss of general-
ity, assume to the contrary that rc2(Cn2Pm) ≤ n +m − 3. Let c′ be a rainbow 2-connectivity of
Cn2Pm using n+m− 3 colors.

For n = 4, consider two vertices um
1 and u1

3, then there exist three internally disjoint pathswith
length at most n+m−3 which connect um

1 and u1
3, i.e, um

1 , u
m−1
1 , . . . , u1

1, u
1
2, u

1
3; u

m
1 , u

m
4 , u

m−1
4 , . . . ,
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u1
4, u

1
3; and um

1 , u
m
2 , u

m
3 , u

m−1
3 , . . . , u1

3. There are three combinations of paths that need to be re-
viewed, but they all lead to a contradiction.

First, we consider um
1 , u

m−1
1 , . . . , u1

1, u
1
2, u

1
3 and um

1 , u
m
4 , u

m−1
4 , . . . , u1

4, u
1
3 paths. Without loss of

generality, we color c′(um
1 u

m−1
1 ) = 1, c′(um−1

1 um−2
1 ) = 2, . . ., c′(u2

1u
1
1) = n +m − 5, c′(u1

1u
1
2) =

n + m − 4, and c′(u1
2u

1
3) = n + m − 3. Then, color c′(um

1 u
m
4 ) = n + m − 3, c′(um

4 u
m−1
4 ) =

n + m − 4, . . . , c′(u2
4u

1
4) = 2, and c′(u1

4u
1
3) = 1. Next, consider two vertices um

2 and u1
4, then

there exist two internally disjoint paths with length n + m − 3, i.e., um
2 , u

m
1 , u

m
4 , u

m−1
4 , . . . , u1

4

and um
2 , u

m−1
2 , . . . , u1

2, u
1
3, u

1
4. Since we have already colored um

1 , u
m
4 , u

m−1
4 , . . . , u1

4, it forces us
to color c′(um

1 u
m
2 ) = 1. We also already colored u1

4u
1
3 and u1

3u
1
2, then without loss of generality,

color c′(u1
2u

2
2) = 2, c′(u2

2u
3
2) = 3, . . . , c′(um−1

2 um
2 ) = n +m − 4. But, there are no two internally

disjoint rainbow paths which connect u1
1 and u4

2. So, we have a contradiction. By using a similar
process with previous two paths, whatever two internally disjoint paths that we choose, we get a
contradiction.

For n = 5, consider two vertices um
1 and u1

4, then there exist three internally disjoint paths with
length at most n+m−3 which connect um

1 and u1
4, i.e., um

1 , u
m−1
1 , . . . , u1

1, . . . , u
1
4; u

m
1 , . . . , u

m
4 , u

m−1
4 ,

. . . , u1
4; and um

1 , u
m
5 , u

m−1
5 , . . . , u1

5, u
1
4. There are three combinations of paths that need to be

reviewed, but they all lead to a contradiction. First, we consider um
1 , u

m−1
1 , . . . , u1

1, . . . , u
1
4 and

um
1 , . . . , u

m
4 , u

m−1
4 , . . . , u1

4. Without loss of generality, we color c′(um
1 u

m−1
1 ) = 1, c′(um−1

1 um−2
1 ) =

2, . . . , c′(u2
1u

1
1) = n +m− 6, c′(u1

1u
1
2) = n +m− 5, . . . , c′(u1

3u
1
4) = n +m− 3. Then, we color

c′(u1
4u

2
4) = 1, c′(u2

4u
3
4) = 2, . . . , c′(um−1

4 um
4 ) = n+m−6, c′(um

4 u
m
3 ) = n+m−5, . . . , c′(um

2 u
m
1 ) =

n+m−3. Next, consider two vertices u1
5 and um

2 , then there exist three disjoint paths with length at
most n+m−3 which connect u1

5 and um
2 , i.e., u1

5, u
1
4, . . . , u

1
2, u

2
2, . . . , u

m
2 ;u

1
5, u

2
5, . . . , u

m
5 , u

m
4 , . . . , u

m
2 ;

and u1
5, u

1
1, u

2
1, . . . , u

m
1 , u

m
2 . Consider the first path, since we have already colored edges u1

2u
1
3 and

u1
3u

1
4, we can not color one of edges of u1

2u
2
2, u

2
2u

3
2, . . . , u

m−1
2 um

2 with n+m−5 that already used on
edge u1

1u
1
2. Because if we consider two vertices u1

1 and u4
2, then there are no two internally disjoint

rainbow paths which connect them. Thus, it forces us to color c′(u1
4u

1
5) = n+m− 5. We also can

not color c′(u1
2u

2
2) = 1, because if we consider two vertices u1

2 and u1
4, then there are no two inter-

nally disjoint rainbow paths which connect them. So, we color c′(u1
2u

2
2) = n+m− 7, c′(u2

2u
3
2) =

n+m− 6, . . . , c′(um−1
2 um

2 ) = 1.
Next, consider two vertices u1

2 and um
5 , then there exist two internally disjoint paths with length

n +m − 3 which connect them, i.e., u1
2, u

1
3, . . . , u

1
5, . . . , u

m
5 and u1

2, u
2
2, . . . , u

m
2 , . . . , u

m
5 , it forces

us to color c′(um−1
5 um

5 ) = n + m − 6, c′(um−2
5 um−1

5 ) = n + m − 5, . . . , c′(u1
5u

2
5) = 1. Con-

sider two vertices u1
3 and u1

4, then there exist two possible internally disjoint paths which con-
nect them, i.e., u1

3, u
2
3, . . . , u

m
3 , u

m
2 , u

m
1 and u1

3, u
1
2, u

1
1, u

2
1, . . . , u

m
1 , it forces us to color c′(u1

3u
2
3) =

n +m− 7, c′(u2
3u

3
3) = n +m− 6, . . . , c′(um−1

3 um
3 ) = 1. But, there are no two internally disjoint

rainbow paths which connect u1
2 and u1

3. Thus, we have a contradiction. By using a similar process
with previous two paths, whatever two internally disjoint paths that we choose, we always get a
contradiction. Hence, we complete the proof.

We present a rainbow 2-connected coloring on Cn2Pm for n = 5 and m = 3, as shown in
Figure 4.

Although we could not generalize the proof of Theorem 2.4 for n ≥ 6, we raised the following
conjecture.
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Figure 4. A rainbow 2-connected coloring on C52P3.

Conjecture 3. If n ≥ 6 and m ≥ 2, then

rc2(Cn2Pm) = n+m− 2.

3. Conclusion

The rainbow k-connection number is a concept for measuring connectivity of a graph. In this
paper, we were able to derive sharp lower and upper bounds for the rainbow 2-connection number
of Cartesian products of arbitrary 2-connected graphs and paths. We provided the rainbow 2-
connection number of Cartesian products of some 2-connected graphs, i.e. complete graphs, fans,
wheels, and cycles, with paths.

We also conjectured that for m > n−1, the rainbow 2-connection number of Fn2Pm is exactly
the same as the upper bound in Theorem 2.1; for n ∈ [4, 6] and m > dn

2
e or n ≥ 7, the rainbow

2-connection number of Wn2Pm is exactly the same as the upper bound in Theorem 2.3; and for
n ≥ 6, the rainbow 2-connection number of Cn2Pm is exactly the same as the upper bound in
Theorem 2.4.
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