Electronic Journal of Graph Theory and Applications 9 (2) (2021), 265-275

, Electronic Journal of
Graph Theory and Applications

On n-connected minors of the es-splitting bi-
nary matroids

Prashant Pralhad Malavadkar?, Santosh Baburao Dhotre®, Maruti Shikare®

aSchool of Mathematics and Statistics,
Dr. Vishwanath karad MIT-World Peace Unversity, Pune-411038, India
bDepartment of Mathematics, Savitribai Phule Pune University, Pune-411007, India

prashant.malavadkar @mitcoe.edu.in, dsantosh2 @yahoo.co.in, mmshikare @ gmail.com

Abstract

The es-splitting operation on an n-connected binary matroid may not yield an n-connected matroid
for (n > 3). In this paper, we show that given an n-connected binary matroid M of rank r, the
resulting es-splitting binary matroid has an n-connected minor of rank-(r + 1) having |E'(M )| + 1
elements.
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1. Introduction

Slater [13] specified the n-line splitting operation on graphs as follows. Let GG be a graph and
e = uv be an edge of G with deg u > 2n — 3 with u adjacent to v, z1, To, ..., Tr, Y1, Y2, - - -, Y,
where k£ and h > n — 2. Let H be the graph obtained from G by replacing u by two adjacent
vertices uy and uy, with v adj uy, v adj ug, uy adj z; (1 <i < k),and uy adj y; (1 < j < h), where
deg u; > n and deg us > n. The transition from G to H is called an n-line splitting operation. We
also say that H is obtained from G by an n-line splitting operation. This construction is explicitly
illustrated with the help of Figure 1.

Slater [13] proved that if G is n-connected and H is obtained from G by n-line-splitting oper-
ation, then H is n-connected. In fact, he characterized 4-connected graphs, in terms of the 4-line

Received: 20 May 2019, Revised: 5 March 2021,  Accepted: 19 March 2021.

265



On n-connected minors of the es-splitting binary matroids | P. P. Malavadkar et al.
T U1 al
L2 Y2 T2

T, Yn Tk

Figure 1. n-line splitting operation.

splitting operation along with some other operations. The notion of connectivity of graphs also has
been studied in [6, 13] and connectivity of binary matroids has been studied in [3, 14].

Suppose G is a graph with n vertices and m edges. Let X = {e, z1,xs,..., 2} be a subset
of E(G). The incident matrix A of G is a matrix of size n x m. The row corresponding to the
vertex u has 1 in the columns of e, x1,xo, ..., Tk, Y1, Y2, .., yn and O in the other columns. The
graph H has (n + 1) vertices and (m + 2) edges. The incidence matrix A’ of H is a matrix of
size (n 4+ 1) X (m + 2). The row corresponding to us has 1 in the columns of y1, s, .. ., Y,y and
0 in the other columns, where as the row corresponding to the vertex u; has 1 in the columns of
€,T1,Ts,...,x and 0 in other columns. One can check that the matrix A’ can be obtained from
A by adjoining an extra row corresponding to the vertex u; to A with entries zero every where
except in the columns corresponding to e, x1, X3, . . . , ¥ Where it takes the value 1. The row vector
obtained by addition (mod 2) of row vectors corresponding to vertices u and u; will corresponds
to the row vector of the vertex us in A’.

Noticing the above s Azanchiler [1] extended the notion of n-line-splitting operation from
graphs to binary matroids in the following way:

Definition 1. Let M be a binary matroid on a set E and let X be a subset of E with e € X.
Suppose A is a matrix representation of M over GF(2). Let AS be a matrix obtained from A by
adjoining an extra row 0x to A with entries zero every where except in the columns corresponding
to the elements of X, where it takes the value 1 and then adjoining two columns labelled a and ~y
to the resulting matrix such that the column labelled a is zero everywhere except in the last row
where it takes the value 1, and y is sum of the two column vectors corresponding to the elements
a and e. The vector matroid of the matrix A% is denoted by M. The transition from M to M5 is
called an es-splitting operation. We call the matroid M5, as es-splitting matroid.

The following proposition characterizes the circuits of the matroid M in terms of the circuits
of the matroid M.

Proposition 1.1. [1] Let M(E,C) be a binary matroid together with the collection of circuits C.
Suppose X C E, e € X and a,y ¢ E. Then M = (E U {a,v},C"), where C' = Co UC; UCy U
Cs U {A} with A = {e,a,v} and
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Co = {C €C|C contains an even number of elements of X };

C1 = The set of minimal members of {C1 UCy | C1,Cy € C,C1NCy = ¢
and each of C and Cs contains an odd number of elements of
X such that Cy U Cy contains no member of Cq };

Co = {CU{a}|C €Cand C contains an odd number of elements of X };

Cs = {CU{e,v}|CeC,e¢ CandC contains an odd number of elements
of X} U{(C\e)U{y}|C eC,e e C andC contains an odd number
of elements of X } U{(C'\e)U{a,v}|CeCecCandC \e

contains an odd number of elements of X }.

Throughout this paper we assume that M is a loopless and coloopless binary matroid, X C
E(M) and M is the es-splitting matroid of M. We denote by Cox the set of all circuits of a
matroid M each of which contains an odd number of elements of the set X. The members of the
set Cox are called OX-circuits. On the other hand, Czx denotes the set of all circuits of a matroid
M each of which contains an even number of elements of the set X. The members of the set Crx
are called EX-circuits.

It is intersting to observe that M \ v and M \ {a,~} are isomorphic with element splitting
matroid and splitting matroid of M, respectively. The main theorems of this paper, Theorem 3.1
and Theorem 3.2 are motivated by a series of earlier work on splitting operation, element splitting
operation and es-splitting operation [1, 2,4, 7, 8, 10, 11, 12, 15, 17].

The following result characterizes the rank function of the matroid M5 in terms of the rank
function of the matroid M [4].

Lemma 1.1. Let r and r' be the rank functions of the matroids M and M€, respectively. Suppose
that A C M(E). Then

1. 7'(A) = r(A) + 1, if A contains an OX -circuit of the matroids M ;

= r(A), otherwise.

2. r"(AUa) =r(A) + 1.

3. r"(AU{~}) = r(A), if not A but AU {e} contains an O X -circuit of M ;
=r(A) + 2, if A contains an OX -circuit of M and e ¢ cl(A);
=r(A) + 1, otherwise.

4. r"(AU{a,v}) =r(A) + 1, ife € cl(A);

=r(A)+2 ife ¢ cl(A).

Using Lemma 1.1, one can obtain the following corollary.

Corollary 1.1. Let v and 1’ be the rank functions of the matroids M and M$, respectively. Then
(M5) = r(M) + 1. :

Remark 1.1. As A = {a,e,v} C Mg, we have 7' (M%) = (Mg \ {a}) = r"(MS \ {e})
= r'(M5 \ {7})-
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We recall that matroid M is connected if and only if for every pair of distinct elements of
E(M), there is a circuit containing both. The concept of n-connected matroids was introduced
by W. T. Tutte [14]. If k is positive integer, the matroid M is k-separated if there is a subset
X C E(M) suchthat | X| >k, |E\ X| > kandr(X)+r(E\ X)—r(M) =k — 1. Connectivity
A(M) of M is the list positive integer j such that M is j-separated. If there is no such integer
we say A(M) = oo. Note that A\(Uy4) = oo. The following result from [9] provides a necessary
condition for a matroid to be n-connected.

Lemma 1.2. If M is a n-connected matroid and |E(M)| > 2(n — 1) then all circuits and all
cocircuits of M have at least n elements.

Let M be an n-connected binary matroid and X C E(M). Note that if | X| < n then X U {a}
will be a cocircuit of M. Further, if | X U {a}| < n then, by Lemma 1.2, M is not n-connected.
Azanchiler [1] proved that es-splitting operation on a connected binary matroid yields a connected
binary matroid. In fact, he proved the following theorem.

Theorem 1.1. Let M be a connected binary matroid and X C E(M) with | X| > 2. Then M is
connected binary matroid.

In the following result Dhotre, Malavadkar and Shikare [4], provided a sufficient condition for
the es-splitting operation to yield a 3-connected binary matroid from a 3-connected binary matroid.

Theorem 1.2. Let M be a 3-connected binary matroid, X C E(M) and e € X. Suppose that M
has an O X -circuit not containing e. Then M$ is a 3-connected binary matroid.

In perticular, when X = {x,y} the es-spliting maroid is denoted by M; . As a consequence
of the above result, Dhotre, Malavadkar and Shikare [4] obtained a splitting lemma for es-splitting
matroid M .

Corollary 1.2. (Splitting Lemma). [f M is a 3-connected binary matroid then, M, is a 3-
connected binary matroid for any pair {x,y} of elements of E(M).

2. 3-Connected Minors of the es-splitting Matroids.

In this section, we provide a sufficient condition for a 3-connected binary matroid M of rank
r, where M§ \ e and M§ \ v are 3-connected minors of rank 7 + 1 of the matroid M.

Let M be a cycle matroid of a wheel W5 as shown in the Figure 2, X = {8,9,10} and e = 10.
Then M§ is the es-splitting matroid of M. Observe that M§ \ e and M§ \ 7 are 3-connected
minors of M§. But M \ a is not a 3-connected minor of M.

In the following result, we provide a sufficient condition for a 3-connected binary matroid M
where M§ \ e is a 3-connected minor of M§.

Lemma 2.1. Let M be a 3-connected binary matroid, |E(M)| > 4 and let X C E(M), where
| X'| > 3. Suppose for x € E(M) there is an OX -circuit of M not containing x. Then M$ \ e is a
3-connected binary matroid.
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3 3
Mg\ e Mg\ vy

Figure 2. 3-connected minors of M (W5)5%.

Proof. Suppose that M contains an O X -circuit C' of M and e ¢ C. Then, by Theorem 1.2, M5 is
3-connected. Therefore, M§ \ e is at least 2-connected. It is enough to show that A/§ \ e has no
2-separation. On the contrary, suppose (A, B) is a 2-separation of E (M%) \ e. So,
min {|A[, |B|} > 2 and

r'(A) +7r'(B) —r'(Mg \ e) < 1. (1)

Now one of the following two cases concerning a and 7y occurs.

Casel.a € Aandy € B.

Let A= A\ceand B'= B\ 7.

Subcase 1.1. |[A| =2 or |B| = 2.

Suppose A = {a,x}. Then there is an OX-circuit C' of M not containing  and C' C B’. Thus,
by Lemma 1.1 (2) and (3), '(A) = r(A") + 1 and 7'(B) > r(B’) + 1. By inequality (1), we have
r(A)Y+1+r(B)+1—r(M)—1<1. Thatis, r(A") +r(B") —r(M) < 0 where |A'|,|B’| > 1.
This implies (A’, B’) is a 1- separation of M, a contradiction. If B = 2, and suppose B = {7, x}.
Then by the argument similar to one as given above we get a contradiction to the 3-connectedness
of M.

Subcase 1.2. |A|, |B| > 2.

Then, by Lemma 1.1 (2) and (3), 7'(A) = r(A") + 1 and 7'(B) > r(B’). By inequality (1), we
have r(A") +1+4+7(B') —r(M)—1 < 1. Thatis, r(A") +r(B') —r(M) < 1 where |A|, |B’| > 2.
This implies (A’, B') is a 2- separation of ), a contradiction.

Case 2. {a,7} C A.

Let A' = A\ {a,v} and B’ = B. We have the following three subcases.

Subcase 2.1. |A| = 2.

Then A = {a,v}, 7"(A) = 2 and A’ = {¢}. By hypothesis, there is an O X -circuit C' of M not
containing e and thus, C' C B. Then, by Lemma 1.1 (1), 7'(B) = r(B’) + 1. So, by inequality (1),
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24 r(B)+1—-r(M)—1<1 Thatis, 7(B') —r(M) < —lorr(B') < r(M)— 1. Thisis a
contradiction.

Subcase 2.2. |A| = 3. Suppose A = {a,v,z}. Then e ¢ CI(A’) since otherwise, {x, e} forms
a 2-circuit, which is not possible in a 3-connected matroid M. We conclude that e ¢ CI(A").
Consequently, by Lemma 1.1 (4), r'(A) = r(A’) + 2. Also, by Lemma 1.1 (1), 7'(B) > r(B’).
Thus, by inequality (1), 7(A") + 2+ r(B') —r(M) — 1 < 1. Thatis, r(A") + r(B') —r(M) <0
and |A’|, |B’| > 1. This gives a 1-separation of M, a contradiction.

Subcase 2.3. |A| > 3.

Applying Lemma 1.1 to A and B, we get '(A) > r(A) + 1 and +/(B) > r(B). Then, by
inequality (1), we getr(A’) + 1+ r(B') —r(M)—1 < 1. Thatis, r(A’) + r(B’) —r(M) < 1 and
|A’|,|B’| > 2. This leads to a 2-separation of M a contradiction. The above facts imply that M
has no 2-separation. We conclude that M/§ \ e is 3-connected matroid. O

In the following lemma, we provide a sufficient condition for a 3-connected binary matroid M
so that M \ v is a 3-connected minor of the es-splitting matroid M.

Lemma 2.2. Let M be a 3-connected binary matroid, |E(M)| > 4. Let X C E(M) with | X| > 3.
Suppose for © € E(M) there is an OX-circuit of M not containing x. Then, M$ \ v is a 3-
connected binary matroid.

Proof. If x = e then, by hypothesis, there is an O X -circuit of M not containing z. So, by Theorem
1.2, M is 3-connected and M \ 7y is connected. Suppose M5\ is not 3-connected and let (A, B)
be a 2-separation of E (M \ 7). Then min {|A[, |B|} > 2 and

r'(A) +7'(B) = r'(Mx \7) < 1. ()

Assume that {a} C A. Let A" = A\ a and B’ = B. Then, by Lemma 1.1, '(A) = r(A") + 1
and r'(B) > r(B’). Now one of the following two cases occurs.
Case 1. |A| = 2.
Suppose A = {z,a} and A’ = {z} where z € E(M). Then, by Lemma 1.1 (2), 7'(A) = r(A") + 1.
Now M contains an odd circuit C' of M and {z} N C = ¢, implies C' C B. Then, by Lemma 1.1
(1), 7 (B) = r(B’) + 1. Thus, by inequality (2), 7(A") + 1 +r(B') +1—r(M) —1 < 1. That is,
r(A") +r(B") —r(M) <0, and |A'|,|B’| > 1. This implies that (A’, B') is a 1-separation of M,
a contradiction.
Case 2. |A| > 2.
By (1) and (2) of Lemma 1.1, /(A) > r(A’) + 1 and r'(B) > r(B’). Then, by inequality (2),
r(AY+1+r(B)—r(M)—1<1.Thatis, r(A") + r(B') —r(M) < 1 and |A'|,|B’| > 2. This
leads to a 2-separation of ), a contradiction. Thus, M \ 7 has no 2-separation. We conclude that
M \ 7y is a 3-connected binary matroid. [

3. n-Connected Minors of the es-splitting Matroids.

In this section, we provide a sufficient condition for an n-connected binary matroid M (n > 4)
of rank r, where M \ e and M \ v are n-connected minors of rank r + 1 of the es-splitting
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matroid M¥.

Let M be an n-connected binary matroid (n > 4), X C F(M) and e € X. Suppose that M
has an O X -circuit not containing e. Then, by Theorem 1.2, the binary matroid M is 3-connected.
Note that the matroid M contains a triangle A = {a, e, v}. Hence, by Proposition 1.2, M is not
4-connected. We observe that for any x € E(M), M§ /x contains a 2-circuit or a triangle and
therefore it is not 4-connected. Further, for any = € (E(M§) — A), the minor M§ \ x contains the
triangle A and therefore, it is not 4-connected. Thus, the possible 4-connected minors of M are
M \ e and M§ \ ~.

In the following theorem, we give a sufficient condition for an n-connected binary matroid M
where M$ \ e is an n-connected minor of M.

Theorem 3.1. Let M be an n-connected binary matroid where n > 4, |E(M)| > 2(n — 1) and let
X C E(M) with | X| > n. Suppose that for any (n — 2)-element subset S of E(M) there is an
OX -circuit C of M such that S N\ C = ¢. Then M \ e is n-connected.

Proof. The proof is by induction on n. First we prove the case n = 4. The matroid M \ e is
3-connected by Lemma 2.1. To prove that M \ e is 4-connected, it is enough to show that it has
no 3-separation. On the contrary, suppose (A, B) forms a 3-separation of M \ e. Then
min {|A[, |B|} > 3 and

r'(A) +7(B) —r'(Mg \ e) < 2. 3)

Now one of the following two cases occurs.

Casel.ac Aandy € B

Subcase 1.1. |A| = 3 Let A = {a, z,y}. Then there is an O X -circuit C' of M not containing z,
yand C' C B’. Thus, by Lemma 1.1 (2) and (3), 7'(A) = r(A’) + 1 and '(B) > r(B’) + 1. By
inequality (1), we have r(A") +1+4+r(B')+1—r(M)—1 < 2. Thatis, r(A") +r(B') —r(M) <1
where |A’|, |B’| > 2. This implies (A’, B') is a 2- separation of M, a contradiction.

Subcase 1.2. |A|,|B| > 3

Then, by Lemma 1.1 (2) and (3), 7"(A) = r(A") + 1 and +/(B) > r(B’). By inequality (1), we
have r(A") +1+4+7r(B') —r(M)—1 < 2. Thatis, r(A") +r(B") —r(M) < 2 where |A’|, |B’| > 3.
We conclude that (A’, B) is a 3- separation of )M, a contradiction.

Case 2. {a,v} C A

Let A’ = A\ {a,v} and B’ = B. We have the following three subcases.

Subcase 2.1. |A| =3 and A = {a,v,x}, where z € E(M) \ e

If e € Cl(A’), then {z, e} forms a 2-circuit of M. This is not possible, since M is 4-connected.
Thus, e ¢ CI(A’) and by Lemma 1.1 (4), 7'(A) = r(A") + 2. Also, there is an O X -circuit C' of M
not containing = and C' C B’. Therefore, r'(B) = r(B’) + 1. Consequently, by inequality (3),

r(A)+24+r(B)+1—r(M)—-1<2.

That is, (A") +r(B") —r(M) < 0and |A’|,|B’| > 1. So M has a 1-separation; a contradiction.
Subcase 2.2. |A| =4 and A = {a,v,x,y} where x,y € E(M) \ e

If e € CI(A’), then the set {x,y, e} itself is a 3-circuit or contains a 2-circuit of M. This is not
possible, since M is 4-connected. Thus, e ¢ CI(A’) and, by Lemma 1.1 (4), 7'(A) = r(A’) + 2.
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Now there is an O X -circuit C' of M not containing = and y and C' C B’. So, r'(B) = r(B’) + 1.
Therefore, by inequality (3),

r(AY+2+r(B)+1—-r(M)—1<2.

That is, (A") + r(B’) — r(M) < 0 and |A’|,|B’| > 1. We conclude that M has a 1-separation, a
contradiction.

Subcase 2.3. |A| > 4

Now by (1) and (4) of Lemma 1.1, 7(B) > r(B) and 7'(A) > r(A) + 1. By inequality (3), we get

r(A)+1+rB)—r(M)—-1<2.

That is, 7(A") + r(B’) — r(M) < 2 and |A'|,|B’| > 3. This leads to a 3-separation of M, a
contradiction.

Thus, M has no 3-separation. We conclude that M \ e is 4-connected.

Now we assume that the result is true for £ > 4 and prove that the result is true for k£ + 1.

Let M be a (k+ 1)-connected binary matroid and M § be the es-splitting matroid of M and any
(k — 1)-element subset S of E(M ) there is an O X -circuit C' of M such that SN C = ¢. Note that
M$ \ e is a k-connected minor by induction hypothesis. Thus, it is enough to show that M§ \ e
has no k-separation.

On the contrary, suppose M \ e is not (k+1)-connected. Let (A, B) be a k-separation of
E(M$ \ e). Then, min {|A|, |B|} > k, and

r'(A)+r'(B) —r' (Mg \a) <k — L. 4)

Now one of the following two cases occurs.
Casel.ac Aandy € B
Let A = A\ aand B = B\ 7. Then, by (2) and (3) of Lemma 1.1, '(4) = r(A4’) + 1 and
r'(B) > r(B’) + 1. By inequality (4), we have r(A") + 1 +r(B') + 1 —r(M) — 1 < k — 1. That
is, r(A") + r(B") — r(M) < k — 2, where |A'|,|B’| > k. Thus, (A’, B') is a k- separation of M
and this is a contradiction.
Case 2. {a,7} C A
Let A= A\ {a,7} and B’ = B. We have the following two subcases.
Subcase 2.1. |[A| =4 and A = {a,v,x,y} where x,y € E(M) \ e
If e € CI(A’) then the set {x,y, e} itself is a 3-circuit or contains a 2-circuit of M. This is not
possible, since M is 4-connected. If e ¢ CI(A’) then, by Lemma 1.1 (4), 7'(A) = r(A’) + 2.
Since there is an O X -circuit C' of M not containing x and y, C C B’. So r/(B) = r(B’) + 1.
Consequently, by inequality (4),

r(AY+2+rB)+1—r(M)—1<k-1.

Thatis, 7(A’) +r(B') —r(M) < k—2and |A’|, | B'| > k. This implies that M has a k-separation,
a contradiction.

Subcase 2.1. |A| > 4

Now by (1) and (4) of Lemma 1.1, '(B) > r(B) and r'(A) > r(A) + 1. By inequality (4), we get
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r(AY4+14r(B)—r(M)—1<k—1.Thatis,r(A")+r(B)—r(M) < k—2and |A'|,|B'| > k.
This leads to a k-separation of M, a contradiction.

Thus, M has no k-separation. We conclude that M§ \ e is k + 1-connected. We conclude
that, by principle of mathematical induction, the result is true for all n > 4. [

In the following theorem, we give a sufficient condition for an n-connected binary matroid M so
that M§ \ v is an n-connected minor of M.

Theorem 3.2. Let M be an n-connected binary matroid withn > 4, |E(M)| > 2(n — 1) and let
X C E(M), where | X| > n. Suppose that for any (n — 2)-element subset S of E(M) there is an
OX-circuit C of M such that S N\ C = ¢. Then M$ \ vy is n-connected.

The proof follows by the arguments similar to one as given for the proof of Theorem 3.1.

Thus, we proved that given an n-connected binary matroid A of rank 7, M§ \ e and M§ \ y are
the n-connected minors of rank (r + 1) of the es-splitting matroid M. In other words, we provide
a procedure to obtain n-connected matroids of rank (r 4 1) from an n-connected matroid of rank
r. The matroids also have the property that each of them has exactly one additional element than
M. We illustrate Theorems 3.1 and 3.2 with the help of the following example.

Example 1. Let matrix M be a cycle matroid of a complete bipartite graph /4 4 shown in Figure
3. M is 4-connected matroid. Let X = {1,2,5,6}. Observe that there is an OX-circuit in M
avoiding every pair of elements {x, y}. Let A be the matrix representation of the cycle matroid M
over GF'(2) where

123 45 6 78 9 10 11 12 13 14 15 16
1 o0001110 1 1 1T 0 1 1 1
61060001 00O0T1T O O O 1 0 O
6oo0o1o0o060o01o00 0 1T 0 0 0 1 O
A 6oo0oo010o0010 0 0 1 0 0 0 1
oo0oo060o011110 0 0 0 0 O 0 O
coo0o0oo0o0oo0o0o01 1 1 1 0 0 0 O
6ooo606o0oo0o000O0OTOGO0O O0 1 1 1 1
oo0oo0o000O0O0OO0OT0G O 0 0 0 0 O

Let X = {1,2,5,6} and 10 = e. Then representation of es-splitting matroid M over the field
GF(2) is given by the matrix
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123 45 6 78 9 10 11 12 13 14 15 16 a v

1P 000001110 1 1 1 0 1 1T 1 01
c1r00010O0O0T1T O O0O O 1T 0 0 01
co01o0o0o01o0o0 0 1 0 o0 0 1 0 02O

Ae — co0o0o1o00o01o0 0 o0 1 o0 0 0 1 0O
X coo0o0o011110 0 0O O0O O O O O 0O
coo0oo0oo0oo0oo0o0o01 1 1 1 0 0 0 0 01
coo0o0oo0o0oo0oo0000 0 0O 1 1 1 1 020
1100110000 0 0 O 0 O 0 11

Note that, by Theorem 1.2, the es-splitting matroid M§ is 3-connected. But if A = {a,e,v}
and B = E(M%) \ A, then 7'(A) +1'(B) — ' (M%) = 2+ 1'(B) —8 < 2. Thus (4, B) is a
3-separation of M and hence M is not 4-connected. Further, it is easy to verify that M \ e and
M \ ~y are 4-connected minors of the es-splitting matroid M.
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