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Abstract

Let F , G and H be simple graphs. We say F → (G,H) if for every red-blue coloring of the edges
of F there exists a red copy ofG or a blue copy ofH in F . The Ramsey number r(G,H) is defined
as r(G,H) = min{|V (F )| : F → (G,H)}, while the restricted size Ramsey number r∗(G,H)
is defined as r∗(G,H) = min{|E(F )| : F → (G,H), |V (F )| = r(G,H)}. In this paper we
determine previously unknown restricted size Ramsey numbers r∗(P3, Cn) for 7 ≤ n ≤ 12. We
also give new upper bound r∗(P3, Cn) ≤ 2n− 2 for even n ≥ 10.
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1. Introduction

Paul Erdős had a tremendous impact on many areas of mathematics, one of these areas is Ramsey
theory. His contributions started with the classical Ramsey numbers r(G,H). In 1978, Erdős et al.
in [3] defined the size Ramsey number r̂(G,H) as the smallest size of a graph F such that, under
any red-blue coloring of its edges, the graph F contains a red copy of G or a blue copy of H . In
[6] one can find a survey of results along with the influence of Paul Erdős on the development of
size Ramsey theory.

The restricted size Ramsey number r∗(G,H) is a problem connecting Ramsey number and
size Ramsey number. For the restricted size Ramsey number, if r is the Ramsey number of G and

Received: 2 April 2019, Revised: 19 June 2020, Accepted: 2 August 2020.

365



www.ejgta.org

Restricted size Ramsey number for P3 versus cycle | J. Cyman and T. Dzido

H then F must be a spanning subgraph of Kr with the smallest size such that for any red-blue
coloring of edges of F we have a red copy of G or a blue copy of H in F . Therefore, the size of
Kr is the upper bound for the restricted size Ramsey number of G and H and the restricted size
Ramsey number must be greater or equal to the size Ramsey number for a given pair of graphs.
In addition, we have r̃(G,H) ≤ r̂(G,H), where r̃(G,H) is the on-line Ramsey number (the
definition and properties of these numbers can be found in [2]). If both G and H are complete
graphs then F = Kr (see [3]). The case of complete graph is one of a few cases for which that
upper bound is reached. In general, the more sparse both graphs G and H are, the problem of
finding the restricted size Ramsey number for those pair of graphs is harder. Only two results for
the exact value of restricted size Ramsey number involving a class of graph known so far, that are,
for K1,k versus Kn ([7]) and G versus K1,k, where G is K3, K4 − e, or C5 ([4]). For other few
classes of graphs, the problem is solved partially.

Some results for size Ramsey number was presented by Faudree and Schelp in 2002 ([6]). It
had shown that r∗(P3, C3) = 8, r∗(P3, C4) = 6, r∗(P3, C5) = 9. In 2015, Silaban et al. proved the
last known exact value, namely r∗(P3, C6) = 9 [9]. In addition, they give lower and upper bound
for r∗(P3, Cn), where n ≥ 8 is even (see Theorem 3 below). In this paper, we determine previously
unknown restricted size Ramsey numbers, namely r∗(P3, Cn) for 7 ≤ n ≤ 12, and we improve the
upper bound for r∗(P3, Cn), that is we prove that r∗(P3, Cn) ≤ 2n− 2 for even n ≥ 10.

In general, we follow graph theory terminology and notation of [9].

2. Known results

In this section, we list a few known definitions and theorems that we will need in proving our
results.

The Turán number ex(n,G) is the maximum number of edges in any n-vertex graph which
does not contain a subgraph isomorphic to G. A graph on n vertices is said to be extremal with
respect to G if it does not contain a subgraph isomorphic to G and has exactly ex(n,G) edges.

In 1989, Clapham et al. [1] determined all values of ex(n,C4) for n ≤ 21. They also charac-
terized all the corresponding extremal graphs. In Theorem 1 we quote value for ex(7, C4) and we
show (Figure 1) five corresponding extremal graphs. We will use this in the proof of Theorem 5.

Theorem 1 ([1]).
ex(7, C4) = 9

and there are 5 extremal graphs for this number illustrated in Figure 1.

In our work we will also use a well known the Ramsey number for paths and cycles that was
calculated by Faudree et al. in [5].

Theorem 2 ([5]). For all integers n ≥ 4,

r(P3, Cn) = n.
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G1 G2 G3 G4 G5

Figure 1. All extremal graphs for ex(7, C4).

In 2015, Silaban et al. [9] proved the lower and the upper bound for the restricted size Ramsey
number for P3 and cycles. At the end of our article we improve the upper bound for this number.

Theorem 3 ([9]). For even n ≥ 8,

3

2
n+ 2 ≤ r∗(P3, Cn) ≤ 2n− 1.

3. New results

In order to find the value of r∗(P3, Cn), we find a graph F with the smallest possible size such
that F → (P3, Cn). According to Theorem 2 the graph F must have n vertices.

3.1. Determining the value of r∗(P3, C7)

First, we give the following condition for graph F satisfying F → (P3, C7).

Lemma 4. Let F be a graph with |V (F )| = 7 and C4 ⊆ F , then F 9 (P3, C7).

Proof. Suppose there is F with |V (F )| = 7 such that F contains cycle C4, say v1, v2, v3, v4, v1.
By coloring possible edges v1v3, v2v4 ∈ E(F ) by red and the remaining edges of F by blue, we
obtain a 2-coloring of F which contains neither a red P3 nor a blue C7.

Theorem 5. r∗(P3, C7) = 13.

Proof. First, we will prove that r∗(P3, C7) ≥ 13. From Lemma 4 and Theorem 1 we imply that
r∗(P3, C7) ≥ 12. Suppose that r∗(P3, C7) = 12. Let F be a graph on 7 vertices and 12 edges. By
Lemma 4, if F → (P3, C7), then C4 * F and therefore F is one of the five graphs Gi, 1 ≤ i ≤ 5
from Figure 1. Furthermore, since ∆(Gi) ≥ 4 for i ∈ {1, 2, 3}, and by coloring u2u7, u3u5, v1v6,
v3v7, v4v5 in red (see Figure 2) we obtain, for all Gi, a 2-coloring of edges which contains neither
a red P3 nor a blue C7. In fact, if ∆(Gi) ≥ 4, then there is a vertex of degree at most 2 in Gi. To
avoid a blue C7 we color in red one edge coming out of this vertex (if any). Hence, F 9 (P3, C7)
and consequently we have r∗(P3, C7) ≥ 13.
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Figure 2. Two extremal graphs G4 and G5 for ex(7, C4).
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Figure 3. The complement of the graph F7.

Next, we will show that r∗(P3, C7) ≤ 13. Let F7 be the complement of the graph shown in
Figure 3. To prove that F7 → (P3, C7), let χ be any red-blue coloring of edges of F7 such that
there is no red P3 in F7. We will show that the coloring χ will imply a blue C7 in F7. To do so,
consider vertex v4. There are 4 edges incidence to this vertex, at most one of them can be colored
by red. Up to the symmetry of F7, without loss of generality, we can assume that v1v4 is red or all
edges viv4, i ∈ {1, 3, 6, 7} are blue. Nonexistence a red P3 forces the red edges to be a matching
and that it suffices to consider maximum matchings. Then, using symmetries, there are only five
subcases to discuss.

1. Edge v1v4 is red.

1.1 if v2v5 and v3v6 is red, then v1, v5, v3, v4, v6, v2, v7, v1 is the blue cycle,
1.2 if v2v6 and v3v5 are red, then v1, v5, v2, v7, v4, v3, v6, v1 is the blue cycle,
1.3 if v2v6 and v3v7 are red, then the cycle v1, v6, v4, v3, v5, v2, v7, v1 is blue.

2. All edges viv4, i ∈ {1, 3, 6, 7} are blue. Then we have two subcases:

2.1 if v2v5, v1v6, v3v7 are red, then we obtain the following blue cycle: v1, v5, v3, v4, v6, v2, v7, v1,
2.2 if v2v6, v1v5, v3v7 are red, then the cycle: v1, v4, v6, v3, v5, v2, v7, v1 is blue.

For all cases, there is always a blue C7, so F7 → (P3, C7) and the proof is complete.
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3.2. Upper bounds for r∗(P3, Cn)

In [9] Silaban et al. proved that r∗(P3, Cn) ≤ 2n − 1. In this section we will show that this
upper bound can be improved and we prove the following theorem.

Theorem 6. For even n ≥ 12,
r∗(P3, Cn) ≤ 2n− 2.

v1 v2 v3 vt−2 vt−1 vt

u1 u2 u3 ut−2 ut−1 ut

x

y

Figure 4. The graph Fn → (P3, Cn) for n ≥ 12 and even n, t = n−2
2 .

Proof. Let t = n−2
2

and let Fn be a graph with

V (Fn) = {x, y} ∪ {ui, vi|i = 1, . . . , t}

and
E(Fn) = {xu1, xv1, xu3, uty, vty, vt−2y} ∪ S,

where
S = {uiui+1, vivi+1, viui+1, uivi+1|i = 1, . . . , t− 1}

(see Fig. 4). In order to prove that Fn → (P3, Cn), let χ be any red-blue coloring of edges of Fn

such that there is no red P3 in Fn. We will show that the coloring Fn will imply a blue Cn in Fn.

FACT 1. Observe that if we have any two independent blue paths to ui and vi, then we can
extend these paths step by step to vertices uj and to vj for 1 ≤ i < j ≤ t. To do so, let us consider
the vertex ui. Since under the coloring χ there is no red P3, at most one of edges {uiui+1, uivi+1}
can be red. If uiui+1 is red, then {uivi+1, viui+1} must be blue. Using these 2 blue edges, we
can extend our blue paths to ui+1 and vi+1, independently. If uivi+1 is red, then {uiui+1, vivi+1}
must be blue. Using these 2 blue edges, we also can extend our blue paths to ui+1 and vi+1,
independently. We can do the same process to extend our blue paths until reaching uj and vj .

FACT 2. There are always two independent blue paths from x to ui and from x to vi for i = 1
or i = 3. To prove this fact, let us consider the the vertex x. There are 3 incident edges to this
vertex, at most one of them can be colored by red. Up to the symmetry of Fn, we can assume that
at most one edge of set {xu1, xu3} is red.
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If xu3 is red, then xu1 and xv1 must be blue, therefore we have two blue paths from x to u1
and from x to v1. Note that a similar situation occurs if none of edges incidence to x is red.

Now we can assume that xu1 is red. In this case xv1 and xv3 are blue so we have one path from
x to u3. We will construct a path of size 6 with the set {u1, u2, v1, v2}) as inner vertices, namely
the path from x to v3. To do this consider the vertex u2. Under the coloring χ, at most one of edges
{u2u3, u2v3, u2v1} can be red. In all cases we obtain one among two possible blue paths from x to
v3, namely xv1u2u1v2v3 or xv1v2u1u2v3.

Similarly, using the symmetry of Fn, we get two independent blue paths from y to uj and from
y to vj for j = t or j = t− 2.

By using Fact 1 and 2, we obtain a blue cycle Cn in F . Observe that the theorem holds for
3 ≤ t− 2 and n ≥ 12.

Silaban et al. ([9]) gave the upper bound for the restricted size Ramsey number of P3 versus
Pn. They proved that for even n > 8, r∗(P3, Pn) ≤ 2n − 1. From the proof of Theorem 6 we see
that if we delete edge xu3 then for any 2-coloring of edges of Fn\{xu3} that avoid red P3, it must
imply a blue Pn in Fn. It means we get a better upper bound of the restricted size Ramsey number
for P3 versus Pn, even n ≥ 12, as given in the following corollary.

Corollary 7. For n ≥ 12 and even n, r∗(P3, Pn) ≤ 2n− 3.

3.3. Computational Approach
In this subsection we use a computational approach to determine the exact values of r∗(P3, Cn),

8 ≤ n ≤ 12. We use the following Algorithm 1 to find such numbers.

Algorithm 1 Deciding whether graph F → (P3, Cn) or not
Require: Adjacency matrix of biconnected graph F on n vertices.
Ensure: F → (P3, Cn) or F 9 (P3, Cn).

1: for m = bn
2
c → 0 do

2: for every subset S of m edges that compose independent edge set do
3: F ′ = F − S
4: find a Hamiltonian cycle in F ′

5: if no Hamiltonian cycle in F ′ then return F 9 (P3, Cn), Break.
6: end if
7: end for
8: m := m− 1
9: end for

10: return F → (P3, Cn)

We generate all the adjacency matrices of biconnected graphs with n vertices (8 ≤ n ≤ 12)
with minimum degree 3 by using a program called geng [8]. In order to find Hamiltonian cycle,
algorithm uses recursive depth-first search. Note that the starting point should not matter as the
cycle can be started from any point.
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Table 1: Restricted size Ramsey numbers r∗(P3, Cn), 8 ≤ n ≤ 12.
n 8 9 10 11 12

r∗(P3, Cn) 15 17 18 20 22
#{F → (P3, Cn), |E(F )| = r∗(P3, Cn)} 10 16 2 4 8

From the above algorithm, we obtain the results which are presented in Table 1. This table
provides the value of r∗(P3, Cn) and the number of non-isomorphic graphs F of order n and size
r∗(P3, Cn) such that F → (P3, Cn). Based on computer calculations, it turned out that in fact it
was enough to consider cases where m ∈ {bn

2
c, bn

2
c − 1, bn

2
c − 2}.

Examples of resulting graphs are presented in Fig. 5, 6, 7 and 4. For the number r∗(P3, C8) an
example is a graph K4,4 − e.

Figure 5. Complement of the graph F9 → (P3, C9).

Figure 6. Graph F10 → (P3, C10).

4. Conclusion

In this paper we established six new restricted size Ramsey numbers r∗(P3, Cn) for 7 ≤ n ≤
12. In addition, we gave the new upper bound for n ≥ 10 and even n. It follows that the first
open case of r∗(P3, Cn) is now r∗(P3, C13) and is certainly worth of further investigation. Based
on results known earlier and described in this work as well as computer experiments for some
bipartite graphs that are not presented here, let us formulate the following conjecture.

Conjecture 8. For all n ≥ 10, we have

r∗(P3, Cn) = 2n− 2.
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Figure 7. Graph F11 → (P3, C11).
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