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Abstract

Let G = G(V,E) be a simple graph. The graph G is said to be distance magic if there exists a
bijection f : V → {1, 2, . . . , |V |} and a constant s such that

∑
y∈N(x) f(y) = s for all x ∈ V. In

this paper we show that the only distance magic graph of the form Kn2Cm is K12C4, and that
m = 4 if Cm2Kn,t is distance magic. Necessary conditions are given for C42Kn,t to be distance
magic when n > t. These conditions are shown to be sufficient when n and t are both even.
We conclude with some examples of distance magic graphs of the form C42Kn,t with n > t, in
particular constructing an infinite sequence of non-isomorphic distance magic graphs of this type.
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1. Introduction

Let G = G(V,E) be a simple graph. Given x ∈ V , let N(x) be the set of vertices adjacent to
x. The graph G is said to be distance magic if there exists a bijection f : V → {1, 2, . . . , |V |} and
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a constant s such that, for all x ∈ V , ∑
y∈N(x)

f(y) = s.

Such an f is a distance magic labeling of G. This kind of labeling was first studied by Vilfred [11],
who called it a Σ-labeling. The term 1-vertex magic labeling is also used. Surveys include [9] and
Section 5.6 of [5].

Let G and H be two graphs with vertex sets V (G) and V (H), respectively. The Cartesian
product G2H is a graph with vertex set V (G) × V (H). In this graph, (g1, h1) is adjacent to
(g2, h2) if and only if (i) g1 = g2 and h1 is adjacent to h2 in H , or (ii) g1 is adjacent to g2 in G and
h1 = h2.

Let Kn be the complete graph on n vertices, let Cm be the cycle graph on m vertices (m ≥ 3),
and let Kn,t be the complete bipartite graph on n and t vertices. In [10], Seoud, Abdel Maqsoud,
and Aldiban asked which graphs of the types Kn2Cm and Cm2Kn,t are distance magic. For some
small values of the parameters, these graphs have been studied in isomorphic forms. The graph
K12Cm is isomorphic to Cm, known to be distance magic only for m = 4 [7]. The graph K32Cm

is isomorphic to C32Cm, which is never distance magic [8]. The graph Cm2K2,2 is isomorphic
to Cm2C4, which also is never distance magic [8]. Seoud, Abdel Maqsoud, and Aldiban showed
that Kn2C3 is not distance magic when n is odd, and that Kn2Cm is not distance magic when n
is even. They also showed that Cm2Kn,t is not distance magic in the following cases:

• Cm2K1,n for n ≥ 1

• Cm2Kn,n for m odd and n ̸= 2

• Cm2Kn,n+1 for m ≡ 1 (mod 4) and n even.

A positive result is given in [3], where Cichacz, Froncek, Krop, and Raridan showed that
C42Kn,n is distance magic if and only if n is even and n > 2. They also showed that Kn2C4 is
not distance magic for n ≥ 2.

In this paper we show that Kn2Cm is only distance magic when n = 1 and m = 4, and that
it is necessary to have m = 4 for Cm2Kn,t to be distance magic. We establish conditions on n
and t for distance magic labelings of C42Kn,t in the case that n > t. When n and t are even these
conditions are shown to be sufficient. The smallest examples of such distance magic graphs are
identified, and we show that there are in fact infinitely many such graphs up to graph isomorphism.

2. Kn2Cm

Let V be the set of vertices of G = Kn2Cm. The elements of V can be given as vi,j for
1 ≤ i ≤ n and j ∈ Z/mZ. The vertex vi,j is adjacent to all vl,j with l ̸= i and also to vi,j−1 and
vi,j+1.

The main idea in this section is to look at the sum of the labels of the neighbors of all the
vertices within each copy of Kn. These sums satisfy a recurrence. Methods for solving such
recurrences are described in many standard discrete mathematics texts (see Section 7.3 of [6], for
instance). The following lemma will be useful in this section and also in Section 3.
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Lemma 2.1. Let {rn} be a sequence of integers satisfying the recurrence rn + arn−1 + rn−2 = C,
where C is a constant and a is an integer with |a| > 2. If {rn} is periodic, then {rn} is constant.

Proof. A particular solution for the recurrence is rn = C/(a + 2). The characteristic equation
x2 + ax + 1 = 0 has two real roots ρ1 and ρ2 with |ρ1| > 1 and 0 < |ρ2| < 1. Thus, the general
solution for the recurrence is rn = k1ρ

n
1 + k2ρ

n
2 + C

a+2
. If k1 ̸= 0, then |rn| grows without bound

and is not periodic. If k1 = 0, then rn has limit C
a+2

. A periodic sequence can only have a limit if
each term equals the limit, so {rn} is constant.

Let f be a real-valued function on V , with ai,j = f(vi,j). Let sj =
∑n

i=1 ai,j for all j.

Lemma 2.2. If
∑

y∈N(x) f(y) = s for all vertices x of Kn2Cm, then sj−1+(n−1)sj + sj+1 = ns

for all j ∈ Z/mZ.

Proof. Consider the sum
∑n

i=1

∑
y∈N(vi,j)

f(y). On the one hand, by assumption, the inner sum
is always s, so the double sum is ns. On the other hand, each vertex vi,j is adjacent to the other
(n−1) vertices vl,j with l ̸= i, and each vertex vi,j−1 or vi,j+1 is adjacent to vl,j if and only if l = i.
Thus, every term of sj is included in the double sum (n− 1) times, every term of sj−1 and sj+1 is
included once, and there are no remaining terms.

Corollary 2.1. If
∑

y∈N(x) f(y) = s for all vertices x of Kn2Cm, and n ≥ 4, then all of the sj are
equal.

Proof. Let rj = sj (mod m) for all natural numbers j. By Lemmas 2.1 and 2.2, the sequence {rj}
is constant. Thus, all of the sj are equal.

Lemma 2.3. Assume f : V → {1, . . . , nm} is a distance magic labeling of Kn2Cm. If f(vi,j) =
ai,j , then ai,j − ai,j+6 = ai′,j − ai′,j+6 for all 1 ≤ i, i′ ≤ n and all j ∈ Z/mZ.

Proof. Assume i ̸= i′, since otherwise the statement is trivial. The vertices vi,j and vi′,j have all of
the vertices vl,j with l ̸= i, i′ as common neighbors. Thus, in a distance magic labeling, the labels
of the three remaining neighbors for each vertex must have the same sum:

ai′,j + ai,j−1 + ai,j+1 = ai,j + ai′,j−1 + ai′,j+1.

Thus,
ai,j − ai′,j = (ai,j−1 − ai′,j−1) + (ai,j+1 − ai′,j+1).

Since this is true for all j, we also have

ai,j+1 − ai′,j+1 = (ai,j − ai′,j) + (ai,j+2 − ai′,j+2),

and
ai,j+2 − ai′,j+2 = (ai,j+1 − ai′,j+1) + (ai,j+3 − ai′,j+3).

Combining these equations leads to

ai,j+3 − ai′,j+3 = (ai,j+2 − ai′,j+2)− (ai,j+1 − ai′,j+1)

= (ai,j+1 − ai′,j+1)− (ai,j − ai′,j)− (ai,j+1 − ai′,j+1) = −(ai,j − ai′,j).

Similarly, ai,j+6−ai′,j+6 = −(ai,j+3−ai′,j+3), so ai,j+6−ai′,j+6 = ai,j−ai′,j , and thus ai,j−ai,j+6 =
ai′,j − ai′,j+6 .
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Theorem 2.1. The graph G = Kn2Cm is distance magic if and only if n = 1 and m = 4.

Proof. If G = K12C4 then G has the distance magic labeling a1,1 = 1, a1,2 = 2, a1,3 = 4,
a1,4 = 3. Otherwise, assume as in the previous theorem that the ai,j give a distance magic labeling
of G. Since the cases n = 1, n = 2, and n = 3 are known to satisfy the theorem (see the
Introduction), we can assume n ≥ 4. Applying Lemma 2.3, for a fixed j let d be the common
value of ai,j − ai,j+6 for all i. Thus,

sj =
n∑

i=1

ai,j =
n∑

i=1

(ai,j+6 + d) = sj+6 + nd.

By Corollary 2.1, sj = sj+6, so d = 0. Thus, ai,j = ai,j+6 for all i, which can only happen if
vi,j and vi,j+6 are the same vertex. This implies that m divides 6, so either m = 3 or m = 6. But
m ̸= 3 by [10], so assume m = 6, and recall that n cannot be even, also by [10]. Each sj must be
1/6 of the sum of all of the labels, so

sj =
1

6
· 6n(6n+ 1)

2
=

n(6n+ 1)

2
,

which is not an integer when n is odd. Thus, G cannot be distance magic when n ≥ 4.

3. Cm2Kn,t

We will describe Cm2Kn,t as having vertex set V consisting of the vertices vi,j for i ∈ Z/mZ
and 1 ≤ j ≤ n, and the vertices wi,k for i ∈ Z/mZ and 1 ≤ k ≤ t. For all i, j, k the vertex vi,j
is adjacent to vi−1,j and vi+1,j , the vertex wi,k is adjacent to wi−1,k and wi+1,k and the vertex vi,j is
adjacent to wi,k.

Let f be a real-valued function on V . Let ai,j = f(vi,j) and bi,k = f(wi,k). For all i, let
ci =

∑n
j=1 ai,j and di =

∑t
k=1 bi,k.

Lemma 3.1. Suppose
∑

y∈N(x) f(y) = s for all vertices x in Cm2Kn,t. Then ci−1+(2−nt)ci+1+

ci+3 = n(2− t)s and di−1 + (2− nt)di+1 + di+3 = t(2− n)s for all i.

Proof. For a fixed i, the n vertices vi,j contain one neighbor of each vi−1,j and each vi+1,j for
1 ≤ j ≤ n. Each vertex vi,j is a neighbor of all of the wi,k as well. This accounts for all neighbors
of the vi,j , so, for all i,

n∑
j=1

∑
y∈N(vi,j)

f(y) = ci−1 + ndi + ci+1 = ns.

Similarly, for all i,
t∑

k=1

∑
y∈N(wi,k)

f(y) = di−1 + tci + di+1 = ts.

To find a recurrence for the ci, note that eliminating di from the system

ci−1 + ndi + ci+1 = ns
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di + tci+1 + di+2 = ts

leads to
ndi+2 = n(t− 1)s+ ci−1 + (1− nt)ci+1.

Plugging this into ci+1 + ndi+2 + ci+3 = ns produces the desired equation. The proof for the di
recurrence is similar.

Lemma 3.2. If
∑

y∈N(x) f(y) = s for all vertices x in Cm2Kn,t, and nt > 4, then all of the ci are
equal, and all of the di are equal.

Proof. If nt > 4, then 2 − nt < −2, so we can apply Lemma 2.1 as in the proof of Corollary 2.1
to the recurrence

ci−1 + (2− nt)ci+1 + ci+3 = n(2− t)s

to see that ci−1 = ci+1 for all i. Similarly, the recurrence for the di shows that di−1 = di+1 for all
i. But then the equations of Lemma 3.1 can be rewritten for all i as

(4− nt)ci−1 = n(2− t)s,

(4− nt)di−1 = t(2− n)s.

Thus, for all i,

ci =
ns(t− 2)

nt− 4
and di =

ts(n− 2)

nt− 4

If the assumptions in the lemma hold, we can take c to be the shared value of the ci, and d to
be the shared value of the di.

Theorem 3.1. If m ̸= 4, then Cm2Kn,t is not distance magic.

Proof. All of the cases with nt ≤ 4 have already been examined (see the Introduction). Thus,
assume nt > 4 so that Lemma 3.2 applies. In a distance magic labeling, the sum of the labels of
the neighbors of vi,j would be ai−1,j + ai+1,j + d. The sum of the labels of the neighbors of vi+2,j

would be ai+1,j + ai+3,j + d. For these two sums to be equal, ai−1,j must equal ai+3,j , so vi−1,j and
vi+3,j are the same vertex. This is only possible if m divides 4. Since m ≥ 3, we conclude that
m = 4.

4. The Case C42Kn,t

Given that the case n = t has been studied in [3], and the case t = 1 in [10], in this section
we will assume that n > t ≥ 2. To consider what a distance magic labeling of C42Kn,t must look
like, first note the following:

Lemma 4.1. In a distance magic labeling of C42Kn,t, the sums ai−1,j + ai+1,j are equal for all
i, j, and the sums bi−1,k + bi+1,k are equal for all i, k.
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Proof. The sum of the labels of the neighbors of vi,j is ai−1,j + ai+1,j + d, and this must be the
same sum for all i, j if the labeling is distance magic. Similarly, bi−1,k + bi+1,k + c is the same for
all i, k.

We can give expressions for these sums:

Lemma 4.2. In a distance magic labeling of C42Kn,t,

ai−1,j + ai+1,j =
(t− 2)(n+ t)(4n+ 4t+ 1)

2nt− 2n− 2t

for all i, j, and

bi−1,k + bi+1,k =
(n− 2)(n+ t)(4n+ 4t+ 1)

2nt− 2n− 2t

for all i, k.

Proof. The sum 4c + 4d must be the sum of the labels of all the vertices, and thus the sum of all
the integers from 1 to 4n+ 4t, so using the formulas found in the proof of Lemma 3.2 we get

4nts− 8ns

nt− 4
+

4nts− 8ts

nt− 4
=

(4n+ 4t)(4n+ 4t+ 1)

2
.

Solving this for s gives

s =
(n+ t)(4n+ 4t+ 1)(nt− 4)

4nt− 4n− 4t
.

We can plug this back in to get an expression for 4c in terms of just n and t:

4c =
4nt− 8n

nt− 4
s =

(nt− 2n)(n+ t)(4n+ 4t+ 1)

nt− n− t
.

But 4c is the sum of all of the ai,j , and thus the sum of the 2n equal sums ai−1,j + ai+1,j , so

ai−1,j + ai+1,j =
(t− 2)(n+ t)(4n+ 4t+ 1)

2nt− 2n− 2t

for all i, j. The proof of the other equation is similar.

Corollary 4.1. In a distance magic labeling of C42Kn,t,

(t− 2)(n+ t)(4n+ 4t+ 1)

2nt− 2n− 2t
and

(n− 2)(n+ t)(4n+ 4t+ 1)

2nt− 2n− 2t

are both positive integers, and

(nt− 2n)(n+ t)(4n+ 4t+ 1)

nt− n− t
and

(nt− 2t)(n+ t)(4n+ 4t+ 1)

nt− n− t

are both positive integer multiples of 4.
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Proof. The first part is obvious. Multiplying the first two expressions by 2n and 2t respectively
produces the final two expressions, which are the values of 4c and 4d.

Lemma 4.2 also implies that, if n > t and C42Kn,t is distance magic, the integers from 1
to 4n + 4t can be partitioned into sets of size two such that the pairsums (that is, the sum of the
elements in each set) take only the two values shown in the lemma, with both values actually
occurring (under the assumption n > t, they will not be equal). It turns out that such a partition, if
it exists, is unique. The following definition characterizes these partitions.

Definition 4.1. Let I = {P, P + 1, . . . , Q − 1, Q} be a non-empty interval of integers (of length
Q−P +1). Suppose α and β are positive integers such that u = Q−P+1

α+β
is an integer, and uα and

uβ are both even. An α, β - partition of the interval is constructed as follows. First, partition I
into sets A and B by letting the smallest α integers of I belong to A, the next smallest β integers
belong to B, the next smallest α integers belong to A, and so on, until the largest β integers are
assigned to B. The α, β-partition is the refinement of this partition into sets of size two by pairing
the i-th smallest integer of A with the i-th largest integer of A for all 1 ≤ i ≤ 1

2
uα, and by pairing

the i-th smallest integer of B with the i-th largest integer of B for all 1 ≤ i ≤ 1
2
uβ.

Note that the conditions on α and β guarantee that no integer in I is ‘left over’ at either step in
the construction. Also note that the subsets of A in the α, β - partition all have the same pairsum,
as do the subsets of B. This kind of partition was constructed by Anholcer and Cichacz in the
proof of Theorem 2.2 of [2], and the proof of the next lemma is essentially identical to what is
found there.

Lemma 4.3 (Anholcer, Cichacz [2]). Suppose the interval I = {P, P + 1, . . . , Q − 1, Q} of
integers can be partitioned into sets of size 2, with the pairsums being L or N , and both pairsums
occurring at least once. Then the partition must be an α, β-partition. Assuming L < N , we have
α = N − P −Q and β = P +Q− L.

Proof. Since the mean pairsum has to be P + Q, we must have L < P + Q < N . Each integer
from P to N − Q − 1 is too small to be part of a pair with sum N , so the partition must include
{P,L−P}, {P +1, L−P −1}, . . . , {N −Q−2, L−N +Q+2}, {N −Q−1, L−N +Q+1},
all with pairsum L. Similarly, the integers from L − P + 1 to Q are too large to be part of a pair
with sum L, so the partition must also include {N −L+P − 1, L−P +1}, {N −L+P − 2, L−
P +2}, . . . , {N −Q+1, Q− 1}, {N −Q,Q}, all with pairsum N . Thus, the smallest N −P −Q
integers in I (from P to N − Q − 1) belong to pairs of sum L, and the next-smallest P + Q − L
integers (from N−Q to N−L+P −1) belong to pairs of sum N . Similarly, the largest P +Q−L
integers (from L−P +1 to Q) belong to pairs of sum N , and the next-largest N −P −Q integers
(from L − N + Q + 1 to L − P ) belong to pairs of sum L. Thus, the only possible values for α
and β are α = N − P −Q and β = P +Q− L.

If there is any overlap at all between the interval from P to N−L+P −1 and the interval from
L−N+Q+1 to Q, then the intervals must be identical to avoid a contradiction. Thus, we have an
α, β - partition of the interval (with u = 1). If the intervals are disjoint, and the pairs already listed
partition I by themselves, we have an α, β - partition with u = 2. Otherwise, the intervals are
disjoint and there is a non-empty interval from N −L+P to L−N +Q. This interval itself meets
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the conditions of the lemma, and by induction the partition of this interval is an α, β - partition,
with α = N−(N−L+P )−(L−N+Q) = N−P−Q and β = (N−L+P )+(L−N+Q)−L =
P + Q − L. Combining this partition with the pairs already listed gives an α, β - partition of the
original interval.

In a distance magic labeling of C42Kn,t, we would have P = 1 and Q = 4n + 4t. Since by
assumption n > t, the expression for ai−1,j + ai+1,j in Lemma 4.2 must be L, and the expression
for bi−1,k + bi+1,k must be N . Thus,

α = N − P −Q =
(n− 2)(n+ t)(4n+ 4t+ 1)

2nt− 2n− 2t
− (4n+ 4t+ 1) =

(4n+ 4t+ 1)(n− t)n

2nt− 2n− 2t
,

and

β = P +Q− L = (4n+ 4t+ 1)− (t− 2)(n+ t)(4n+ 4t+ 1)

2nt− 2n− 2t
=

(4n+ 4t+ 1)(n− t)t

2nt− 2n− 2t
.

Since

α + β =
(4n+ 4t+ 1)(n− t)(n+ t)

2nt− 2n− 2t

must be a divisor of the length 4n+ 4t of the interval I , we get another integrality condition:

Corollary 4.2. In a distance magic labeling of C42Kn,t with n > t,

8nt− 8n− 8t

(4n+ 4t+ 1)(n− t)

is a positive integer.

We can now give a partial converse to Corollaries 4.1 and 4.2.

Theorem 4.1. Assume n and t are positive integers with n and t both even and n > t. If

(t− 2)(n+ t)(4n+ 4t+ 1)

2nt− 2n− 2t
and

(n− 2)(n+ t)(4n+ 4t+ 1)

2nt− 2n− 2t

are both positive integers, and
8nt− 8n− 8t

(4n+ 4t+ 1)(n− t)

is a positive integer, then C42Kn,t is distance magic.

Proof. Let

L =
(t− 2)(n+ t)(4n+ 4t+ 1)

2nt− 2n− 2t
and N =

(n− 2)(n+ t)(4n+ 4t+ 1)

2nt− 2n− 2t
,

and also let

α = N−(4n+4t+1) =
(4n+ 4t+ 1)(n− t)n

2nt− 2n− 2t
and β = 4n+4t+1−L =

(4n+ 4t+ 1)(n− t)t

2nt− 2n− 2t
.
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We wish to show that there is an α, β - partition of the interval from 1 to 4n + 4t with pairsums
L and N . By assumption, L and N are positive integers, and thus α and β are as well (note that
L > 0 implies t ≥ 4, and thus 2nt− 2n− 2t is positive). Also,

(4n+ 4t)/(α + β) =
8nt− 8n− 8t

(4n+ 4t+ 1)(n− t)

is a positive integer that we can call u. Note that

uα =
8(nt− n− t)

(4n+ 4t+ 1)(n− t)
· (4n+ 4t+ 1)(n− t)n

2nt− 2n− 2t
= 4n,

and similarly uβ = 4t. Since uα and uβ are even, an α, β - partition of the interval from 1 to
4n + 4t exists, with A consisting of 4n integers in u intervals of length α and B consisting of 4t
integers in u intervals of length β. The pairsums can be found by adding the smallest and largest
integers of A and B respectively, so these are 1+(4n+4t−β) = L, and (α+1)+(4n+4t) = N .
Note that

2nL =
(nt− 2n)(n+ t)(4n+ 4t+ 1)

nt− n− t

is a multiple of 4 since n is even, so let c be such that 2nL = 4c, and similarly let d be such that
2tN = 4d.

Suppose now that we can label the vertices of C42Kn,t with the integers from 1 to 4n + 4t so
that (i) the α, β - partition consists of the sets {ai−1,j, ai+1,j} for all i, j and {bi−1,k, bi+1,k} for all
i, k, (ii) the values of ci =

∑n
j=1 ai,j are all equal, and (iii) the values of di =

∑t
k=1 bi,k are all

equal. Then ci = c for all i since the ci have sum 4c, and similarly di = d for all i. The labeling
will then be distance magic, since, for all i, j, the sum of the labels of the neighbors of vi,j is

L+ d = L+
tN

2
=

(t− 2)(n+ t)(4n+ 4t+ 1)

2nt− 2n− 2t
+

t(n− 2)(n+ t)(4n+ 4t+ 1)

4nt− 4n− 4t

=
(n+ t)(4n+ 4t+ 1)(nt− 4)

4nt− 4n− 4t
,

and, for all i, k, the sum of the labels of the neighbors of wi,k is

N + c = N +
nL

2
=

(n− 2)(n+ t)(4n+ 4t+ 1)

2nt− 2n− 2t
+

n(t− 2)(n+ t)(4n+ 4t+ 1)

4nt− 4n− 4t

=
(n+ t)(4n+ 4t+ 1)(nt− 4)

4nt− 4n− 4t
.

To this end, a u × α matrix MA = (mp,q) will be constructed that will contain the i values
for all integers in A. To be more precise, if mp,q = i then q + (p − 1)(α + β) will be ai,j for
some j. It is sufficient for MA to meet three conditions. First, mp,q = mu+1−p,α+1−q + 2; that is,
two entries symmetric over the center of the matrix must differ by 2 (mod 4), since these are the
matrix entries corresponding to paired labels. Second, each i ∈ Z/4Z must appear exactly uα/4
times. Third, the sums

∑
mp,q=i[q+(p−1)(α+β)] must be equal for all i, since these sums are the
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values of the ci. Note that it will be sufficient to replace this third condition with the conditions that
(i)

∑
mp,q=i q is the same for all i, and (ii)

∑
mp,q=i p is the same for all i. A matrix will be called

u, α-balanced if it meets all of these conditions. It is easy to see that, if a matrix is u, α-balanced,
so is its transpose. Also, if a matrix is constructed from u, α-balanced blocks, and each block is
identical to a block in the position symmetric over the center of the matrix, then the entire matrix
is u, α-balanced.

The following matrices are u, α-balanced:

M1 =
(
0 1 2 3 3 2 1 0 2 3 0 1 1 0 3 2

)
M2 =

(
0 1 2 3 2 3 0 1
3 2 1 0 1 0 3 2

)

M3 =


0 1 2 3
3 2 1 0
2 3 0 1
1 0 3 2

 .

Note that uα is divisible by 8, since uα = 4n and n is even. If uα is divisible by 16, the entire
matrix MA can be filled by copies of a single one of M1,M2,M3,M

T
2 or MT

1 .
Assume uα is divisible by 8 but not 16. As a first case, assume u is odd and α is divisible by

8 but not 16. If u = 1, then α ̸= 8, since uα = 4n = 8 implies n = 2, contradicting n > t ≥ 2.
Thus, α ≥ 24. The leftmost and rightmost entries of MA can be filled with copies of M1 until
either the central 24 or 40 positions remain. These positions can be filled with

0, 1, 2, 3, 3, 2, 1, 0, 0, 1, 2, 3, 3, 1, 2, 0, 2, 0, 3, 1, 3, 1, 2, 0, 2, 0, 3, 1, 1, 0, 3, 2, 2, 3, 0, 1, 1, 0, 3, 2

or just the central 24 values in this list as necessary. If u ≥ 3, then the top and bottom rows of MA

can be filled with copies of M2 until either the 3 or 5 central rows remain. These can be filled with
copies of the u, α-balanced matrix

0 1 2 3 3 2 1 0
0 1 2 3 3 1 2 0
2 0 3 1 3 1 2 0
2 0 3 1 1 0 3 2
2 3 0 1 1 0 3 2


when 5 rows remain, or copies of this matrix with the top and bottom rows removed when 3 rows
remain.

Next, assume u is divisible by 2 but not 4, and α is divisible by 4 but not 8. If u = 2, then,
since uα ̸= 8, it must be that α ≥ 12. The leftmost and rightmost columns of MA can be filled
with copies of M2 until a central 2 × 12 or 2 × 20 block remains, and this can be filled with the
u, α - balanced matrix(

0 1 2 3 2 0 2 0 0 1 2 3 3 1 3 1 3 2 1 0
2 3 0 1 3 1 3 1 1 0 3 2 2 0 2 0 1 0 3 2

)
,
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or with its central 12 columns, as necessary. If u ≥ 6, the top and bottom rows can be filled with
copies of M3 until only the central 6 or 10 rows remain. These can be filled with copies of the
u, α-balanced matrix 

0 1 2 3
3 2 1 0
0 1 2 3
3 1 2 0
2 0 3 1
3 1 2 0
2 0 3 1
1 0 3 2
2 3 0 1
1 0 3 2


,

or copies of this matrix with the top two and bottom two rows removed.
The other cases with uα divisible by 8 but not 16 are just transposed versions of the cases al-

ready considered. With MA constructed we can proceed to construct a u×β matrix MB consisting
of the i values of the bi,k in essentially the same way (this matrix can be called u, β - balanced).
Note that, once we determine which subset of the integers from 1 to 4n + 4t will make up the
values a0,j , the j indices can be assigned arbitrarily, and then, for a particular j, a2,j must be the
integer paired with a0,j in the α, β - partition. We can proceed in a similar fashion to assign the
values of a1,j and a3,j for all j, the values of b0,k and b2,k for all k, and the values of b1,k and b3,k
for all k, resulting in a distance magic labeling of the entire graph.

A Maple search for examples with n ≤ 50000 shows that C42Kn,t is distance magic for the
following values of n and t, shown with the corresponding values of u, α, and β:

n t u α β
440 344 4 440 344
756 468 2 1512 936
2514 2130 6 1676 1420
8192 7232 8 4096 3616
10074 7866 4 10074 7866
20210 18290 10 8084 7316
42072 38712 12 14024 12904

If n is odd and t is even, then the required expressions from Corollary 4.1 cannot both be multiples
of 4, since the only even factors in their numerators would be t − 2 and t, which cannot both be
multiples of 4. Thus, if n is odd and C42Kn,t is distance magic, t must be odd as well. A Maple
search found no examples with n ≤ 50000 and n odd that met all of the integrality conditions, so
it is an open question whether such examples exist and lead to distance magic labelings.

Using a different approach it is possible to show that C42Kn,t is distance magic for infinitely
many pairs (n, t) with n > t. For a particular value of u, the values of α and β must satisfy a
quadratic diophantine equation, and this equation possibly has an infinite family of solutions in
positive integers.
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Theorem 4.2. Let α1 = 0 and β1 = 7. Let the sequences {αi} and {βi} be defined recursively
by αi+1 = 5αi + 2βi − 6 and βi+1 = 2αi + βi + 1. Then αi+1 > αi and βi+1 > βi for all i, and
C42Kn,t is distance magic for all i ≥ 1 when n = 1

4
α8i+2 and t = 1

4
β8i+2.

Proof. If αi ≥ 0 and βi ≥ 7, then αi+1 = 5αi+2βi−6 > 5αi+8 > αi, and βi+1 = 2αi+βi+1 >
βi, so both sequences are increasing by induction.

In a distance magic labeling of C42Kn,t with u = 1, each vi,j would be adjacent to a pair of
v-vertices with sum α + 1, and to a set of w-vertices with label sum equal to 1/4 of the sum of the
integers from α + 1 to α + β. Meanwhile, each wi,k must be adjacent to a pair of w-vertices with
sum 2α + β + 1, and to a set of v-vertices with label sum equal to 1/4 of the sum of the integers
from 1 to α. Thus, the equation

α + 1 +
β(2α + β + 1)

8
= 2α + β + 1 +

α(α + 1)

8

must be satisfied, and it is equivalent to

α2 − 2αβ − β2 + 9α + 7β = 0.

Methods for solving two-variable quadratic diophantine equations are due to Euler and La-
grange [4]. The site [1] was used to find the sequences stated in the theorem. It is straightforward
to show by induction that the terms of the sequence of pairs (αi, βi) satisfy the quadratic equation
and that αi > βi > 0 for i ≥ 3. It can also be checked that this sequence is cyclic with a period of 8
when taken modulo 8, and αi ≡ βi ≡ 0 (mod 8) when i ≡ 2 (mod 8). Now suppose n = 1

4
α8i+2

and t = 1
4
β8i+2 for some i ≥ 1. Then n and t are both even and n > t ≥ 2. Using a u, α - balanced

matrix of dimension 1 × 4n and a u, β-balanced matrix of dimension 1 × 4t, a labeling can be
constructed that is guaranteed by the quadratic equation to be distance magic.

More families of distance magic graphs can be found by taking other values of u and solving
the corresponding quadratic diophantine equations.
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