
www.ejgta.org

Electronic Journal of Graph Theory and Applications 9 (2) (2021), 433–441

On hamiltonicity of 1-tough triangle-free graphs
Wei Zhenga,b,c, Hajo Broersmac, Ligong Wangb

aSchool of Mathematics and Statistics, Shandong Normal University,
Jinan, Shandong, 250358, P.R. China
bSchool of Mathematics and Statistics, Northwestern Polytechnical University,
Xi’an, Shaanxi, 710129, P.R. China
cFaculty of EEMCS, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

zhengweimath@163.com, h.j.broersma@utwente.nl, lgwangmath@163.com

Abstract

Let ω(G) denote the number of components of a graph G. A connected graph G is said to be
1-tough if ω(G − X) ≤ |X| for all X ⊆ V (G) with ω(G − X) > 1. It is well-known that
every hamiltonian graph is 1-tough, but that the reverse statement is not true in general, and even
not for triangle-free graphs. We present two classes of triangle-free graphs for which the reverse
statement holds, i.e., for which hamiltonicity and 1-toughness are equivalent. Our two main results
give partial answers to two conjectures due to Nikoghosyan.
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1. Introduction

All graphs we consider are finite, simple and undirected graphs. For terminology, notation and
concepts not defined here, we refer the reader to [2]. A cycle in a graph G is called a Hamilton
cycle if it contains all vertices of G, and G is called hamiltonian if it contains a Hamilton cycle.

Hamiltonicity has been a central topic in structural graph theory since the 1950s, and has re-
gained more popularity since the development of algorithmic graph theory and the discovery that
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the associated decision problem is NP-complete. It also has many and sometimes very surpris-
ing applications, as the recent publication [5] in this journal shows. Forbidden subgraph condi-
tions for guaranteeing hamiltonian properties have been studied intensively since the PhD thesis
of Bedrossian [1] appeared in 1991. For more recent work on forbidden subgraph conditions we
refer to the publication [6] in the first issue of this journal and the references therein.

The research we report here is inspired by several conjectures on the hamiltonicity of graphs
presented by Nikoghosyan in the paper [8]. A central concept in that paper is the toughness of
graphs, so we first recall the essential definitions related to toughness.

Let ω(G) denote the number of components of a graph G. As it is defined in [4], a connected
graph G is said to be t-tough if t · ω(G − X) ≤ |X| for all X ⊆ V (G) with ω(G − X) > 1.
The toughness of G, denoted by τ(G), is the maximum value of t such that G is t-tough (taking
τ(Kn) =∞ for all n ≥ 1).

It is an easy exercise to show that every hamiltonian graph is 1-tough, but that the reverse
statement does not hold. Nikoghosyan [8] investigated the hamiltonicity of 1-tough graphs by
considering disconnected single forbidden subgraphs, and he presented the following conjectures.
Here we use 4 to denote a complete graph on 3 vertices, G1 ∪ G2 to denote the disjoint union of
two vertex-disjoint graphs G1 and G2, and kG to denote the graph consisting of k disjoint copies
of the graph G. For a fixed graph H , a graph G is called H-free if G does not contain an induced
copy of H , i.e., a set S ⊆ V (G) such that the graph on vertex set S containing all edges of G
between pairs of vertices in S is isomorphic to H . The latter is also called an induced subgraph
and denoted by 〈S〉.

Conjecture 1 (Nikoghosyan [8]). Every 1-tough K1 ∪ P4-free graph on at least three vertices is
hamiltonian.

In an attempt to prove this conjecture, Li et al. [7] left one open case, as expressed in the following
two results.

Theorem 1.1 (B. Li et al. [7]). Let R be an induced subgraph of P4, K1 ∪ P3 or 2K1 ∪K2. Then
every R-free 1-tough graph on at least three vertices is hamiltonian.

Note that every induced subgraph of K1 ∪ P4 is also an induced subgraph of P4, K1 ∪ P3 or
2K1 ∪K2, except for K1 ∪ P4 itself.

Theorem 1.2 (B. Li et al. [7]). Let R be a graph on at least three vertices. If every R-free 1-tough
graph on at least three vertices is hamiltonian, then R is an induced subgraph of K1 ∪ P4.

These two results together imply the following. While forbidding any proper subgraph of K1 ∪ P4

can guarantee 1-tough graphs (on at least three vertices) to be hamiltonian, the case with the graph
K1 ∪ P4 itself is still open. Since Conjecture 1 seems to be very hard to resolve, we considered
partial solutions. In particular, if we impose the additional condition that the graphs under consid-
eration are triangle-free, we can prove the following partial result.

Theorem 1.3. Every 1-tough {4, K1 ∪ P4}-free graph on at least three vertices is hamiltonian.
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We postpone the proof of Theorem 1.3 to Section 3.
Another conjecture in [8] deals with the hamiltonicity of K1 ∪K1,3-free graphs. Clearly, The-

orem 1.2 implies that the toughness of these graphs must be strictly larger than one.

Conjecture 2 (Nikoghosyan [8]). Every K1 ∪ K1,3-free graph G on at least three vertices with
τ(G) > 4/3 is hamiltonian.

In [8], the Petersen graph was used to show that the condition τ(G) > 4/3 in Conjecture 2 cannot
be relaxed to τ(G) = 4/3. Similarly as in Theorem 1.3, we involved the triangle as a second
forbidden subgraph, and obtained the following result related to Conjecture 2.

Theorem 1.4. If G is a 1-tough {4, K1 ∪ K1,3}-free graph on at least three vertices, then G is
hamiltonian or the Petersen graph.

The proof of Theorem 1.4 is postponed to Section 4. In [8], Nikoghosyan also raised the following
conjecture.

Conjecture 3 (Nikoghosyan [8]). Every 2K2-free graphG on at least three vertices with τ(G) > 1
is hamiltonian.

As far as we know, this conjecture is still open, but it is known from a recent paper due to Shan
[9] that 3-tough 2K2-free graphs on at least three vertices are hamiltonian. This result consid-
erably improves the result due to Broersma et al. [3] that 25-tough 2K2-free graphs on at least
three vertices are hamiltonian. A partial result in [3] deals with triangle-free 2K2-free graphs, and
supplements our results, as follows.

Theorem 1.5 (Broersma et al. [3]). If G is a 1-tough {4, 2K2}-free graph on at least three
vertices, then G is hamiltonian.

Another open conjecture from [8] states that every K1 ∪ P5-free graph G on at least three vertices
with τ(G) > 1 is hamiltonian. By involving triangle-freeness, we propose the following conjecture
for future work.

Conjecture 4. If G is a 1-tough {4, K1 ∪ P5}-free graph on at least three vertices, then G is
hamiltonian.

Before we give our proofs of Theorems 1.3 and 1.4, we first provide some additional notation and
terminology.

2. Some notation and terminology

Let G be a graph with vertex set V (G) and edge set E(G). For a vertex u ∈ V (G) and
subgraphs H and R of G, let NR(u) and NR(H) denote the set of neighbors of the vertex u and
the subgraph H in R, respectively, that is

NR(u) = {v ∈ V (R) | uv ∈ E(G)},

435



www.ejgta.org

On hamiltonicity of 1-tough triangle-free graphs | Wei Zheng et al.

NR(H) =
( ⋃
u∈V (H)

NR(u)
)
\ V (H).

The numbers |NR(u)| and |NR(H)| are respectively called the degree of the vertex u and the degree
of the subgraph H in R, and denoted as dR(u) and dR(H), respectively. If R = G, then we use
N(u) and N(H) instead of NR(u) and NR(H), and d(u) and d(H) instead of dR(u) and dR(H),
respectively.

Let C = x1x2 · · ·xtx1 be a cycle of length t ≥ 3 in G with a given orientation. For a vertex
xi ∈ V (C) (1 ≤ i ≤ t), we let x−li , x

+l
i (1 ≤ i − l < i + l ≤ t) denote the vertices xi−l and

xi+l on C, respectively. Instead of x−1i and x+1
i , we simply use x−i and x+i to denote the immediate

predecessor and successor of xi on C, respectively. For two vertices xi, xj ∈ V (C), xiCxj denotes
the subpath of C from xi to xj , and xjCxi denotes the path from xj to xi in the reverse direction.
For any I ⊆ V (C), let I− = {x−i | xi ∈ I} and I+ = {x+i | xi ∈ I}. A similar notation is used
for paths.

Recall that for a subset S of V (G), we use 〈S〉 to denote the subgraph of G induced by S.
If the induced subgraph 〈S〉 is isomorphic to a graph H , then we slightly abuse the notation by
writing S ∼= H . We use {u; v, w, x} to denote the graph isomorphic to the claw K1,3 induced by
{u, v, w, x} with edge set {uv, uw, ux}, and we call u the center, and v, w, x the end vertices of
this claw.

3. Proof of Theorem 1.3

Suppose, to the contrary, that G is a 1-tough {4, K1∪P4}-free graph on at least three vertices,
but not hamiltonian. Then G contains a cycle. We choose a longest cycle C of G. Since G is not
hamiltonian, we use H to denote a component of G− V (C). We denote all neighbors of H on C
as NC(H) = {u1, u2, . . . , ut} with t ≥ 2, in this order around C according to a fixed orientation
of C, and we denote the (vertex set of the) segment of C from u+i to u−i+1 as Si = u+i Cu

−
i+1 for

i = 1, 2, . . . , t. The next result is obvious, but we give it and its proof for later reference.

Claim 1. NC(H)+ and NC(H)− are independent, and there is no path outside C connecting any
two vertices of any one of these two sets.

Proof. Without loss of generality, assume that u+i and u+j are connected by a path P outside C
(possibly P is an edge). We find a cycle longer than C: uiHujCu+i Pu

+
j Cui, a contradiction.

We continue with proving another set of claims that are more specific for this graph class. We say
that two sets A and B are connected by a path outside C if there is a path between a vertex x ∈ A
and y ∈ B with all internal vertices not on C.

Let Si and Sj be two distinct segments.

Claim 2. If Si and Sj are connected by a path outside C, then {u+2
j , u+4

j , . . . , u−2j+1} ⊆ N(u+i ) and
{u+2

i , u+4
i , . . . , u−2i+1} ⊆ N(u+j ), and |Si| and |Sj| are odd.
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Proof. Suppose Si and Sj are connected by a path outside C. Then we can find a shortest path
from u+i to u+j along u+i CxPyCu

+
j , where x ∈ Si, y ∈ Sj and P is a path such that V (P ) ∩

(V (C) ∪ V (H)) = {x, y}. We use Pij to denote this shortest path for segments Si and Sj . Then
Pij is an induced path. If |V (Pij)| ≥ 4, then any vertex of H together with a subpath of Pij of
length 3 induces a copy of K1 ∪ P4, contradicting the hypothesis. Using Claim 1, |V (Pij)| = 3.
Thus, P is a path with x = u+i or y = u+j . Denote Pij = p1p2p3, with p1 = u+i and p3 = u+j .
Since P is a path outside C connecting Si and Sj , and by Claim 1, we have that p2 ∈ Si ∪ Sj , and
|Si| > 1 or |Sj| > 1. Without loss of generality, we assume |Si| > 1. If p2 6= u+2

i , then to avoid
any vertex w ∈ V (H) with the path u+2

i u+i p2u
+
j inducing K1 ∪ P4, we have p2u+2

i ∈ E(G). Then
{u+i , u+2

i , p2} ∼= 4, a contradiction. Hence, u+j u
+2
i ∈ E(G). If u+4

i exists, then to avoid inducing
triangles and to avoid any vertex w ∈ V (H) with the path u+j u

+2
i u+3

i u+4
i inducing K1 ∪ P4, we

have u+j u
+4
i ∈ E(G). Similarly, we have u+6

i , u+8
i , . . . ∈ N(u+j ) if these vertices exist. For the last

vertex of Si, if u+j u
−
i+1 ∈ E(G), then u+j 6= u−j+1 by Claim 1. To avoid any vertex w ∈ V (H) with

the path u+i u
+2
i u+j u

+2
j inducing K1 ∪ P4, we have u+i u

+2
j ∈ E(G). Then there is a cycle longer

than C: uiHui+1Cu
+
j u
−
i+1Cu

+
i u

+2
j Cui, a contradiction. Hence, u+j u

−
i+1 /∈ E(G) and |Si| is odd.

If u+2
j , u+4

j , u+6
j , . . . exist, then by symmetry, we have that u+2

j , u+4
j , u+6

j , . . . ∈ N(u+i ) and |Sj| is
odd.

For any segment Si that is connected to another segment by a path outside C, by Claim 2 we know
that |Si| is odd. We divide Si into two sets: So

i = {u+i , u+3
i , . . . , u−i+1} and Se

i = {u+2
i , u+4

i , . . . , u−2i+1}.
By Claim 2, if Si is connected to Sj by a path outside C, then Se

i ⊆ N(u+j ), and since G is4-free,
So
i ∩N(u+j ) = ∅.

Claim 3. If Si and Sj are connected by a path outside C, then So
i ∪ So

j is independent.

Proof. Suppose that u+s
i , u+t

i ∈ So
i (t > s) and u+s

i u+t
i ∈ E(G). Since G is 4-free, t > s + 2,

and since u+(s+1)
i , u

+(t−1)
i ∈ N(u+j ), u

+s+1
i ut−1i /∈ E(G). Then any vertex w ∈ V (H) with the

path us+1
i u+s

i u+t
i u

+(t−1)
i induces a copy of K1 ∪ P4, contradicting the hypothesis. Hence, So

i is
independent. Similarly, So

j is also independent.
Suppose that u+l

i ∈ So
i , u

+m
j ∈ So

j and u+l
i u

+m
j ∈ E(G). By Claim 2, u+l

i 6= u+i , u+m
j 6= u+j

and u+(m−1)
j u+i ∈ E(G). Also we know that u+(l+1)

i = ui+1 or u+(l+1)
i u+j ∈ E(G). Then the cycle

uiHujCu
+(l+1)
i u+j Cu

+(m−1)
j u+i Cu

+l
i u

+m
j Cui is longer than C, a contradiction.

Claim 4. If Si is connected to Sj by a path outside C, and Si has a neighbor w′ ∈ V (G) \ (V (C)∪
V (H)), then Se

i ⊆ N(w′) and So
i ∩N(w′) = ∅.

Proof. First, u+i /∈ N(w′); otherwise, to avoid any vertex w ∈ V (H) with a path w′u+i u
+2
j u+j (if

|Sj| 6= 1) or with a path w′u+i u
+2
i u+j (if |Si| 6= 1) inducing K1 ∪ P4, we have w′u+j ∈ E(G).

That contradicts Claim 1. Suppose that u+k
i ∈ N(w′) (k 6= 1). To avoid any vertex w ∈ V (H)

with a path w′u+k
i u

+(k+1)
i u

+(k+2)
i or with a path w′u+k

i u
+(k−1)
i u

+(k−2)
i inducing K1 ∪ P4, we have

w′u
+(k+2)
i ∈ E(G) and w′u+(k−2)

i ∈ E(G) if these vertices exist. By this argumentation, we know
that every vertex on Si having even distance to u+k

i on C is a neighbor of w′. Since u+i /∈ N(w′)
and G is4-free, Se

i ⊆ N(w′) and So
i ∩N(w′) = ∅.
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We use So to denote the union of all So
i , and Se to denote the union of all Se

i , for all segments
Si (1 ≤ i ≤ t) that are connected to some other segment by a path outside C. By Claim 3 and
Claim 4, there is no path outside C connecting any two vertices of So. Hence, if we remove all the
vertices ofNC(H)∪Se, we get at least |NC(H)∪Se|+1 components, contradicting the hypothesis
that G is 1-tough. This completes the proof of Theorem 1.3. �

4. Proof of Theorem 1.4

Let G be a 1-tough {4, K1 ∪ K1,3}-free graph on at least three vertices. For any vertex u ∈
V (G) of degree larger than 2, since G is 4-free, we have that u and any three of its neighbors
together induce a K1,3. Next we distinguish two cases according to the connectivity of G in order
to complete the proof of Theorem 1.4.

Case 1. G is 3-connected.
Suppose that G is not hamiltonian. Using a number of claims, we are going to prove that G is the
Petersen graph. Here we use the same notations as in the proof of Theorem 1.3. Let C be a longest
cycle of G, let H be a component of G − V (C), and let NC(H) = {u1, u2, . . . , ut} be all the
neighbors of H on C, in this order according to a fixed orientation of C. Since G is 3-connected,
t ≥ 3. We denote the segment of C from u+i to u−i+1 as Si = u+i Cu

−
i+1 for i = 1, 2, . . . , t. Claim 1

in the proof of Theorem 1.3 clearly also holds here, but we recall it here without proof for later
reference.

Claim 5. NC(H)+ and NC(H)− are independent, and there is no path outside C connecting any
two vertices of any one of these two sets.

We present several other claims, each followed by a proof.

Claim 6. If Si and Sj are connected by a path Pij outside C, then Pij = u+i u
−
j+1 or Pij = u−i+1u

+
j .

Proof. Let Pij = p1p2 . . . ps (s ≥ 2) be such a path with p1 ∈ Si and ps ∈ Sj . If p1 /∈ {u+i , u−i+1}
or ps /∈ {u+j , u−j+1}, then {w, p1, p−1 , p+1 , p2} ∼= K1 ∪K1,3 and {w, ps, p−s , p+s , ps−1} ∼= K1 ∪K1,3

for any vertex w ∈ V (H), a contradiction. By Claim 5, if p1 = u+i , then ps = u−j+1; if p1 = u−i+1,
then ps = u+j (j 6= i + 1). In both cases, |Si| ≥ 2 and |Sj| ≥ 2. To avoid any vertex of V (H)

with {u+i ;ui, u+2
i , p2} or {u+j ;uj, u+2

j , ps−1} inducing K1 ∪ K1,3, we have V (H) ⊆ N(ui) or
V (H) ⊆ N(uj). Since G is4-free, |V (H)| = 1 and NC(H) is independent. Denote H = {w}.

Suppose s ≥ 3 and p2 ∈ V (H ′), where H ′ is another component of G − V (C) different
from H . If Pij is connecting u+i to u−j+1, then ui 6= uj+1, and p2ui /∈ E(G), p2uj+1 /∈ E(G);
otherwise there clearly is a longer cycle. Then to avoid p2 with {w;ui, uj, uj+1} inducing K1 ∪
K1,3, we have p2uj ∈ E(G). Since {u+2

i , u+j } ∈ NC(H
′)+, u+2

i u+j /∈ E(G) by Claim 5. To
avoid u+j with {u+i ;ui, u+2

i , p2} inducing K1 ∪ K1,3, we have u+j ui ∈ E(G). Then u−i u
+
j /∈

E(G); otherwise {ui, u−i , u+j } ∼= 4. To avoid u−i with {uj;u−j , u+j , w} inducing K1 ∪ K1,3, we
have u−i uj ∈ E(G). Then we find a cycle longer than C: uiwuj+1Cu

−
i ujCu

+
i Piju

−
j+1Cu

+
j ui, a

contradiction. If Pij is connecting u−i+1 to u+j , then ui+1 6= uj and p2ui+1 /∈ E(G), p2uj /∈ E(G).
We have p2ui ∈ E(G); otherwise, p2 with {w;ui, ui+1, uj} induces K1 ∪ K1,3. By Claim 5,
u+i ui+1 /∈ E(G) since {u+i , ui+1} ∈ NC(H

′)+. To avoid ui+1 with {ui;u+i , u−i , p2} inducing
K1 ∪ K1,3, we have ui+1u

−
i ∈ E(G). Then u+i+1u

−
i /∈ E(G); otherwise {u−i , ui+1, u

+
i+1} ∼= 4.
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To avoid u+i+1 with {ui;u−i , u+i , w} inducing K1 ∪K1,3, we have u+i+1ui ∈ E(G). Then the cycle
ui+1wujCu

+
i+1uiCu

−
i+1Piju

+
j Cu

−
i ui+1 is longer than C, a contradiction. Hence, s = 2 and Pij =

u+i u
−
j+1 or Pij = u−i+1u

+
j .

Since G is 1-tough, there are two distinct segments Si and Sj that are connected by a path out-
side C. By Claim 6, u+i u

−
j+1 ∈ E(G) or u−i+1u

+
j ∈ E(G). To avoid any vertex of V (H) with

{u+i ;ui, u+2
i , u−j+1} or with {u+j ;uj, u+2

j , u−i+1} inducing K1 ∪ K1,3, we have V (H) ⊆ N(ui) or
V (H) ⊆ N(uj). Since G is4-free, |V (H)| = 1 and NC(H) is independent. Denote H = {w}.

Claim 7. |Si| = 2 for all i ∈ {1, 2, . . . , t}.

Proof. Suppose that there is a segment Si with i ∈ {1, 2, . . . , t} such that |Si| ≥ 3. Then
u+i 6= u−2i+1. By Claim 6, u−2i+1 has no neighbor in V (C) \ (Si ∪ NC(H)). To avoid u−2i+1 with
{ui+2;u

−
i+2, u

+
i+2, w} inducingK1∪K1,3, we have u−2i+1ui+2 ∈ E(G). To avoid u−i with {u−2i+1;u

−
i+1,

u−3i+1, ui+2} inducing K1 ∪K1,3, we have u−i ui+2 ∈ E(G). To avoid u−i+1 with {ui+2;u
−
i+2, u

−
i , w}

inducing K1 ∪K1,3, we have u−i+1ui+2 ∈ E(G). But now {u−2i+1, u
−
i+1, ui+2} ∼= 4, a contradiction.

Hence, |Si| ≤ 2 for all i ∈ {1, 2, . . . , t}.
Suppose that there is a segment Si with i ∈ {1, 2, . . . , t} such that |Si| = 1. Then u+i = u−i+1.

By Claim 5 and Claim 6, u+i has no neighbor in V (C) \NC(H). To avoid u+i with {uj;u−j , u+j , w}
inducing K1 ∪K1,3 (j 6= i + 1, j 6= i− 1), we have u+i uj ∈ E(G) for all j ∈ {1, 2, . . . , t}. Since
G is 1-tough, there are two segments Sj and Sk (k > j) that are connected by an edge u+j u

−
k+1

or u−j+1u
+
k . Since |Si| ≤ 2 for all i ∈ {1, 2, . . . , t} and by Claim 5, |Sj| = |Sk| = 2 in both

cases. If u+j u
−
k+1 ∈ E(G), then to avoid u+j with {uk;u+k , u

+
i , w} inducing K1 ∪ K1,3, we have

u+j uk ∈ E(G). Since G is4-free, k 6= j+1 and u−j+1uk /∈ E(G). Then u−j+1 with {uk;u−k , u
+
i , w}

induces a K1 ∪ K1,3, a contradiction. If u−j+1u
+
k ∈ E(G), then k > j + 1. To avoid u−j+1 with

{uk;u−k , u
+
i , w} inducing K1 ∪ K1,3, we have u−j+1uk ∈ E(G), but then {u−j+1, uk, u

+
k } ∼= 4, a

contradiction. Hence, |Si| = 2 for all i ∈ {1, 2, . . . , t}.

Claim 8. For any component H ′ 6= H of G− V (C), NC(H
′) = NC(H).

Proof. Suppose thatH ′ has a neighbor in V (C)\NC(H). By Claim 7, this neighbor ofH ′ is either
u+i or u−i for some i ∈ {1, 2, . . . , t}. Without loss of generality, we assume that w′u+1 ∈ E(G),
where w′ ∈ V (H ′). By Claim 5, w′u+2 /∈ E(G). To avoid u+2 with {u+1 ;u1, u+2

1 , w′} inducing
K1∪K1,3, we have u1u+2 ∈ E(G). To avoid u+3 with {u1;u+1 , u+2 , w} inducing K1∪K1,3, we have
u1u

+
3 ∈ E(G). To avoid u+2

2 with {u1;u+1 , u+3 , w} inducing K1 ∪K1,3, we have u+1 u
+2
2 ∈ E(G).

We also have w′u+2
2 /∈ E(G); otherwise, {w′, u+1 , u+2

2 } ∼= 4, a contradiction. But now w with
{u+1 ;u+2

1 , u+2
2 , w′} induces K1 ∪K1,3, a contradiction. Hence, NC(H

′) ⊆ NC(H). Since we have
chosen H arbitrarily, by symmetry we have NC(H) ⊆ NC(H

′). Hence, NC(H
′) = NC(H).

Claim 9. t = 3.

Proof. Since G is 1-tough, there are at least two distinct segments that are connected by a path
outside C. By Claim 6 and Claim 7, without loss of generality, we can assume u+1 u

−
i ∈ E(G)

(i ≥ 3). To avoid u+i with {u+1 ;u1, u−2 , u−i } inducing K1 ∪ K1,3, we have u1u+i ∈ E(G) or
u−2 u

+
i ∈ E(G). If u1u+i ∈ E(G), then ui+1 6= u1 and u−i+1u1 /∈ E(G). To avoid u−i+1 with
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{u+1 ;u1, u−2 , u−i } inducingK1∪K1,3, we have u−i+1u
+
1 ∈ E(G). But thenw with {u+1 ;u−2 , u−i , u−i+1}

induces a K1 ∪K1,3, a contradiction. Hence, u1u+i /∈ E(G). Suppose that u−2 u
+
i ∈ E(G). If i 6= t,

then u−i+1 6= u−1 . To avoid u+i with {u1;u+1 , u−1 , w} inducing K1 ∪K1,3, we have u+i u
−
1 ∈ E(G).

But then w with {u+i ;u−1 , u−2 , u−i+1} induces a K1 ∪K1,3, a contradiction. Hence, i = t.
If i 6= 3, then ui−1 6= u2. To avoid u+2 with {u+1 ;u1, u−2 , u−i } inducing K1 ∪ K1,3, we have

u+2 u
−
i ∈ E(G) or u+2 u1 ∈ E(G). If u+2 u

−
i ∈ E(G), then w with {u−i ;u+1 , u+2 , u+i−1} induces a K1∪

K1,3, a contradiction. If u+2 u1 ∈ E(G), then u−3 u1 /∈ E(G). To avoid u−3 with {u+1 ;u1, u−2 , u−i }
inducing K1 ∪K1,3, we have u−3 u

+
1 ∈ E(G). Then w with {u+1 ;u−2 , u−3 , u−i } induces a K1 ∪K1,3,

a contradiction. Hence, i = t = 3.

Since G is 1-tough and by Claims 5–9, without loss of generality, we can assume that u+1 u
−
3 ∈

E(G). To avoid u+3 with {u+1 ;u1, u−2 , u−3 } inducing K1 ∪K1,3, we have u−2 u
+
3 ∈ E(G). To avoid

u−1 with {u−3 ;u3, u+2 , u+1 } inducing K1 ∪ K1,3, we have u−1 u
+
2 ∈ E(G). By Claims 5–9, there

is no other edge joining a pair of nonadjacent vertices on C. Suppose that H ′ 6= H is another
component of G − V (C). By Claim 8, NC(H

′) = {u1, u2, u3}. Assume that w′ ∈ V (H ′) and
w′u1 ∈ E(G). Then u+3 with {u1;u+1 , w, w′} induces a K1∪K1,3, a contradiction. Hence, H is the
only component of G− V (C). Recalling that |V (H)| = 1, it is clear that G is the Petersen graph.
This completes the proof for Case 1.

Case 2. κ(G) = 2.
Suppose that {u1, u2} is a cut set of G. Since G is 1-tough, G− {u1, u2} has exactly two compo-
nents, say H1 and H2. Since G is {4, K1 ∪K1,3}-free, each of H1 and H2 is an induced path or
an induced cycle. We again prove a number of claims in order to complete the proof.

Claim 10. If Hi is an induced cycle C ′ for i ∈ {1, 2}, then there are two consecutive vertices on
C ′ such that one vertex is adjacent to u1 and the other one is adjacent to u2.

Proof. Suppose, by contradiction, that for any neighbor of u1 on C ′, its predecessor and successor
on C ′ are not adjacent to u2. Since G is 4-free, any two vertices of NHi

(u1) ∪ NHi
(u2) are not

consecutive on C ′. Since C ′ is induced, by removing all the vertices of NHi
(u1)∪NHi

(u2) from G
we get |NHi

(u1) ∪NHi
(u2)|+ 1 components, contradicting the hypothesis that G is 1-tough.

Claim 11. If Hi is an induced path P for i ∈ {1, 2}, then one end vertex of P is adjacent to u1 and
the other one is adjacent to u2.

Proof. Suppose that H1 = P = p1p2 . . . pt. If t ≤ 2, then the claim clearly holds. Suppose
that t ≥ 3 and {p1, pt} ∈ N(u1) \ N(u2). Let pi ∈ V (H1) (1 < i < t) be a vertex adjacent
to u2. If u1u2 ∈ E(G), then there is a vertex x ∈ V (H2) such that xu2 /∈ E(G). Then x with
{pi; pi−1, pi+1, u2} induces a K1∪K1,3, a contradiction. Thus, u1u2 /∈ E(G). If |V (H2)| ≥ 2, then
there will also be a vertex in H2 not adjacent to u2, and similarly we can get an induced K1∪K1,3.
Hence, |V (H2)| = 1. Denote V (H2) = {w}. If t ≥ 6, then p3u1 ∈ E(G) and p4u1 ∈ E(G);
otherwise, p3 or p4 with {u1; p1, pt, w} induces K1 ∪K1,3, a contradiction. Now {u1, p3, p4} ∼= 4,
a contradiction. If t = 5, then to avoid p3 with {u1; p1, pt, w} inducing K1 ∪ K1,3, we have
p3u1 ∈ E(G). To avoid u2 with {u1; p1, p3, pt} inducing K1 ∪ K1,3, we have p3u2 ∈ E(G). To
avoid inducing a triangle, {p2, p4} ∩ (N(u1) ∪ N(u2)) = ∅. Obviously, now {u1, p3} is a cut set
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that induces three components consisting of p1p2, p4p5 and u2w. This contradicts the hypothesis
that G is 1-tough. If t = 4, then precisely one vertex of {p2, p3} is adjacent to u2. Without loss of
generality, assume p2u2 ∈ E(G). To avoid inducing a triangle, p2u1 /∈ E(G) and p3u1 /∈ E(G).
Then {u1, p2} is a cut set that induces three components consisting of p1, p3p4 and u2w. This
contradicts the hypothesis that G is 1-tough. If t = 3, then {u1, p2} is a cut set that induces three
components consisting of p1, p3 and u2w, contradicting the hypothesis that G is 1-tough.

Using Claim 10 and Claim 11, it is clear that there is a cycle in G containing all the vertices of G.
Hence, G is hamiltonian. This completes the proof of Theorem 1.4. �
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