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Abstract

Let R be a commutative ring (with 1) and let Z(R) be its set of zero-divisors. The zero-divisor
graph I'(R) has vertex set Z*(R) = Z(R) \ {0} and for distinct z,y € Z*(R), the vertices x
and y are adjacent if and only if xy = 0. In this paper, we consider the domination number and
signed domination number on zero-divisor graph I'( R) of commutative ring R such that for every
0 # z € Z*(R), x* # 0. We characterize T'(R) whose v(I'(R)) + v(T'(R)) € {n + 1,n,n — 1},
where | Z*(R)| = n.
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1. Introduction

The study on graphs from algebraic structures is an interesting subject for mathematician. In
recent years, many algebraists as well as graph theorists have focused on the zero-divisor graph of
rings. In [1], Anderson and Livingston introduced the zero-divisor graph of a commutative ring R
with identity, denoted by I'(R), as the graph with vertices Z*(R) = Z(R) \ {0}, the set of nonzero
zero-divisors of R, and for distinct vertices x and y are adjacent if and only if xy = 0.

A dominating set for I' is a subset D of V such that every vertex not in D is adjacent to at least
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one member of . The domination number is the number of vertices in a smallest dominating set
for I' and denoted by (I"). Oystein Ore introduced the terms “dominating set” and ” domination
number” in [10] and has proved if I' has n vertices and no isolated vertices, then v(I") < .
For a vertex v € V(I'), the closed neighborhood N [v] of v is the set consisting of v and all of
its neighbors. For a function ¢ : V(I') — {—1,1} and a vertex v € V we define g[v] =
> uenp) 9(w). A signed dominating function of I' is a function g : V(I') — {—1,1} such that
glv] > 0 for all v € V(I'). The weight of a function g is w(g) = > cy ) 9(v). The signed
domination number ~5(I") is the minimum weight of a signed dominating function on I'". A signed
dominating function of weight ~,(T") is called a ~y,(I")—function. This concept was defined in [3]
and has been studied by several authors (see for instance [4, 7, 8, 13, 14]). For a graph I the set of
all vertices of I is denoted by V/(T'). If I is a graph, then the complement of ', denoted by T' is a
graph with vertex set V(I") in which two vertices are adjacent if and only if they are not adjacent
in I'. A graph is said to be connected if each pair of vertices are joined by a walk. The number
of edges in a shortest walk joining v; and v; is called the distance between v; and v; and denoted
by d(v;,v;). The maximum value of the distance function in a connected graph I is called the
diameter of " and denoted by diam(I"). The complete graph K, is the graph with n vertices in
which each pair of vertices are adjacent. The corona I'y o I'; is the graph formed by one copy of
I'; and |V (I'y)| copies of I'y where the ith vertex of I'; is adjacent to every vertex in the ith copy
of FQ .

In this work, we consider the domination and signed domination number on zero-divisor graph
['(R) for commutative ring R. The main results are in the following.

Theorem 1.1. v,(I'(R)) = n if and only if I'(R) is isomorphic to K, ,,_; or K3 o Kj.
Theorem 1.2. Let |R| be odd. Then v5(I'(R)) = n — 2 if and only if I'(R) is a cycle Cl,.

Theorem 1.3. v(I'(R)) + v(I'(R)) = n if and only if U'(R) is a cycle Cy or a path Ps.

Theorem 1.4. y(I'(R))+~(I'(R)) = n—1ifand only if I'(R) is isomorphic to a K, 3 or a K30 Kj.

2. Preliminaries

First we give some facts that are needed in the next sections.

Theorem 2.1. [1] Let R be a commutative ring. Then I'(R) is connected and
diam(I'(R)) < 3. Moreover, if I'(R) contains a cycle, then girth(I'(R)) < 7.

Theorem 2.2. [1] Let R be a finite commutative ring with |['(R)| > 4. Then I'(R) is a star graph
if and only if R = Zy X F where F is a finite field. In particular, if I'(R) is a star graph, then
ITC(R)| = p" for some prime p and n. > 0. Conversely, each star graph of order p can be realized
as I'(R).

Theorem 2.3. [10] If a graph I has n vertices and no isolated vertices, then (I') < 7.
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Theorem 2.4. [9] For any graph I" with n vertices:

i yT)+~(T) <n+1

ji. /(DT < n.
Theorem 2.5. [11][5] For a graph T with even order n and no isolated vertices, v(I') = § if and
only if the components of I" are the cycle C; or the corona H o K, where H is a connected graph.

Lemma 2.1. [8] Let I" be a complete graph of order n, then

1 nisodd.
Ys(T) = {

2 niseven.

Theorem 2.6. [8] Let I' be a graph with n vertices, then
i. 7s(T) +~s(T) = 2n and v5(T')v,(T) = n? ifand only if T' € { P\, P5, Py, P3, P3, Py}, where
P; is a path on i vertices.

ii. s(I') +75(T) = 2n — 2 and v,(I')v,(T) = n?® — 2n for exactly 12 graph in Figure 1.
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Figure 1. v5(T') + 7,(T) = 2n — 2 and 5(T')y5(T) = n? — 2n.

Lemma 2.2. [8] A graph T has ~4(I") = n if and only if every v € T is either isolated, an endvertex
or adjacent to an endvertex.
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3. Signed domination number on zero-divisor graph

Throughout this paper, R is a commutative ring such that | Z*(R)| = n and for every non-zero

element z, 22 # 0. Also I'(R) denotes the complement graph of the zero-divisor graph on R.
Lemma 3.1. The cycle C,, is a zero-divisor graph of a ring if and only if n = 4.

Proof. Let I'(R) be the zero-divisor graph of a commutative ring R. Since girth(I'(R)) < 7, then
n < 7. On the contrary, let I'(R) ~ C,,andn > 50orn = 3. If n > 5, thena; —as — ... —a, —a;.
So a; + a3 € ann(ay) = {0,a;1,a3} and so a; + a3 = 0. Thus aga; = 0. This is impossible.
Let I'(R) be K3. Then Z(R) = {0,a,b,c}. So ann(a) = {0,b,c} and ann(b) = {0, a, c}. Thus
b = —c = a. This is a contradiction. Conversely, the zero divisor graph of ring Z35 x Z3 is a cycle
Cy. O

Proof of Theorem 1.1. Let v,(I'(R)) = n. Since I'(R) is a connected graph, by Lemma 2.2,
every vertex is an endvertex or adjacent to an end-vertex. If z € Z*(R) and deg(x) = 1, then
ann(z) = {0,y} where zy = 0. So O(y) = 2 in group (R, +). Hence | R| has even order. Let
A ={a; deg(a) > 1}. Since diam(I'(R)) < 3, the induced subgraph on A is a complete graph.
Consider four cases:

Case I. If |A| = 1, then I'(R) is K ,,_1.

Case 2. Let A = {a,b}. Then ann(a) N ann(b) = {0}. Suppose that u € ann(a) and v € ann(b).
Since deg(a), deg(b) > 1, then deg(u) = deg(v) = 1 and also uva = uwvb = 0. Hence,
wv € ann(a) Nann(b) and so uv = 0. This is a contradiction by deg(u) = deg(v) = 1.

Case 3. Let A = {a,b,c}. Let E(a) be the set of endvertex adjacent to a. Since b, ¢ € ann(a) and
O(a) = O(b) = 2, ann(a) is a subgroup of (R,+) of even order. Hence |E(a)| is odd.
The same conclusion can be drawn for b, c. We claim that |E(a)| = 1. On the contrary,
suppose that |F/(a)| > 3. There is no loos of generality in assuming F(a) = {1, x2, z3}.
So ann(a) = {0,b,¢,x1,29,23}. Hence z1 = —x3 and O(zy) = 2 or O(z;) = 2 for
i € {1,2,3}. In the both cases, x1 + =2, o +x3 # 0. Let y € E(b). Then z1ya = z1yb = 0.
So 1y € ann(a) Nann(b) = {0,c}. Since deg(y) = 1, z1y = c. In the same manner
we can see that xoy = z3y = c¢. Hence y(z1 + x2) = y(za + x3) = 2¢ = 0. Thus
x1 + T2, 9 + x3 € ann(y) = {0,b}. So x1 + x93 = x5 + x3 = band so 1 = z3. Thisis a
contradiction. Therefore |E(a)| = |E(b)| = |E(c)| = 1and ['(R) is K3 o K.

Case 4. Let A = {ay,...,a;} and t > 3. Then ann(a;) = {0,ay,...,4a;,...a;} U E(q;) fori €
{1,...,t}. So ﬂf;f ann(a;) = {0,a4_1,a;}. Hence a;_1 = —a;. Since N(a;—1) # N(ay),
this is impossible. O

Corollary 3.1. If v(I'(R)) = n, then vs(I'(R)) € {0, 3}.

151



On the domination and signed domination numbers of zero-divisor graph | E. Vatandoost et al.

LN/

Figure 2. K30 Kj;.

Proof. By Theorem 1.1, I'(R) ~ K;,,_1 or K30 K. If I'(R) >~ K; ,,_q, then I'(R) is K1 U K,,_;.
Since |Z(R)| is even, then n is odd and so (K, 1) = 2 and 7,(I'(R)) = 3. f T'(R) ~ K3 0 K,

then I'(R) is the graph in Figure 2. Let V} = {x,y, 2z} and V2 = {a, b, ¢}. Define f : V(I'(R)) —
{—1, 41} such that

=1 uwe Vi
f(u)—{+1 u e V.

It is clear that f is a signed dominating function and w(f) = 0. If g is a function such that
w(g) < 0, then g is not a signed dominating function. Therefore v4(I'(R)) = 0. O

Corollary 3.2. Ifv,(I'(R)) = n, then |R| € {2%,2p*} where p is prime.

Proof. By Theorem 1.1, I'(R) ~ K, _; or K30 K,. If I'(R) ~ K,,_;, then by Theorem
22, R ~ Zy x F where F is a finite field. So |R| = 2p*. Let I'(R) ~ K3 o K;. Let
V(I'(R)) = {ai,x;; deg(x;) = 1, deg(a;) = 3,1 <1 < 3}. So|R|iseven. If p | |R| (p
is odd prime number), then there is 0 # r € R such that O(r) = p. Hence pr = 0. Also
(p —1)a; = 0. Thus ra; = r(pa;) = 0. So r € ann(a;) for every 1 < i < 3. Hence r = 0. This is
a contradiction. Therefore |R| = 2*. O

The Proof of Theorem 1.2 Since |R| is odd, § > 2. Let x € R and deg(x) = 2k + 1. Then
lann(x)| = 2k + 2. This is a contradiction by |R| is odd. So all vertices have even degree. Since
diam(I'(R)) < 3, there are three cases:

Case 1. If diam(I'(R)) = 1, then I'(R) is complete graph K. Since all vertices have even degree,
n is odd and so v5(I'(R)) = 1. Hence n = 3 and I'(R) is K3. This is impossible by Lemma
3.1

Case 2. If diam(y(R)) = 3, then there are a,b € Z*(R) such that d(a,b) = 3. Define signed
dominating function f : V(I'(R)) — {—1,+1} such that f(a) = f(b) = —1and f(z) =1
forz € Z*(R) \ {a,b}. Thus vs(I'(R)) < n — 2. This is impossible.
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Case 3. Let diam(I'(R)) = 2. If A = 2, then I'(R) is a cycle. So I'(R) ~ Cj, by Theorem 3.1. Let
deg(y) = A > 4. Letann(y) = {0,a4,...,a,} where t is even and ¢t > 4. So O(a;) # 2.
Hence, —a; € ann(y). Thus ann(y) = {0,a1,—a1,...,ar, —ar}. Letx € N(ay). If
there is 2 < j < & such that {a;, a;} ¢ E(I'(R)), then d(x,a;) > 2. Otherwise, there
is z € N(a;) \ ann(y) and so d(z,z) = 3. This is not true. So for every z € N(ay),
deg(x) > 4. Define f : V(I'(R)) — {—1,+1} such that f(a;) = f(—a;) = —1 and
f(v) = 1foreveryv € V(I'(R)) \ {a1, —a1}. So f is a signed dominating function and so
v(I'(R)) < n — 2. This is a contradiction. O

Theorem 3.1. If 7,(['(R)) + 7s(T'(R)) = 2n, then |R| € {2%,2 x 3*}.

Proof. Since I'( R) is a connected graph, by Theorem 2.6, I'( R) is one of the paths in { Py, P», P3, Py}.
It is known P is not a zero-divisor graph.

IfT'(R) is P, then Z(R) = {0, z}. So z* = 0. This is impossible.

Let I'(R) be P,. Then Z(R) = {0,a,b} and O(a) = O(b) = 2. So |R] is even. If p | |R| where
p is an odd prime number, then there is € R such that O(r) = p. Hence (p — 1)a = 0. Thus
ra = r(pa) = 0. Sor € ann(a) and so r = b. This is a contradiction. If ['(R) is a — ¢ — b,
then ann(c) = {0,a,b}. So b = —a and so O(a) = 3. Also O(c) = 2. Also by Theorem 2.2,
R~ Zy x F.So |R| =2 x 3. 0

Theorem 3.2. If (' (R)) + vs(T'(R)) = 2n — 2, then |R| = 2p"* where p is an odd prime.

Proof. By Theorem 2.6 and Lemma 3.1 and since I'( R) is a connected graph, I'(R) € { K 3, K14, G1, G2}
where Gy, GG, are two graphs in Figure 3. We show that G; and G4 are not a zero-divisor graph. If

G is a zero-divisor graph, then b(a +¢) = 0. So a+e € ann(b) = {0, a, e}. Hence e = —a. This

is contradiction by ¢, d ¢ ann(a). Similar argument applies for Gs.

If T(R) is K, 3 or K} 4, then likewise Corollary 3.2, | R| = 2p". O

Figure 3. G; and G5 in Theorem 3.2.

4. Domination number on zero-divisor graph

Theorem 4.1. +(I'(R)) = 5 if and only if I'(R) is a cycle Cy or a K3 o K.
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Proof. Let v(I'(R)) = 5. By Theorem 2.5, I'(R) is the a cycle C} or the corona H o K where
H is a connected graph. If I'(R) is not Cy, then I'(R) ~ H o K. Let A = {a;; deg(a;) > 1}.
Since diam(I'(R)) < 3, the induced subgraph on A is complete. If |A| = 2, then I'(R) is a path
P,. This is impossible. If |A| > 3, then ﬂf;f ann(a;) = {0,a;_1,a,}. Hence a; = —a;_;. This is
a contradiction. So |A| = 3 and so I'(R) ~ K3 o K. The converse is clear. O

Theorem 4.2. v(I'(R)) + v(I'(R)) = n + 1 if and only if T'(R) is complete graph K,,.

Proof. Let v(I'(R)) + v(I'(R)) = n + 1. By Theorem 2.3, v(I'(R)) < 5. So y(I'(R)) > % and
so I'(R) has isolated vertex. Hence y(I'(R)) = 1 and v(I'(R)) = n. Thus all vertices of I'(R) ar
isolated. Therefore I'( R) ~ K.

Oa

Proof of Theorem 1.3. Let y(I'(R))+~(I'(R)) = n. Since I'( R) is a connected graph, y(I'(R)) <
5. We consider following cases:

Case 1. Let y(I'(R)) = 5. By Theorem 4.1 and above equality, I'(R) is a C}.

Case 2. If v(I'(R)) < 2, then 4(I'(R)) > 2. So ['(R) has an isolated vertex and so y(I'(R)) = 1.
Also v(F(R)) —n — 1. Thus T'(R) ) is P, U (n — 2)K. Itis clear that n > 3.

Sub case I. If n > 3, then likewise the proof of Theorem 4.1, the contradiction reaches.

Sub case II. If n = 3, then I'(R) ~ P, U K;. So I'(R) is the path Ps.

The converse is easy. O

Proof of Theorem 1.4. Let v(I'(R)) + v(I'(R)) = n — 1. Since I'(R) has no isolated vertices,
y(I'(R)) < 5. There are three cases:

Case 1. If y(I'(R)) = %, then I'(R) is K3 o K or Cy by Theorem 4.1. But K3 o K is not satisfied
iny(T(R)) +1(T'(R)) = n — 1.

Case 2. Let y(I'(R)) = § — 1. Then y(I'(R)) = 5. By Theorem 2.4, 0 < n < 6. Son € {4,6}.

Sub case I. Let n = 4. Then v(I'(R)) = 1 and v(I'(R)) =
4. Let G be a zero-divisor graph. Since deg(a)
ann(c) = {0,b,d}. So d = —b. This is not true.

Sub case I. If n = 6, then y(I'(R)) = 2 and y(I'(R)) = 3. So ['(R) is a graph without isolated
vertex. Hence by Theorem 2.5, m is C4U Py, 3P or K30 K;. SoT'(R) is G, Gs
and G in Figure 4, respectively. In graph G4, ¢(d 4+ e¢) = 0 and so d + e € ann(c).
Hence d + e = 0 or f. Thus ad = 0 or bd = 0. This is a contradiction. In graph
G, d + [ € ann(a). But all cases are impossible. In graph G3, Since b(d + f) = 0,
d = —f.Socf = 0. This is not true.

2. SoI'(R) is K, 3 or G in Figure
= (b) = 2. On the other hand,
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Case 3. If y(I'(R)) < § — 1, then I'(R) has an isolated vertex. So y(I'(R)) = 1 and so y(I'(R)) =

n — 2. Hence I'(R) is Ps U (n — 3)K; or K3 U (n — 3)K;. If n = 4, then ['(R) is G in
Figure 4 or K 3 respectively. But G is not a zero-divisor graph of a ring. For n > 4, the

contradiction reached by the same method in Theorem 4.1. ]
am b
C\/—;
f A e
& ‘

(e

Gy

Figure 4. T'(R) in the proof of Theorem 1.4, Cases 2 and 3.
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