Electronic Journal of Graph Theory and Applications 8 (1) (2020), 123-132

, Electronic Journal of
Graph Theory and Applications

Congruences and subdirect representations of
graphs

Stefan Veldsman

School of Engineering and Mathematical Science,
La Trobe University, Melbourne, Australia, and

Department of Mathematics, Nelson Mandela University,
Port Elizabeth, South Africa.

veldsman @ outlook.com

Abstract

A basic tool in universal algebra is that of a congruence. It has been shown that congruences
can be defined for graphs with properties similar to their universal algebraic counterparts. In
particular, a subdirect product of graphs and hence also a subdirectly irreducible graph, can be
expressed in terms of graph congruences. Here the subdirectly irreducible graphs are determined
explicitly. Using congruences, a graph theoretic version of the well-known Birkhoff Theorem
from universal algebra is given. This shows that any non-trivial graph is a subdirect product of
subdirectly irreducible graphs.

Keywords: congruence on a graph, quotient graph, subdirect product of graphs, subdirectly irreducible graph, Birkhoff’s theorem

Mathematics Subject Classification : 05C25, 05C76, 08 A30
DOLI: 10.5614/ejgta.2020.8.1.9

1. Introduction

Recently, a congruence on a graph was defined by Broere, Heidema and Pretorius [2]. The
graphs they consider, do not allow loops. Since there is a direct relationship between a congruence
on a graph and a homomorphic image of the graph, the absence of loops makes the theory of
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congruences on such graphs rather restrictive. In [3] this restriction was removed and a theory for
congruences on graphs which do admit loops was developed. It was shown that the three classical
isomorphism theorems from universal algebra each has a graph theoretical version. Moreover, as
for algebras, a subdirect product of graphs can be expressed in terms of congruences. As a first
application of these new tools available for graph theory, it was also shown in [3] that a Hoehnke
radical can be defined for graphs as was done in universal algebras, and that it determines the
connectednesses and disconnectednesses of graphs as defined and developed earlier by Fried and
Wiegandt [5]. The connectednesses and disconnectednesses theory of graphs is the graph theoretic
version of the classical radical theory of algebraic structures. For the latter, one may consult
Gardner and Wiegandt [6] for a comprehensive overview of the radical theory of associative rings.

Here we look at another application of graph congruences culminating in a graph theoretic
version of the well-known Birkhoff Theorem in universal algebra [1]: every non-trivial graph is
a subdirect product of subdirectly irreducible graphs. The notion of a congruence on a graph
is still relatively new and we will start by recalling the definition and basic properties of graph
congruences from [3] in the next section. Subdirectly irreducible objects in any category can be
thought of as the ”primes” (they cannot be decomposed as certain products) and it is desirable to
express any object in terms of such irreducible objects. In the third section, we explicitly determine
the subdirectly irreducible graphs; such a graph must be one of four namely a two-vertex graph
(three possibilities) or a three-vertex graph (only one possibility). It is then proven that any graph
with at least two vertices is a subdirect product of such subdirectly irreducible graphs. In [3]
it was shown that a subdirect product of graphs can be expressed in terms of congruences and
congruences are then also the main tool used to establish the results.

The results presented here are for the category of graphs which admit loops (i.e., a vertex of a
graph may have a loop). A version of Birkhoff’s Theorem for the category of graphs which do not
admit loops was claimed by Fawcett [4] and later proved by Sabidussi [8]. Sabidussi also defined
and used the notion of a congruence of a graph in his work (as the kernel of a homomorphism), but
he did not develop a theory of congruences for graphs. The category of graphs which admit loops
has a much richer homomorphism structure and consequently the subdirectly irreducible graphs
considered here are different to those considered by Sabidussi in the category of graphs which do
not admit loops.

Let us first fix the terminology and notation required. A graph G with vertex set V' and edge
set £/ will typically be denoted by G = (V, E); when we are dealing with different graphs, we may
use the notation Vi; for V' and, similarly, F for £. When we write a € G, it actually means a is a
vertex of G, i.e., a € V. By a graph, we mean a non-empty vertex set, edges are not directed, no
multiple edges are allowed but loops are. For a,b € (G, an edge between a and b will be denoted
by ab and aa denotes a loop at a. For a non-empty set [, we use Kp to denote the complete
graph with vertex set D and Cp to denote the set of all possible edges and loops on the set D, i.e.,
Cp = {ab | a,b € D}. If D has cardinality n, we sometimes write K,, and C,, respectively. A
(graph) homomorphism is an edge preserving mapping from the vertex set of a graph into the vertex
set of a graph. A strong homomorphism is a homomorphism that sends "no edges” to "no edges”
and if it is also a bijection, it is called an isomorphism. Isomorphic graphs G and H will be denoted
by G = H. For a graph G = (Vi5, Eg), a subgraph H = (Vi, Ey) of G is a graph with Vi C Vg
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and Fy C Eg. When Ey = {ab | a,b € Vi and ab € Eg}, then H is called a strong subgraph
(or induced subgraph) of G. For a homomorphism f : G — H, the image graph f(G) will always
be the induced subgraph of H on the vertex set f(V(). In general, unless mentioned otherwise, if a
subset Vy of V; is regarded as a graph, it will be the subgraph induced by GG on V. There are two
(non-isomorphic) one-vertex graphs, called the trivial graphs; the one with a loop 7 and the one
without a loop 7. If a graph is not trivial (i.e. with at least two vertices), then it is called non-trivial.
The six non-isomorphic two-vertex graphs will be denoted by B;,7 = 1,2, 3,...,6 where Vp, =
{0,1} and E, = 0 (empty set), Ep, = {01}, Ep, = {00}, Ep, = {00,11}, E, = {01,11}
and Ep, = {00,01,11}. We will also need one three-vertex graph Az with V,, = {0,1,2} and
E4, = {00,11,22,01,21}. For an equivalence relation ~ on a vertex set V, we use [a] to denote
the equivalence class of a € V. If necessary, it may be written with a subscript as [a].. We use
[a][b] to denote the set [a][b] = {st | s € [a],t € [b]} C Cy.

2. Congruences on graphs

For completeness, in this section we recall the definition and basic properties of graph congruences
from [3]:

Definition 1. Let G = (V, E¢) be a graph. A congruence on G is a pair 0 = (~,E) where:

(i) ~ is an equivalence relation on Vg,

(ii) £ is the congruence edge-set with Eg C £ C Cg; and

(iii) (Substitution Property of € with respect to ~) for x,y € Vg, xy € & implies [z][y] C £.

A strong congruence on G is a pair 0 = (~,E) where ~ is an equivalence relation on Vg and

E=E(~):={wxy | x,y € Vgwith [x][y] N Eq # 0}.

A strong congruence is also a congruence. Congruences can be partially ordered by the relation
”contained in”: For two congruences a = (~,,&,) and 8 = (~g,Ez) on G, « is contained in 3,
written as o C 3, if ~,C ~g and &, C &3. Let <= denote the identity relation (diagonal) on Vg
(i.e., x < y if and only if z = y). The congruence ¢ := (<, E¢) on G is called the identity
congruence on (. It is a strong congruence and is the smallest congruence on . The universal
congruence on G is the pair vg = («~,Cq) where «~ is the universal relation (i.e., a «~ b for
all a,b € V). Any congruence on G is contained in vg. These two congruences, the identity and
the universal congruence, are sometimes referred to as the trivial congruences on a graph. For any
congruence f = (~, £) on a graph G, it is always the case that £(~) C £ which means that £(~)
is the smallest congruence edge-set on Vi for which (~, £(~)) is a congruence on G. Also note
that for any graph G = (Vg, E¢), £() = Eg. The next example is the prototype of all graph
congruences.

The kernel of a homomorphism: Given any graph homomorphism f : G — H, the kernel
of f, written as ker f = (~y, &), is defined by ~;= {(z,y) | z,y € Vg, f(z) = f(y)} and
Er ={uwv | u,v € Vg, f(u)f(v) € Egn}. This is a congruence on G. With f is also associated
the strong kernel of f, written as sker f = (~, Esy) with the same equivalence relation but
&y = E(~). This is a strong congruence on G and sker f C ker f; in fact, if 6 = (~, &) is any
congruence on G for some &, then sker f C 6. If f is a strong homomorphism, then ker f = sker
f. Injectivity of a homomorphism is equivalent to the equivalence relation ~; coinciding with < .
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Moreover, the kernel of f is the identity congruence on G if and only if f is an injective strong
homomorphism. If f is a surjective strong homomorphism, then it is an isomorphism if and only
if the kernel of f is the identity congruence.

Quotients: Given any congruence § = (~,&) on a graph G = (V, Eg), a new graph,
denoted by G /0 = (Vi9, Eqye) and called the quotient of G modulo 0, is defined by taking
Ve = {lz] | © € Ve} and Egg := {[z][y] | xy € £}. In this context, the natural (= canonical)
mapping py : G — G/0 given by py(x) = [z] is a surjective homomorphism with ker py = 6. In
particular, for 6 = 15 we have G/ isomorphic to G. If # is a strong congruence, then py is a
strong homomorphism with sker ps = 0. In general, if we take § = (<, £) where € is any set with
Eq C € C Cg, then 6 is a congruence on G and G/6 is the graph with vertex set Vi;/p = Vi and
edge set F/9 = € (here we identify [x] = {x} with ). If v is the universal congruence on G,
then G /v¢ is isomorphic to the trivial graph T; (one vertex with a loop).

The lattice of congruences: For a given graph G, the set of all congruences on G is denoted by
C(G). This set C(G) is a partially ordered set with respect to containment C as defined above. We
can say more. Any collection of congruences {0; = (~;,&;) | ¢ € I} C C(G) has a greatest lower
bound in C(G) given by () 6; = (~, &) wherea ~ b < a ~; bforalli € [ andab € £ < ab € &,

i€l

for all : € I. Moreover, {6; = (~;,&;) | i € I} also has a least upper bound in C(G) given by the
congruence (~, &) where a ~ b < there are i1, 4y, ...,%, € I and a;,, a;,, ...,a;, € V,n > 2, such
that a = Wiy g Qjy iy Ajg Nig =00 i o Qi i Gy, = band € : = g('\/) :{ab | (Z,b eV

and there is an ¢ € [ and a'b’ € &; with @’ ~ a and I/ ~ b}. It can easily be verified that (~, &)
is the least upper bound in C(G) for {6; = (~;,&;) | i € I}. We write this least upper bound as

U 0; = (N’ g)
i€l

Isomorphism theorems for congruences:
For two graphs G and H, let f : G — H be a graph homomorphism with § = (~, £) a congruence
on G and @ = (~,,&,) a congruence on H. By f(#) we mean the pair (f(~), f(£)) where
f(~) =A{(f(a), f(b)) | a,b € Vg,a ~ b} and f(E) = {f(a)f(b) | ab € £}. This need not be a
congruence on H, but nevertheless it will be compared to « in the usual sense, meaning () C
« if and only if f(~) C ~, and f(£) C &,. We start with two auxiliary results and remind the
reader that all the results from this section are from [3] which also contains the proofs.

Proposition 2.1. Let f : G — H be a homomorphism. Then f(ker ) C vy and if p = (~,,&,) is
a congruence on G with f(p) C vy, then p C ker f.

Proposition 2.2. Let f : G — H and g : G — K be surjective homomorphisms. Then ker f =
(~7, &) € kerg = (~g,&,) if and only if there is a homomorphism h : H — K such that

hof=g.
This brings us to:

Theorem 2.1. (First Isomorphism Theorem) Let | : G — H be a homomorphism. Then G/ ker f
is isomorphic to f(G) where f(G) is the induced subgraph of H on (V). If f is surjective, then
G/ ker f is isomorphic to H. Moreover, if f is a surjective strong homomorphism, then G [skerf is
isomorphic to H.
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Let G be a graph with induced subgraph H. Then a congruence § = (~,&) on G induces a
congruence H N = (~p,Ey) on H with ~g= (Vg x V)N~ = {(a,b) | a,b € Vi and a ~ b}
and Eg = {ab | a,b € Vu} NE = {ab | a,b € Vy with ab € £}. The mapping f : H — G/0
defined by f(a) = [a] for all a € Vj is a homomorphism with ker f = H N 6. Now f(Vy) is a set
of vertices of G/6 on which we form the induced subgraph of G/6, denoted by (H + 6)/6. Then,
by the First Isomorphism Theorem, we have:

Theorem 2.2. (Second Isomorphism Theorem) Let H be an induced subgraph of a graph G. Let 0
be a congruence on G. Then H N0 is a congruence on H and H/H N0 is isomorphic to (H +60) /6
where the latter graph is the induced subgraph of G /0 on the vertex set {[a] | a € Vi }.

Theorem 2.3. (Third Isomorphism Theorem) Let G be a graph and let 61 = (~1,&;) and 0y =
(~a, &) be two congruences on G with 61 C 0y. Then 65/0, := (~, &) is a congruence on G /0,
where the equivalence is given by |a]; ~ [bl; < a ~qo b and the congruence edge-set is given
by [a],[b]; € € < ab € &. Moreover, the quotient graph (G /6,)/(02/01) is isomorphic to the
quotient graph G /0,.

This theorem gives the expected connection between the congruences on a graph and the con-
gruences on an associated quotient graph.

Theorem 2.4. Let G be a graph with 0 a fixed congruence on G. Any congruence & of the graph
G /0 is of the form «/0 for some congruence o on G with 0 C «. Moreover, there is a one-to-one
correspondence between {« | « is a congruence on G with 0 C o} and C(G /) which preserves
inclusions, intersections and unions of congruences.

Products and subdirect products of graphs:
For an index set I, let G; = (V;, E;) be a graph for all i € I. The product [] G; of the graphs G}
i€l
is the graph [[ G; := ([[ Vi, E)) where [ V; is just the usual Cartesian product of the sets V; and
i€l i€l i€l
E={fg| f,g € [] Vi with f(i)g(i) € E; foralli € I}. Forevery j € I, the j-th projection
i€l
m; : [[ Gi — G, defined by 7;(f) = f(j) forall f € [[V; is a surjective homomorphism. An
i€l i€l
induced subgraph H of || G, is called a subdirect product of the graphs G;,i € I, provided the
i€l
restriction of each projection 7; to H is a surjective mapping onto GG;. As in universal algebra,
subdirect products can be expressed in terms of congruences and quotients:

Theorem 2.5. For each i € I, let 0; be a congruence on a graph G with 0 .= ﬂ 0;. Then G/0 is
isomorphic to a subdirect product of the quotient graphs G /0;,1 € 1. <

In particular, it then follows that:
Corollary 2.1. A graph G is a subdirect product of graphs G;,1 € I, if and only if for every i € I

there are congruences 0; on G with G; isomorphic to G/0; and () 0; = 1c.
iel
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3. Subdirectly irreducible graphs.

A graph G is called subdirectly irreducible if the following condition is fulfilled: whenever G

is a subdirect product of graphs G;, ¢ € I for some index set /, then G = G for at least one j € /.
In terms of congruences, this means that G is subdirectly irreducible if and only if whenever 0; is a
congruence on G for all 7 from some some index set / with N0; = ¢, then §; = ¢ for some j € 1.
If GG is not subdirectly irreducible, it is called subdirectly reducible. In layman’s terms, this means
that a subdirectly reducible graph sits tightly in a product of graphs, none of which coincides with
G.
The two-vertex graph Bg has only the two trivial congruences (g, and vp, and is subdirectly
irreducible; Bs; and B, each has three congruences, the two trivial congruences as well as (<,
{00, 01, 11}) and both are subdirectly irreducible. The graphs B3 and B, each has five congruences
and B; has nine. These three graphs are subdirectly reducible: B is a subdirect product of B4 and
two copies of B using the congruences v, = (<, Fy = {00,11}),v2 = (<, B2 = {00,01}) and
v3 = (<, B3 = {01, 11}); By is a subdirect product of two copies of Bs (using the congruences 7,
and 73) and Bs is a subdirect product of By and Bj (using 7, and ~y3). For ease of reference, we
record this here as our first result.

Proposition 3.1. The two-vertex graphs By, Bs and Bg are subdirectly irreducible. The two-vertex
graphs By, By and Bs are subdirectly reducible being subdirect products of copies of B4 and Bs.

We also need:

Proposition 3.2. Suppose the graph G is a subdirect product of the graphs G, € I, and for some
io € I, Gy, is a subdirect product of graphs H; for j € J (take I N J = (). Then G is a subdirect
product of the graphs K, forr € R := JU (I — {io}) where
K _{ GTU‘TGI—{io}
" HyifreJ '

Proof. By Corollary 2.9 there are congruences ; on G with G; isomorphic to G/0; and () 6; = 1¢
el
and congruences 7; on G;, with H; isomorphic to G;,/n; and () n; = i, . By Theorem 2.7,
jeJ
there are congruence «; on G with ¢;; C «; such that () o; = 6;, and 7; = «;/6;,. Then
jed

< N 9z’> N Neg | = N 6;] N0, =) 0; = ic. The result follows from Theorem

iel—{io} jed iel—{io} i€l

2.6 since G/o; = (G/6,,)/(a;/bi,) = Gy /n; = Hj forall j € J. O

We now determine the subdirectly irreducible graphs in a series of intermediate results. For
this we often use the following congruences: For a graph G = (V, Eg), let @ € G and let
Pa = (~a, &) be the congruence on G where ~,, is the equivalence on V; with two equivalence
classes [a] = {a} and [b] = V;—{a} forb # a,and &, = £(~,). If G has more than three vertices,
then p, # (. Clearly aa € () & < aa € Eg < aa € &,. Note also that [ p, = (<, E) where

beG acG
EcCE=() &
a€eG
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Proposition 3.3. Ler G be a non-trivial graph with E¢ = (). Then G is a subdirect product of |G-
copies of the two-vertex graph B, and hence also a subdirect product of the subdirectly irreducible
graphs B, and Bs,.

Proof. For every a € G, the congruence p, defined above is given here by p, = (~,, Fg) and

G/pa = By. Moreover, [ p. = ¢ and so we have G is a subdirect product of copies of B;. The
e
last part follows from the previous two propositions. 0

Proposition 3.4. Let G be a non-trivial graph with Eq = Cg; i.e., G is complete with all loops.
Then G is a subdirect product of |G|-copies of the subdirectly irreducible two-vertex graph Bg,
hence G is subdirectly reducible.

Proof. Here we have for every a € G, the congruence p, = (~,, E¢) and G/p, = Bg. Moreover,
() pa = te and hence G is a subdirect product of copies of Bg. L]
acG
Because any induced subgraph of a product of copies of the graph B will be complete with all
loops, we have:

Corollary 3.1. A non-trivial graph G is complete with all loops if and only if G is a subdirect
product of copies of the graph Bg.

Theorem 3.1. Let G be a non-trivial graph. Then G is subdirectly irreducible if and only if G is
one of the four graphs By, Bs, Bg or As.

Proof. Already we know that the two-vertex graphs By, B5 and By are subdirectly irreducible.
A direct verification shows that A3 = ({0, 1,2}, {00, 11,22,01, 12}) has 6 congruences and any
intersection of congruences which is the identity must already contain one that is the identity;
hence Aj; is subdirectly irreducible. The converse will be shown in a number of steps:
(1) Let G be a graph with at least three vertices. If GG is subdirectly irreducible, then every vertex
of GG has a loop.

Proof of (1): Suppose G has a vertex p which does not have a loop. Let v be the congruence
v = (%,&,) where &, = Eg U {pp}). Then v # 1 and also p, # (i for all a € G. Now

~N ( N pa) = (<, Eg) = . Indeed, for the first equality, we note that £, N ( N Ea) =FEq:

aceG a€eG

ifste &N ( N 8a> , then st € FEg or st = pp. But st is also in &, for all @ € G. In particular, if
acG
st = pp we get for a = p, that pp = st € &, and so pp € E; a contradiction. Thus st € E¢ and

hence v N ( N pa> = 1. But this contradicts the fact that (G is subdirectly irreducible.
acCG
(2) Let GG be a non-trivial complete graph with all loops. Then G is subdirectly irreducible if and

only if GG is a two-vertex graph.

Proof of (2): By assumption, G has at least two-vertices and F; = Cg. If G has only two
vertices, then G = Bg which we already know is subdirectly irreducible. Conversely, suppose
G is subdirectly irreducible. For every a € G, the congruence p, = (~4, &) = (~q,Cq) and
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( N pa) = 1. By the assumption on G, there is an a € G with p, = tg. This implies that
aceG
|Ve| = 2 and we are done.

(3) Let G be a graph with at least three vertices. If G is subdirectly irreducible, then G has all
loops and all but one edge; i.e., E¢ = C¢ — {ab} for two distinct vertices a,b € G.

Proof of (3): By (1) we already know that aa € Eg for all a € G. By (2) GG is not complete,
say a,b € G with ab € C¢ — E¢ and a # b. For any pq € C; — E¢, we have p # q. Let 0,,, be the
congruence 6, = (<, &,,) with &,, = EqU{pq}. Clearly 0, # tc. If pq # ab, then 8,,Nb,, = 1
which contradicts G subdirectly irreducible. Thus Eg = Ci — {ab} as required.

This gives:

(4) Let G be a graph with three vertices. Then G is subdirectly irreducible if and only if G = Aj3.
(5) Let GG be a graph with at least four vertices. Then G is subdirectly reducible.

Proof of (5): If not, then by (3) we have E¢ = Ci — {pq} for two distinct p,q € G. Let a =
(~a, € ) be the congruence with ~,the equivalence on G with equivalence classes {p, ¢} and {a}
foralla € G—{p, q} and &, = C¢. Clearly a # 1. Let ~4 be the equivalence on G with the three
equivalence classes {p}, {¢} and Vi — {p, ¢} and let £5 = E;. Then 5 = (~g, £3) is a congruence
on G. Indeed, for this we verify the Substitution Property: pp € E¢ = [plslpls = {pp} C Eg¢;
qq € Ec = [qlslals = {qq} C Eg; fora € Vg — {p,q}, pa € Eg = [plslals = {pt | t #
p,t # q} C E¢ and likewise qa € Eg = [g|slals € E¢ and lastly, for a,b € Vi — {p, ¢},
ab € Eg = [alg[b]s = {st | s,t € Vo —{p,q}} C E¢. Thus S is a congruence and since G has at
least four vertices, 3 # to. But a N 8 = 1; hence G is subdirectly reducible.

We now show the converse of the statement in the theorem. Let GG be a non-trivial graph which is
subdirectly irreducible. By (5), G must have two or three vertices. If |G| = 2, G can only be one
of By, Bs or Bg and if GG has three vertices, then by (4) above it must be the graph Aj;. ]

4. Birkhoff’s Theorem for graphs

We conclude with the graph theoretic version of Birkhoff’s Theorem.

Theorem 4.1. Every non-trivial graph is a subdirect product of subdirectly irreducible graphs;
i.e., every non-trivial graph is an induced subgraph of a product of copies of the graphs By, Bs5, Bg
and As.

Proof. 1If G has only two vertices, then the statement follows from Proposition 3.1. Suppose thus
G has at least three vertices. Then the congruence p, = (~,, &,) is not the identity and G/p, is

one of the two-vertex graphs B; for every a € G. Thus, if < N pa) =1, 1.e. if Eqg = () &,

acG acG
we are done by Propositions 3.1 and 3.2. Suppose thus Eg C () &, say p,q € G with pg € &,
aeG

forall « € G but pqg ¢ E¢. In particular, pg € &,. This means p # ¢, for if p = ¢, then pp € &,
implies pg = pp € E¢; a contradiction. Since pg € &,, we know [p],[q], C &, and so there is an
r € Vo — {p} with pr € E. Note that r # ¢. Likewise, since pg € &, thereisan s € V; — {p, ¢}
with gs € Eg (we could have r = s). Let ~,, be the equivalence on Vi; with three equivalence
classes {p}, {q} and Vi — {p, ¢}. Let &,, := Cc — {pq}. Clearly E¢ C &,, and to justify the claim
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that v, 1= (~,q, €y) is a congruence on G, we will verify the Substitution Property. Let ab € &,,.
Then ab # pq and
{pp}ifa=b=p
{ag}ifa=b=q
[a]pqlblpg = § {pt|t€Ve—{p,q}}ifa=pandbe Ve —{p,q}
{at |t € Ve —{p,q}t}ifa=qandbe Ve —{p,q}
{tu|t,u € Ve —{p,q}}ifa,be Ve —{p,q}
from which we have [a],,[b],, C &,,. Hence 7,, is a congruence on G.
We now distinguish two cases. If v, = i¢, then Vo = {p,q,r} and E¢ = &,, = Co — {pq}.

This means G = Aj and we are done. Suppose thus v, # (¢ forall pg € [ &,— E¢. Note that for
aeG

all these pq’s we have G/7,, = As. We also have < N Ea) N (ﬂ{gpq lpge N & — EG}) =
acG acG

Eg for if st € ( N Ea) N (ﬂ{c‘qu Ipge N & — Eg}) and st ¢ Eg, then st € () & — Eg
acG acG acG
and st € ({&y | rq € () &€ — Eg}. This means st € &, = Ce — {st}; a contradiction. Hence
acG

(n&)n(Nt&lre 0 &~ Ea}) = Eeandso ( ) po )Mo i€ ) - Ee)) -
ac a€ ac aclG
¢ from which we may conclude that GG is a subdirect product of copies of two-vertex graphs and

Ajs. The result then follows from Proposition 3.1. [

5. Conclusion

Graph congruences is a relatively new concept. A few applications to demonstrate how this new
tool can be used in graph theory have been given. The flavor and results for graphs follow closely
the motivating influences from universal algebra. Already it has been shown that the classical radi-
cal theory of algebras which has also been developed for graphs under the guise of connectednesses
and diconnectednesses, can be obtained from congruences as for their algebraic counterparts. Here
another classical algebraic application of congruences for graphs, namely Birkhoff’s Theorem, is
given: Every graph with at least two vertices is a subdirect product of subdirectly irreducible
graphs. In addition, all the subdirectly irreducuble graphs are determined explicitly. It is shown
that there are exactly four such graphs; three with two vertices each and one with three vertices.
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