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Abstract

The es-splitting operation on an n-connected binary matroid may not yield an n-connected matroid
for (n ≥ 3). In this paper, we show that given an n-connected binary matroid M of rank r, the
resulting es-splitting binary matroid has an n-connected minor of rank-(r+ 1) having |E(M)|+ 1
elements.
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1. Introduction

Slater [13] specified the n-line splitting operation on graphs as follows. Let G be a graph and
e = uv be an edge of G with deg u ≥ 2n − 3 with u adjacent to v, x1, x2, . . . , xk, y1, y2, . . . , yh,
where k and h ≥ n − 2. Let H be the graph obtained from G by replacing u by two adjacent
vertices u1 and u2, with v adj u1, v adj u2, u1 adj xi (1 ≤ i ≤ k), and u2 adj yj (1 ≤ j ≤ h), where
deg u1 ≥ n and deg u2 ≥ n. The transition from G to H is called an n-line splitting operation. We
also say that H is obtained from G by an n-line splitting operation. This construction is explicitly
illustrated with the help of Figure 1.

Slater [13] proved that if G is n-connected and H is obtained from G by n-line-splitting oper-
ation, then H is n-connected. In fact, he characterized 4-connected graphs, in terms of the 4-line
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Figure 1. n-line splitting operation.

splitting operation along with some other operations. The notion of connectivity of graphs also has
been studied in [6, 13] and connectivity of binary matroids has been studied in [3, 14].

Suppose G is a graph with n vertices and m edges. Let X = {e, x1, x2, . . . , xk} be a subset
of E(G). The incident matrix A of G is a matrix of size n × m. The row corresponding to the
vertex u has 1 in the columns of e, x1, x2, . . . , xk, y1, y2, . . . , yh and 0 in the other columns. The
graph H has (n + 1) vertices and (m + 2) edges. The incidence matrix A′ of H is a matrix of
size (n+ 1)× (m+ 2). The row corresponding to u2 has 1 in the columns of y1, y2, . . . , yh, γ and
0 in the other columns, where as the row corresponding to the vertex u1 has 1 in the columns of
e, x1, x2, . . . , xk and 0 in other columns. One can check that the matrix A′ can be obtained from
A by adjoining an extra row corresponding to the vertex u1 to A with entries zero every where
except in the columns corresponding to e, x1, x2, . . . , xk where it takes the value 1. The row vector
obtained by addition (mod 2) of row vectors corresponding to vertices u and u1 will corresponds
to the row vector of the vertex u2 in A′.

Noticing the above s Azanchiler [1] extended the notion of n-line-splitting operation from
graphs to binary matroids in the following way:

Definition 1. Let M be a binary matroid on a set E and let X be a subset of E with e ∈ X .
Suppose A is a matrix representation of M over GF(2). Let Ae

X be a matrix obtained from A by
adjoining an extra row δX to A with entries zero every where except in the columns corresponding
to the elements of X , where it takes the value 1 and then adjoining two columns labelled a and γ
to the resulting matrix such that the column labelled a is zero everywhere except in the last row
where it takes the value 1, and γ is sum of the two column vectors corresponding to the elements
a and e. The vector matroid of the matrix Ae

X is denoted by M e
X . The transition from M to M e

X is
called an es-splitting operation. We call the matroid M e

X as es-splitting matroid.

The following proposition characterizes the circuits of the matroid M e
X in terms of the circuits

of the matroid M .

Proposition 1.1. [1] Let M(E, C) be a binary matroid together with the collection of circuits C.
Suppose X ⊆ E, e ∈ X and a, γ /∈ E. Then M e

X = (E ∪ {a, γ}, C ′), where C ′ = C0 ∪ C1 ∪ C2 ∪
C3 ∪ {∆} with ∆ = {e, a, γ} and
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C0 = {C ∈ C | C contains an even number of elements of X };
C1 = The set of minimal members of {C1 ∪ C2 | C1, C2 ∈ C, C1 ∩ C2 = φ

and each of C1 and C2 contains an odd number of elements of
X such that C1 ∪ C2 contains no member of C0 };

C2 = {C ∪ {a} | C ∈ C and C contains an odd number of elements of X};
C3 = {C ∪ {e, γ} | C ∈ C, e /∈ C and C contains an odd number of elements

of X } ∪ {(C \ e) ∪ {γ} | C ∈ C, e ∈ C and C contains an odd number
of elements of X } ∪ {(C \ e) ∪ {a, γ} | C ∈ C, e ∈ C and C \ e
contains an odd number of elements of X }.

Throughout this paper we assume that M is a loopless and coloopless binary matroid, X ⊂
E(M) and M e

X is the es-splitting matroid of M . We denote by COX the set of all circuits of a
matroid M each of which contains an odd number of elements of the set X . The members of the
set COX are called OX-circuits. On the other hand, CEX denotes the set of all circuits of a matroid
M each of which contains an even number of elements of the set X . The members of the set CEX

are called EX-circuits.
It is intersting to observe that M e

X \ γ and M e
X \ {a, γ} are isomorphic with element splitting

matroid and splitting matroid of M , respectively. The main theorems of this paper, Theorem 3.1
and Theorem 3.2 are motivated by a series of earlier work on splitting operation, element splitting
operation and es-splitting operation [1, 2, 4, 7, 8, 10, 11, 12, 15, 17].

The following result characterizes the rank function of the matroid M e
X in terms of the rank

function of the matroid M [4].

Lemma 1.1. Let r and r′ be the rank functions of the matroids M and M e
X , respectively. Suppose

that A ⊆M(E). Then

1. r′(A) = r(A) + 1, if A contains an OX-circuit of the matroids M ;
= r(A); otherwise.

2. r′(A ∪ a) = r(A) + 1.
3. r′(A ∪ {γ}) = r(A), if not A but A ∪ {e} contains an OX-circuit of M ;

= r(A) + 2, if A contains an OX-circuit of M and e /∈ cl(A);
= r(A) + 1, otherwise.

4. r′(A ∪ {a, γ}) = r(A) + 1, if e ∈ cl(A);
= r(A) + 2, if e /∈ cl(A).

Using Lemma 1.1, one can obtain the following corollary.

Corollary 1.1. Let r and r′ be the rank functions of the matroids M and M e
X , respectively. Then

r′(M e
X) = r(M) + 1. �

Remark 1.1. As 4 = {a, e, γ} ⊂ M e
X , we have r′(M e

X) = r′(M e
X \ {a}) = r′(M e

X \ {e})
= r′(M e

X \ {γ}).
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We recall that matroid M is connected if and only if for every pair of distinct elements of
E(M), there is a circuit containing both. The concept of n-connected matroids was introduced
by W. T. Tutte [14]. If k is positive integer, the matroid M is k-separated if there is a subset
X ⊂ E(M) such that |X| ≥ k, |E \X| ≥ k and r(X) + r(E \X)− r(M) = k− 1. Connectivity
λ(M) of M is the list positive integer j such that M is j-separated. If there is no such integer
we say λ(M) = ∞. Note that λ(U2,4) = ∞. The following result from [9] provides a necessary
condition for a matroid to be n-connected.

Lemma 1.2. If M is a n-connected matroid and |E(M)| ≥ 2(n − 1) then all circuits and all
cocircuits of M have at least n elements.

Let M be an n-connected binary matroid and X ⊂ E(M). Note that if |X| < n then X ∪ {a}
will be a cocircuit of M e

X . Further, if |X ∪ {a}| < n then, by Lemma 1.2, M e
X is not n-connected.

Azanchiler [1] proved that es-splitting operation on a connected binary matroid yields a connected
binary matroid. In fact, he proved the following theorem.

Theorem 1.1. Let M be a connected binary matroid and X ⊂ E(M) with |X| ≥ 2. Then M e
X is

connected binary matroid.

In the following result Dhotre, Malavadkar and Shikare [4], provided a sufficient condition for
the es-splitting operation to yield a 3-connected binary matroid from a 3-connected binary matroid.

Theorem 1.2. Let M be a 3-connected binary matroid, X ⊆ E(M) and e ∈ X . Suppose that M
has an OX-circuit not containing e. Then M e

X is a 3-connected binary matroid.

In perticular, when X = {x, y} the es-spliting maroid is denoted by M e
x,y. As a consequence

of the above result, Dhotre, Malavadkar and Shikare [4] obtained a splitting lemma for es-splitting
matroid M e

x,y.

Corollary 1.2. (Splitting Lemma). If M is a 3-connected binary matroid then, M e
x,y is a 3-

connected binary matroid for any pair {x, y} of elements of E(M).

2. 3-Connected Minors of the es-splitting Matroids.

In this section, we provide a sufficient condition for a 3-connected binary matroid M of rank
r, where M e

X \ e and M e
X \ γ are 3-connected minors of rank r + 1 of the matroid M e

X .

Let M be a cycle matroid of a wheel W5 as shown in the Figure 2, X = {8, 9, 10} and e = 10.
Then M e

X is the es-splitting matroid of M . Observe that M e
X \ e and M e

X \ γ are 3-connected
minors of M e

X . But M e
X \ a is not a 3-connected minor of M e

X .
In the following result, we provide a sufficient condition for a 3-connected binary matroid M

where M e
X \ e is a 3-connected minor of M e

X .

Lemma 2.1. Let M be a 3-connected binary matroid, |E(M)| ≥ 4 and let X ⊂ E(M), where
|X| ≥ 3. Suppose for x ∈ E(M) there is an OX-circuit of M not containing x. Then M e

X \ e is a
3-connected binary matroid.
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Figure 2. 3-connected minors of M(W5)
e
X .

Proof. Suppose that M contains an OX-circuit C of M and e /∈ C. Then, by Theorem 1.2, M e
X is

3-connected. Therefore, M e
X \ e is at least 2-connected. It is enough to show that M e

X \ e has no
2-separation. On the contrary, suppose (A,B) is a 2-separation of E(M e

X) \ e. So,
min {|A|, |B|} ≥ 2 and

r′(A) + r′(B)− r′(M e
X \ e) ≤ 1. (1)

Now one of the following two cases concerning a and γ occurs.
Case 1. a ∈ A and γ ∈ B.
Let A′ = A \ a and B′ = B \ γ.
Subcase 1.1. |A| = 2 or |B| = 2.
Suppose A = {a, x}. Then there is an OX-circuit C of M not containing x and C ⊂ B′. Thus,
by Lemma 1.1 (2) and (3), r′(A) = r(A′) + 1 and r′(B) ≥ r(B′) + 1. By inequality (1), we have
r(A′) + 1 + r(B′) + 1− r(M)− 1 ≤ 1. That is, r(A′) + r(B′)− r(M) ≤ 0 where |A′|, |B′| ≥ 1.
This implies (A′, B′) is a 1- separation of M , a contradiction. If B = 2, and suppose B = {γ, x}.
Then by the argument similar to one as given above we get a contradiction to the 3-connectedness
of M .
Subcase 1.2. |A|, |B| > 2.
Then, by Lemma 1.1 (2) and (3), r′(A) = r(A′) + 1 and r′(B) ≥ r(B′). By inequality (1), we
have r(A′) + 1 + r(B′)− r(M)− 1 ≤ 1. That is, r(A′) + r(B′)− r(M) ≤ 1 where |A′|, |B′| ≥ 2.
This implies (A′, B′) is a 2- separation of M , a contradiction.
Case 2. {a, γ} ⊂ A.
Let A′ = A \ {a, γ} and B′ = B. We have the following three subcases.
Subcase 2.1. |A| = 2.
Then A = {a, γ}, r′(A) = 2 and A′ = {φ}. By hypothesis, there is an OX-circuit C of M not
containing e and thus, C ⊆ B. Then, by Lemma 1.1 (1), r′(B) = r(B′) + 1. So, by inequality (1),
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2 + r(B′) + 1 − r(M) − 1 ≤ 1. That is, r(B′) − r(M) ≤ −1 or r(B′) ≤ r(M) − 1. This is a
contradiction.
Subcase 2.2. |A| = 3. Suppose A = {a, γ, x}. Then e /∈ Cl(A′) since otherwise, {x, e} forms
a 2-circuit, which is not possible in a 3-connected matroid M . We conclude that e /∈ Cl(A′).
Consequently, by Lemma 1.1 (4), r′(A) = r(A′) + 2. Also, by Lemma 1.1 (1), r′(B) ≥ r(B′).
Thus, by inequality (1), r(A′) + 2 + r(B′)− r(M)− 1 ≤ 1. That is, r(A′) + r(B′)− r(M) ≤ 0
and |A′|, |B′| ≥ 1. This gives a 1-separation of M , a contradiction.
Subcase 2.3. |A| > 3.
Applying Lemma 1.1 to A and B, we get r′(A) ≥ r(A) + 1 and r′(B) ≥ r(B). Then, by
inequality (1), we get r(A′) + 1 + r(B′)− r(M)− 1 ≤ 1. That is, r(A′) + r(B′)− r(M) ≤ 1 and
|A′|, |B′| ≥ 2. This leads to a 2-separation of M ; a contradiction. The above facts imply that M e

X

has no 2-separation. We conclude that M e
X \ e is 3-connected matroid.

In the following lemma, we provide a sufficient condition for a 3-connected binary matroid M
so that M e

X \ γ is a 3-connected minor of the es-splitting matroid M e
X .

Lemma 2.2. Let M be a 3-connected binary matroid, |E(M)| ≥ 4. Let X ⊂ E(M) with |X| ≥ 3.
Suppose for x ∈ E(M) there is an OX-circuit of M not containing x. Then, M e

X \ γ is a 3-
connected binary matroid.

Proof. If x = e then, by hypothesis, there is anOX-circuit ofM not containing x. So, by Theorem
1.2,M e

X is 3-connected andM e
X\γ is connected. SupposeM e

X\γ is not 3-connected and let (A,B)
be a 2-separation of E(M e

X \ γ). Then min {|A|, |B|} ≥ 2 and

r′(A) + r′(B)− r′(M e
X \ γ) ≤ 1. (2)

Assume that {a} ⊂ A. Let A′ = A \ a and B′ = B. Then, by Lemma 1.1, r′(A) = r(A′) + 1
and r′(B) ≥ r(B′). Now one of the following two cases occurs.
Case 1. |A| = 2.
Suppose A = {z, a} and A′ = {z} where z ∈ E(M). Then, by Lemma 1.1 (2), r′(A) = r(A′)+1.
Now M contains an odd circuit C of M and {z} ∩ C = φ, implies C ⊆ B. Then, by Lemma 1.1
(1), r′(B) = r(B′) + 1. Thus, by inequality (2), r(A′) + 1 + r(B′) + 1− r(M)− 1 ≤ 1. That is,
r(A′) + r(B′) − r(M) ≤ 0, and |A′|, |B′| ≥ 1. This implies that (A′, B′) is a 1-separation of M ,
a contradiction.
Case 2. |A| > 2.
By (1) and (2) of Lemma 1.1, r′(A) ≥ r(A′) + 1 and r′(B) ≥ r(B′). Then, by inequality (2),
r(A′) + 1 + r(B′)− r(M)− 1 ≤ 1. That is, r(A′) + r(B′)− r(M) ≤ 1 and |A′|, |B′| ≥ 2. This
leads to a 2-separation of M , a contradiction. Thus, M e

X \ γ has no 2-separation. We conclude that
M e

X \ γ is a 3-connected binary matroid.

3. n-Connected Minors of the es-splitting Matroids.

In this section, we provide a sufficient condition for an n-connected binary matroid M (n ≥ 4)
of rank r, where M e

X \ e and M e
X \ γ are n-connected minors of rank r + 1 of the es-splitting
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matroid M e
X .

Let M be an n-connected binary matroid (n ≥ 4), X ⊆ E(M) and e ∈ X . Suppose that M
has anOX-circuit not containing e. Then, by Theorem 1.2, the binary matroidM e

X is 3-connected.
Note that the matroid M e

X contains a triangle4 = {a, e, γ}. Hence, by Proposition 1.2, M e
X is not

4-connected. We observe that for any x ∈ E(M e
X), M e

X/x contains a 2-circuit or a triangle and
therefore it is not 4-connected. Further, for any x ∈ (E(M e

X)−4), the minor M e
X \x contains the

triangle 4 and therefore, it is not 4-connected. Thus, the possible 4-connected minors of M e
X are

M e
X \ e and M e

X \ γ.
In the following theorem, we give a sufficient condition for an n-connected binary matroid M

where M e
X \ e is an n-connected minor of M e

X .

Theorem 3.1. Let M be an n-connected binary matroid where n ≥ 4, |E(M)| ≥ 2(n− 1) and let
X ⊂ E(M) with |X| ≥ n. Suppose that for any (n − 2)-element subset S of E(M) there is an
OX-circuit C of M such that S ∩ C = φ. Then M e

X \ e is n-connected.

Proof. The proof is by induction on n. First we prove the case n = 4. The matroid M e
X \ e is

3-connected by Lemma 2.1. To prove that M e
X \ e is 4-connected, it is enough to show that it has

no 3-separation. On the contrary, suppose (A,B) forms a 3-separation of M e
X \ e. Then

min {|A|, |B|} ≥ 3 and
r′(A) + r′(B)− r′(M e

X \ e) ≤ 2. (3)

Now one of the following two cases occurs.
Case 1. a ∈ A and γ ∈ B
Subcase 1.1. |A| = 3 Let A = {a, x, y}. Then there is an OX-circuit C of M not containing x,
y and C ⊂ B′. Thus, by Lemma 1.1 (2) and (3), r′(A) = r(A′) + 1 and r′(B) ≥ r(B′) + 1. By
inequality (1), we have r(A′) + 1 + r(B′) + 1− r(M)− 1 ≤ 2. That is, r(A′) + r(B′)− r(M) ≤ 1
where |A′|, |B′| ≥ 2. This implies (A′, B′) is a 2- separation of M , a contradiction.
Subcase 1.2. |A|, |B| > 3
Then, by Lemma 1.1 (2) and (3), r′(A) = r(A′) + 1 and r′(B) ≥ r(B′). By inequality (1), we
have r(A′) + 1 + r(B′)− r(M)− 1 ≤ 2. That is, r(A′) + r(B′)− r(M) ≤ 2 where |A′|, |B′| ≥ 3.
We conclude that (A′, B′) is a 3- separation of M , a contradiction.
Case 2. {a, γ} ⊂ A
Let A′ = A \ {a, γ} and B′ = B. We have the following three subcases.
Subcase 2.1. |A| = 3 and A = {a, γ, x}, where x ∈ E(M) \ e
If e ∈ Cl(A′), then {x, e} forms a 2-circuit of M . This is not possible, since M is 4-connected.
Thus, e /∈ Cl(A′) and by Lemma 1.1 (4), r′(A) = r(A′) + 2. Also, there is an OX-circuit C of M
not containing x and C ⊆ B′. Therefore, r′(B) = r(B′) + 1. Consequently, by inequality (3),

r(A′) + 2 + r(B′) + 1− r(M)− 1 ≤ 2.

That is, (A′) + r(B′)− r(M) ≤ 0 and |A′|, |B′| ≥ 1. So M has a 1-separation; a contradiction.
Subcase 2.2. |A| = 4 and A = {a, γ, x, y} where x, y ∈ E(M) \ e
If e ∈ Cl(A′), then the set {x, y, e} itself is a 3-circuit or contains a 2-circuit of M . This is not
possible, since M is 4-connected. Thus, e /∈ Cl(A′) and, by Lemma 1.1 (4), r′(A) = r(A′) + 2.
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Now there is an OX-circuit C of M not containing x and y and C ⊆ B′. So, r′(B) = r(B′) + 1.
Therefore, by inequality (3),

r(A′) + 2 + r(B′) + 1− r(M)− 1 ≤ 2.

That is, r(A′) + r(B′) − r(M) ≤ 0 and |A′|, |B′| ≥ 1. We conclude that M has a 1-separation, a
contradiction.
Subcase 2.3. |A| > 4
Now by (1) and (4) of Lemma 1.1, r′(B) ≥ r(B) and r′(A) ≥ r(A) + 1. By inequality (3), we get

r(A′) + 1 + r(B′)− r(M)− 1 ≤ 2.

That is, r(A′) + r(B′) − r(M) ≤ 2 and |A′|, |B′| ≥ 3. This leads to a 3-separation of M , a
contradiction.

Thus, M e
X has no 3-separation. We conclude that M e

X \ e is 4-connected.
Now we assume that the result is true for k ≥ 4 and prove that the result is true for k + 1.
LetM be a (k+1)-connected binary matroid andM e

X be the es-splitting matroid ofM and any
(k− 1)-element subset S of E(M) there is an OX-circuit C of M such that S ∩C = φ. Note that
M e

X \ e is a k-connected minor by induction hypothesis. Thus, it is enough to show that M e
X \ e

has no k-separation.
On the contrary, suppose M e

X \ e is not (k+1)-connected. Let (A,B) be a k-separation of
E(M e

X \ e). Then, min {|A|, |B|} ≥ k, and

r′(A) + r′(B)− r′(M e
X \ a) ≤ k − 1. (4)

Now one of the following two cases occurs.
Case 1. a ∈ A and γ ∈ B
Let A′ = A \ a and B′ = B \ γ. Then, by (2) and (3) of Lemma 1.1, r′(A) = r(A′) + 1 and
r′(B) ≥ r(B′) + 1. By inequality (4), we have r(A′) + 1 + r(B′) + 1− r(M)− 1 ≤ k − 1. That
is, r(A′) + r(B′) − r(M) ≤ k − 2, where |A′|, |B′| ≥ k. Thus, (A′, B′) is a k- separation of M
and this is a contradiction.
Case 2. {a, γ} ⊂ A
Let A′ = A \ {a, γ} and B′ = B. We have the following two subcases.
Subcase 2.1. |A| = 4 and A = {a, γ, x, y} where x, y ∈ E(M) \ e
If e ∈ Cl(A′) then the set {x, y, e} itself is a 3-circuit or contains a 2-circuit of M . This is not
possible, since M is 4-connected. If e /∈ Cl(A′) then, by Lemma 1.1 (4), r′(A) = r(A′) + 2.
Since there is an OX-circuit C of M not containing x and y, C ⊆ B′. So r′(B) = r(B′) + 1.
Consequently, by inequality (4),

r(A′) + 2 + r(B′) + 1− r(M)− 1 ≤ k − 1.

That is, r(A′) + r(B′)− r(M) ≤ k− 2 and |A′|, |B′| ≥ k. This implies that M has a k-separation,
a contradiction.
Subcase 2.1. |A| > 4
Now by (1) and (4) of Lemma 1.1, r′(B) ≥ r(B) and r′(A) ≥ r(A) + 1. By inequality (4), we get
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r(A′) + 1 + r(B′)− r(M)− 1 ≤ k− 1. That is, r(A′) + r(B′)− r(M) ≤ k− 2 and |A′|, |B′| ≥ k.
This leads to a k-separation of M , a contradiction.

Thus, M e
X has no k-separation. We conclude that M e

X \ e is k + 1-connected. We conclude
that, by principle of mathematical induction, the result is true for all n ≥ 4.

In the following theorem, we give a sufficient condition for an n-connected binary matroid M so
that M e

X \ γ is an n-connected minor of M e
X .

Theorem 3.2. Let M be an n-connected binary matroid with n ≥ 4, |E(M)| ≥ 2(n − 1) and let
X ⊂ E(M), where |X| ≥ n. Suppose that for any (n− 2)-element subset S of E(M) there is an
OX-circuit C of M such that S ∩ C = φ. Then M e

X \ γ is n-connected.

The proof follows by the arguments similar to one as given for the proof of Theorem 3.1.
Thus, we proved that given an n-connected binary matroidM of rank r, M e

X \e andM e
X \γ are

the n-connected minors of rank (r+1) of the es-splitting matroid M e
X . In other words, we provide

a procedure to obtain n-connected matroids of rank (r + 1) from an n-connected matroid of rank
r. The matroids also have the property that each of them has exactly one additional element than
M . We illustrate Theorems 3.1 and 3.2 with the help of the following example.

Example 1. Let matrix M be a cycle matroid of a complete bipartite graph K4,4 shown in Figure
3. M is 4-connected matroid. Let X = {1, 2, 5, 6}. Observe that there is an OX-circuit in M
avoiding every pair of elements {x, y}. Let A be the matrix representation of the cycle matroid M
over GF (2) where

A =



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0 0 0 0 1 1 1 0 1 1 1 0 1 1 1
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


.

Let X = {1, 2, 5, 6} and 10 = e. Then representation of es-splitting matroid M e
X over the field

GF (2) is given by the matrix
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Ae
X =



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 a γ

1 0 0 0 0 1 1 1 0 1 1 1 0 1 1 1 0 1
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0
1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1


.

Note that, by Theorem 1.2, the es-splitting matroid M e
X is 3-connected. But if A = {a, e, γ}

and B = E(M e
X) \ A, then r′(A) + r′(B) − r′(M e

X) = 2 + r′(B) − 8 ≤ 2. Thus (A,B) is a
3-separation of M e

X and hence M e
X is not 4-connected. Further, it is easy to verify that M e

X \ e and
M e

X \ γ are 4-connected minors of the es-splitting matroid M e
X .
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