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Abstract

Let G be a graph with |V (G)| vertices and ψ : V (G) −→ {1, 2, 3, · · · , |V (G)|} be a bijective
function. The weight of a vertex v ∈ V (G) under ψ is wψ(v) =

∑
u∈N(v) ψ(u). The function

ψ is called a distance magic labeling of G, if wψ(v) is a constant for every v ∈ V (G). The
function ψ is called an (a, d)-distance antimagic labeling of G, if the set of vertex weights is
a, a + d, a + 2d, . . . , a + (|V (G)| − 1)d. A graph that admits a distance magic (resp. an (a, d)-
distance antimagic) labeling is called distance magic (resp. (a, d)-distance antimagic). In this
paper, we characterize distance magic 2-regular graphs and (a, d)-distance antimagic some classes
of 2-regular graphs.
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1. Introduction

Let G = G(V,E) be a graph without isolated vertices. A vertex labeling of G is a one-to-one
function with domain the set of all vertices and co-domain the set {1, 2, · · · , |V (G)|}. A vertex
weight of a vertex v under a vertex labeling is the sum of all vertex labels of the vertices adjacent
to v. If every vertex has the same vertex weights, then it is called a distance magic labeling of G.
If all vertices have distinct vertex weights, then it is called a distance antimagic labeling of G. In
particular, if vertex weights of all vertices are an arithmetic sequence with the first term a and a

Received: 15 June 2019, Revised: 23 April 2020, Accepted: 5 May 2020.

25



www.ejgta.org

On distance labelings of 2-regular graphs | A.A.G. Ngurah and R. Simanjuntak

common difference d then it is called an (a, d)-distance antimagic labeling of G. Formally, these
concepts can be stated as the following definitions.

Definition 1. A distance magic (DM) labeling of a graph G is a vertex labeling ψ of G such that
|{wψ(v) =

∑
u∈N(v) ψ(u) : v ∈ V (G)}| = 1, where N(v) = {u : uv ∈ E(G)}. A graph that

admits a DM labeling is called a DM graph.

Definition 2. Let a > 0 and d ≥ 0 be fixed integers. An (a, d)-distance antimagic (DA) labeling
of a graph G is a vertex labeling ψ of G such that {wψ(v) =

∑
u∈N(v) ψ(u) : v ∈ V (G)} is the set

{a, a+ d, a+ 2d, . . . , a+ (|V (G)| − 1)d. Any graph which admits such a labeling is called an (a,
d)-DA graph

The concept of a DM labeling of a graph independently was introduced by Vilfred [12] and
Miller et al. [8]. Vilfred [12] called this labeling as a sigma labeling and Miller et al. [8] called
it as an 1-vertex magic vertex labeling. The term a DM labeling for this concept introduced by
Sugeng et al. [11]. Meanwhile, the notion of an (a, d)-DA labeling was introduced by Arumugam
and Kamatchi [1], in 2012.

Several papers on DM labelings have been published. Many classes of graphs have been shown
to be DM, see for instance [2, 8, 11, 12]. Additionally, a generalization of DM labeling to an any
set D ⊆ {1, 2, . . . , diam(G)} is introduced in [9, 10]. Another generalization of DM labeling can
be seen in [3]. Meanwhile, some results on DA labelings can be seen in, for instance, [1, 4, 5, 7].
For more results in these subjects, we refer the readers to Gallian’s paper, dynamic survey of graph
labelings [6]. In this paper, we study these labelings for 2-regular graphs.

2. DM labeling of 2-regular graphs

In [8], Miler et al. provided some necessary conditions for graphs to have no DM labeling.
One of them is given in Lemma 2.1.

Lemma 2.1. [8] Let G be a graph and x, y ∈ V (G). If |N(x)∩N(y)| = |N(x)|−1 = |N(y)|−1,
then G is not DM.

They also gave the following result.

Theorem 2.1. [8] The graph Cm has a DM labeling iff m = 4.

We now generalize this result as follows:

Theorem 2.2. The 2-regular graph G is a DM graph iff G = tC4 for any positive integer t.

Proof. Suppose G contains a component Cn where n 6= 4. Then by Lemma 2.1, G is not DM.
Conversely, define G = tC4 as a graph with V (G) = {xi,j : 1 ≤ i ≤ t, 1 ≤ j ≤ 4} and
E(G) = {xi,jxi,j+1 : 1 ≤ i ≤ t, 1 ≤ j ≤ 3} ∪ {xi,4xi,1 : 1 ≤ i ≤ t}. Next, Let A =
{{xi,1, xi,3}, {xi,2, xi,4} : 1 ≤ i ≤ t} and B = {{i, 4t + 1 − i} : 1 ≤ i ≤ 2t}. It is clear that
∪2ti=1{i, 4t + 1 − i} is a partition of {1, 2, 3, . . . , 4t} and |A| = |B|. Also, it can be checked that
any bijective function f : A −→ B is a DM labeling of G.

26



www.ejgta.org

On distance labelings of 2-regular graphs | A.A.G. Ngurah and R. Simanjuntak

3. DA labeling of 2-regular graphs

In [1], Arumugam and Kamatchi proved the existence of an (a, d)-DA labeling for some graphs
and they provided the following results.

Lemma 3.1. [1] If G is an (a, d)-DA graph with n vertices, then

d ≤ 2n∆−∆(∆− 1)− δ(δ + 1)

2(n− 1)
.

Corollary 3.1. [1] Let G be a 2-regular graph with n vertices. If G is (a, d)-DA, then a = n+3
2

and
d = 1.

Theorem 3.1. [1] Let t ≥ 1 be an integer. The graph Cn is (a, d)-DA iff n = 2t+ 1 and d = 1.

They also posed the following problem.

Problem 1. [1] Find the necessary and sufficient conditions such that disconnected 2-regular
graphs are (a, d)-DA.

In this section, we give a partial answer to Problem 1 by characterizing some classes of discon-
nected 2-regular (a, d)-DA graphs.

It is clear that if a graph has two vertices u and v such that N(u) = N(v), then it is not a DA
graph. Thus, a forbidden subgraph for 2-regular graphs to be DA is C4. By this fact and Corollary
3.1, we have the following result.

Lemma 3.2. Let t > 1 be an integer and G = ∪ti=1Cni
. If G is (a, d)-DA, then

∑t
i=1 ni is odd,

ni 6= 4 for 1 ≤ i ≤ t, and d = 1.

To present the next three theorems, we use the following 3× (2t+ 1) matrix A,

A = [ai,j] =

 1 2 . . . t t+ 1 . . . 2t 2t+ 1
t+ 2 t+ 3 . . . 2t+ 1 1 . . . t t+ 1

2t 2t− 2 . . . 2 2t+ 1 . . . 3 1

 .
We can check that {a1,i+a2,i : 1 ≤ i ≤ 2t+1} = {a1,i+a3,i : 1 ≤ i ≤ 2t+1} = {a2,i+a3,i : 1 ≤
i ≤ 2t+ 1} = {t+ 2, t+ 3, . . . , 3t+ 1, 3t+ 2}. As we show later, this property of A preserves the
antimagic properties of (a, d)-DA labelings of 2-regular graphs mCn. The matrix A is obtained by
increasing 1 each entry of the following 3× (2t+ 1) Kotzig array. 0 1 . . . t− 1 t . . . 2t− 1 2t

t+ 1 t+ 2 . . . 2t 0 . . . t− 1 t
2t− 1 2t− 3 . . . 1 2t . . . 2 0

 .
Additionally, we use the notation b+{ai : 1 ≤ i ≤ t} = {b+ai : 1 ≤ i ≤ t}. Also, in each figure,
the numbers at the outside of the cycles are the labels of the vertices and the bold number inside of
the cycles are the weights of the corresponding vertices.

The next theorem gives necessary and sufficient conditions of the disjoint union of odd numbers
of Cn to be an (a, d)-DA graph.
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Theorem 3.2. Let m and n be positive integers. The graph mCn is (a, d)-DA iff m,n are odd and
d = 1.

Proof. Let mCn be an (a, d)-DA graph. Then by Corollary 3.1, a = 1
2
(mn+ 3) and d = 1. Hence,

m and n should be odd integers. Conversely, let m and n be odd integers. For 1 ≤ i ≤ m, define
mCn as a graph with

V (mCn) = {ui,j : 1 ≤ j ≤ n}

and
E(mCn) = {ui,jui,j+1 : 1 ≤ j ≤ n− 1} ∪ {ui,nui,1}.

Set m = 2t+ 1 and, for 1 ≤ i ≤ 2t+ 1, define a vertex labeling f of (2t+ 1)Cn as follows:

f(ui,j) =



1
4
(j − 1)(2t+ 1) + a1,i, if j ≡ 1 (mod 4),

1
4
(2n− 1 + j)(2t+ 1) + a2,i, if j ≡ 3 (mod 4),

1
2
(n− 1)(2t+ 1) + a3,i, if j = n− 1,

1
4
(n− 1 + j)(2t+ 1) + a1,i, if n ≡ 1 (mod 4) and n− 1 6= j ≡ 0 (mod 4),

1
4
(3n− 1 + j)(2t+ 1) + a2,i, if n ≡ 1 (mod 4) and j ≡ 2 (mod 4),

1
4
(3n− 1 + j)(2t+ 1) + a2,i, if n ≡ 3 (mod 4) and j ≡ 0 (mod 4),

1
4
(n− 1 + j)(2t+ 1) + a1,i, if n ≡ 3 (mod 4) and n− 1 6= j ≡ 2 (mod 4).

The vertex weights of all vertices are as follows:
For n− 2, n 6= j ≡ 1, 3 (mod 4),

wf (ui,j) =
1

2
(2n− 1 + j)(2t+ 1) + F,

for j ≡ 0, 2 (mod 4),

wf (ui,j) =
1

2
(n− 1 + j)(2t+ 1) + F,

for j = n− 2,

wf (ui,j) =
1

2
(3n− 3)(2t+ 1) + F, and

for j = n,

wf (ui,j) =
1

2
(n− 1)(2t+ 1) + F,

where F = {t + 2, t + 3, . . . , 3t + 2}. Thus, for 1 ≤ i ≤ 2t + 1, {wf (ui,j) : 1 ≤ j ≤ n} =

{ (2t+1)n+3
2

, (2t+1)n+5
2

. . . , 3(2t+1)n+1
2

}. So, f is an (mn+3
2
, 1)-DA labeling of mCn.

Figure 1. shows the labeling in the proof of Theorem 3.2 for m = 3 and n = 11.

Theorem 3.3. The graph tC6 ∪ C3 is a (3t+ 3, 1)-DA graph for every positive integer t.

Proof. First, define tC6∪C3 as a graph with V (tC6∪C3) = {xi,1, xi,2, xi,3, yi,1, yi,2, yi,3 : 1 ≤ i ≤
t}∪{z1, z2, z3} and E(tC6∪C3) = {xi,1yi,1, xi,2yi,2, xi,3jyi,3 : 1 ≤ i ≤ t}∪{yi,1xi,2, xi,2yi,3 : 1 ≤
i ≤ t} ∪ {yi,3xi,1 : 1 ≤ i ≤ t} ∪ {z1z2, z2z3, z3z1}.
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Figure 1. A (18, 1)-DA labeling of 3C11.

Next, for 1 ≤ i ≤ t, consider g : V (tC6 ∪ C3) −→ {1, 2, 3, . . . , 6t+ 3} which is defined by

g(u) =


(j − 1)(2t+ 1) + aj,i, if u = xi,j and 1 ≤ j ≤ 3,
(j − 1)(2t+ 1) + aj,2t+2−i, if u = yi,j and 1 ≤ j ≤ 3,
(j − 1)(2t+ 1) + aj,t+1, if u = zj and 1 ≤ j ≤ 3,

where ai,j is the entry of the matrix A.
Clearly, f is a bijective function. We now can check that {wg(xi,1) : 1 ≤ i ≤ t} = {6t +

4, 6t + 5, 6t + 6, . . . , 7t + 3}, {wg(xi,2) : 1 ≤ i ≤ t} = {3t + 5, 3t + 7, 3t + 9, . . . , 5t + 3},
{wg(xi,3) : 1 ≤ i ≤ t} = {7t + 5, 7t + 6, 7t + 7, . . . , 8t + 4}, {wg(yi,1) : 1 ≤ i ≤ t} =
{3t+ 4, 3t+ 6, 3t+ 8, . . . , 5t+ 2}, {wg(yi,2) : 1 ≤ i ≤ t} = {8t+ 6, 8t+ 7, 8t+ 8, . . . , 9t+ 5},
{wg(yi,3) : 1 ≤ i ≤ t} = {5t + 4, 5t + 5, 5t + 6, . . . , 6t + 3}, and {wg(zj) : 1 ≤ j ≤ 3} =
{3t+ 3, 7t+ 4, 8t+ 5}. Hence, g is a (3t+ 3, 1)-DA labeling of tC6 ∪ C3.

Theorem 3.4. The graph tC10 ∪ C5 is a (5t+ 4, 1)-DA graph for every positive integer t.

Proof. Let V (tC10∪C5) = {xi,1, xi,2, xi,2, xi,4, xi,5, yi,1, yi,2, yi,3, yi,4, yi,5 : 1 ≤ i ≤ t}∪{z1, z2, z3,
z4, z5} andE(tC10∪C5) = {xi,1yi,1, xi,2yi,2, xi,3yi,3, xi,4yi,4, xi,5yi,5 : 1 ≤ i ≤ t}∪{yi,1xi,2, xi,2yi,3,
xi,3yi,4, xi,4yi,5 : 1 ≤ i ≤ t} ∪ {yi,5xi,1 : 1 ≤ i ≤ t} ∪ {z1z2, z2z3, z3z4, z4z5, z5z1}.

For 1 ≤ i ≤ t, define a bijective function h : V (tC10 ∪ C5) −→ {1, 2, 3, . . . , 10t + 5} as the
following formula:
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h(u) =



a1,i, if u = xi,1,
6t+ 3 + a2,i, if u = xi,2,
2t+ 1 + a1,i, if u = xi,3,
8t+ 4 + a2,i, if u = xi,4,
4t+ 2 + a3,i, if u = xi,5,
a1,t+i, if u = yi,1,
6t+ 3 + a2,t+i, if u = yi,2,
2t+ 1 + a1,t+i, if u = yi,3,
8t+ 4 + a2,t+i, if u = yi,4,
4t+ 2 + a3,t+i, if u = yi,5,
a1,2t+1, if u = z1,
8t+ 4 + a2,2t+1, if u = z2,
6t+ 3 + a2,2t+1, if u = z3,
4t+ 2 + a3,2t+1, if u = z4,
2t+ 1 + a1,2t+1, if u = z5.

Notice that ai,j in this formula is the entry of the matrix A. Under the labeling h, we can
verify that {wh(xi,1) : 1 ≤ i ≤ t} = {6t + 5, 6t + 6, . . . , 7t + 3, 7t + 4}, {wh(xi,2) : 1 ≤ i ≤
t} = {7t + 5, 7t + 7, . . . , 9t + 1, 9t + 3}, {wh(xi,3) : 1 ≤ i ≤ t} = {9t + 6, 9t + 8, . . . , 11t +
2, 11t + 4}, {wh(xi,4) : 1 ≤ i ≤ t} = {11t + 7, 11t + 9, . . . , 13t + 3, 13t + 5}, and {wh(xi,5) :
1 ≤ i ≤ t} = {13t + 9, 13t + 10, . . . , 14t + 7, 14t + 8}. Also, {wh(yi,1) : 1 ≤ i ≤ t} =
{7t+ 6, 7t+ 8, . . . , 9t+ 2, 9t+ 4}, {wh(yi,2) : 1 ≤ i ≤ t} = {9t+ 7, 9t+ 9, . . . , 11t+ 3, 11t+ 5},
{wh(yi,3) : 1 ≤ i ≤ t} = {11t + 8, 11t + 10, . . . , 13t + 4, 13t + 6}, {wh(yi,4) : 1 ≤ i ≤ t} =
{14t+9, 14t+10, . . . , 15t+7, 15t+8}, {wh(yi,5) : 1 ≤ i ≤ t} = {5t+4, 5t+5, . . . , 6t+2, 6t+3},
and {wh(zj) : 1 ≤ j ≤ 5} = {6t+4, 9t+5, 11t+6, 13t+7, 13t+8}. Hence, h is a (5t+4, 1)-DA
labeling of tC10 ∪ C5.

In the next results, we characterize the graphs tC2n ∪ Cn to be (a, d)-DA for 1 ≤ t ≤ 3.

Theorem 3.5. The graph C2n ∪ Cn is (a, d)-DA iff n ≥ 3 is odd and d = 1.

Proof. By Corollary 3.1, if C2n ∪ Cn is an (a, d)-DA graph then a = 3n+3
2

, d = 1 and thus n
is odd. Conversely, we will show that C2n ∪ Cn admits a (3n+3

2
, 1)-DA labeling. The graphs

C6 ∪ C3 and C10 ∪ C5 admit the labeling by Theorems 3.3 and 3.4, respectively. For odd n ≥ 7,
let V (C2n ∪ Cn) = {xi, yi, zi : 1 ≤ i ≤ n} and E(C2n ∪ Cn) = {xiyi : 1 ≤ i ≤ n} ∪ {yixi+1 :
1 ≤ i ≤ n− 1} ∪ {ynx1} ∪ {zizi+1 : 1 ≤ i ≤ n− 1} ∪ {znz1}. Next, define ψ : V (C2n ∪Cn) −→
{1, 2, 3, . . . , 3n} as follows:
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ψ(u) =



1
2
(3i− 1), if u = xi, n 6= i ≡ 1 (mod 2),

1
2
(3n+ 1), if u = xn,

3
2
(n+ 1 + i), if u = xi, i ≡ 0 (mod 2),

1
2
(3i+ 1), if u = yi, n 6= i ≡ 1 (mod 2),

3
2
(n+ 1), if u = yn,

1
2
(3n− 1 + 3i), if u = yi, i ≡ 0 (mod 2),

3
4
(i+ 3), if u = zi, i ≡ 1 (mod 4),

1
4
(6n+ 5 + 3i), if u = zi, i ≡ 3 (mod 4),

1
2
(3n− 1), if u = zn−1,

3
4
(n+ 3 + i), if u = zi, n ≡ 1 (mod 4) and n− 1 6= i ≡ 0 (mod 4),

1
4
(9n+ 5 + 3i), if u = zi, n ≡ 1 (mod 4) and i ≡ 2 (mod 4),

1
4
(9n+ 5 + 3i), if u = zi, n ≡ 3 (mod 4) and i ≡ 0 (mod 4),

3
4
(n+ 3 + i), if u = zi, n ≡ 3 (mod 4) and n− 1 6= i ≡ 2 (mod 4).

The weights of all vertices are given by

wψ(u) =



1
2
(3n+ 7), if u = x1,

1
2
(3n− 3 + 6i), if u = xi, 2 ≤ i ≤ n− 1,

1
2
(9n− 1), if u = xn,

1
2
(3n+ 5 + 6i), if u = yi, 1 ≤ i ≤ n− 2,

1
2
(9n+ 1), if u = yn−1,

1
2
(3n+ 3), if u = yn,

1
2
(3n+ 7 + 3i), if u = zi, i is even,

1
2
(6n+ 7 + 3i), if u = zi, n− 2, n 6= i is odd,

1
2
(9n− 3), if u = zn−2,

1
2
(3n+ 5), if u = zn.

Thus, ψ is a (3n+3
2
, 1)-DA of C2n ∪ Cn.

Next, we consider the graph 2C2n ∪ Cn with V (2C2n ∪ Cn) = {x1,j, x2,j, y1,j, y2,j : 1 ≤ j ≤
n}∪{zj : 1 ≤ j ≤ n} andE(2C2n∪Cn) = {x1,jy1,j, x2,jy2,j : 1 ≤ j ≤ n}∪{y1,jx1,j+1, y2,jx2,j+1 :
1 ≤ j ≤ n− 1} ∪ {y1,nx1,1, y2,nx2,1} ∪ {zjzj+1 : 1 ≤ j ≤ n− 1} ∪ {znz1}. By Theorems 3.3 and
3.4, 2C2n ∪ Cn is (a, 1)-DA for n = 3 and 5. So, it is enough to consider n ≥ 7.

Theorem 3.6. For n ≥ 7, the graph 2C2n ∪ Cn is (a, d)-DA iff n is odd and d = 1.

Proof. By Corollary 3.1, n is odd and d = 1, if 2C2n ∪ Cn is an (a, d)-DA graph. Conversely, for
odd n ≥ 7 and i = 1, 2, define f : V (2C2n ∪ Cn) −→ {1, 2, 3, . . . , 5n} as follows:

f(u) =



1
2
(5j − 7 + 4i), if u = xi,j, n 6= j ≡ 1 (mod 2),

1
2
(5n+ 1 + 2i), if u = xi,n,

1
2
(5n+ 5j + 9− 6i), if u = xi,j, j ≡ 0 (mod 2),

1
2
(5j − 5 + 4i), if u = yi,j, n 6= j ≡ 1 (mod 2),

1
2
(5n− 3 + 2i), if u = yi,n,

1
2
(5n+ 5j + 11− 6i), if u = yi,j, j ≡ 0 (mod 2).
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f(zj) =



1
4
(5j + 15), if j ≡ 1 (mod 4),

1
4
(10n+ 7 + 5j), if j ≡ 3 (mod 4),

1
2
(5n− 3), if j = n− 1,

1
4
(5n+ 15 + 5j), if n ≡ 1 (mod 4) and n− 1 6= j ≡ 0 (mod 4),

1
4
(15n+ 7 + 5j), if n ≡ 1 (mod 4) and j ≡ 2 (mod 4),

1
4
(15n+ 7 + 5j), if n ≡ 3 (mod 4) and j ≡ 0 (mod 4),

1
4
(5n+ 15 + 5j), if n ≡ 3 (mod 4) and n− 1 6= j ≡ 2 (mod 4).

Clearly, f is a bijective function. Also it is easy to verify that the weights of all vertices are as
follows:

wf (u) =



1
2
(5n+ 3), if u = x1,1,

1
2
(5n− 1 + 10j), if u = x1,j, j 6= 1,

1
2
(15n− 1), if u = y1,n−1,

1
2
(5n+ 5), if u = y1,n,

1
2
(5n+ 5 + 10j), if u = y1,j, j 6= n− 1, n,

1
2
(5n+ 9), if u = x2,1,

1
2
(15n− 5), if u = x2,n,

1
2
(5n− 3 + 10j), if u = x2,j, j 6= 1, n,

1
2
(15n− 3), if u = y2,n−1,

1
2
(5n+ 11), if u = y2,n,

1
2
(5n+ 3 + 10j), if u = y2,j, j 6= n− 1, n,

1
2
(15n− 7), if u = zn−2,

1
2
(5n+ 7), if u = zn,

1
2
(10n+ 11 + 5j), if u = zj, n− 2, n 6= j ≡ 1 (mod 2),

1
2
(5n+ 11 + 5j), if u = zj, j ≡ 0 (mod 2).

Hence, f is a (5n+3
2
, 1)-DA labeling of 2C2n ∪ Cn .

Figure 2. shows the labeling defined in the proof of Theorem 3.6 for n = 7.

Figure 2. A (19, 1)-DA labeling of 2C14 ∪ C7.
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Now, we consider the graphs 3C2n∪Cn, n ≥ 7, where V (3C2n∪Cn) = {x1,j, x2,j, x3,j, y1,j, y2,j,
y3,j : 1 ≤ j ≤ n} ∪ {zj : 1 ≤ j ≤ n} and E(2C2n ∪ Cn) = {x1,jy1,j, x2,jy2,j, x3,jy3,j : 1 ≤ j ≤
n} ∪ {y1,jx1,j+1, y2,jx2,j+1, y3,jx3,j+1 : 1 ≤ j ≤ n − 1} ∪ {y1,nx1,1, y2,nx2,1, y3,nx3,1} ∪ {zjzj+1 :
1 ≤ j ≤ n− 1} ∪ {znz1}.

Theorem 3.7. For n ≥ 7, the graph 3C2n ∪ Cn is (a, d)-DA iff n is odd and d = 1.

Proof. From Corollary 3.1, if 3C2n∪Cn is an (a, d)-DA graph then n is odd and d = 1, Conversely,
for odd n ≥ 7 and i = 1, 2, 3, define g : V (3C2n ∪ Cn) −→ {1, 2, 3, . . . , 7n} as follows:

g(u) =



1
2
(7j − 7 + 2i), if u = xi,j, n 6= j ≡ 1 (mod 2),

1
2
(7n+ 9− 4i), if u = xi,n,

1
2
(7n+ 7j + 1 + 2i), if u = xi,j, j ≡ 0 (mod 2),

1
2
(7j + 1 + 2i), if u = yi,j, n 6= j ≡ 1 (mod 2),

1
2
(7n+ 7− 4i), if u = yi,n,

1
2
(7n+ 7j − 5 + 2i), if u = yi,j, j ≡ 0 (mod 2).

g(zj) =



1
4
(7j + 9), if j ≡ 1 (mod 4),

1
4
(14n− 3 + 7j), if j ≡ 3 (mod 4),

1
2
(7n+ 7), if j = n− 1,

1
4
(7n+ 9 + 7j), if n ≡ 1 (mod 4) and n− 1 6= j ≡ 0 (mod 4),

1
4
(21n− 3 + 7j), if n ≡ 1 (mod 4) and j ≡ 2 (mod 4),

1
4
(21n− 3 + 7j), if n ≡ 3 (mod 4) and j ≡ 0 (mod 4),

1
4
(7n+ 9 + 7j), if n ≡ 3 (mod 4) and n− 1 6= j ≡ 2 (mod 4).

Clearly, g is a bijective function. Also it is easy to verify that, for i = 1, 2, 3,

wg(u) =



1
2
(7n+ 15− 2i), if u = xi,1,

1
2
(21n− 5− 2i), if u = xi,n,

1
2
(7n+ 14j − 11 + 4i), if u = xi,j, j 6= 1, n,

1
2
(7n+ 9− 2i), if u = yi,n,

1
2
(21n+ 3− 2i), if u = yi,n−1,

1
2
(7n+ 14j + 1 + 4i), if u = yi,j, j 6= n− 1, n,

1
2
(21n− 5), if u = zn−2,

1
2
(7n+ 15), if u = zn,

1
2
(14n+ 3 + 7j), if u = zj, n− 2, n 6= j ≡ 1 (mod 2),

1
2
(7n+ 3 + 7j), if u = zj, j ≡ 0 (mod 2).

Hence, g is a (7n+3
2
, 1)-DA labeling of 3C2n ∪ Cn.

Based on Theorems 3.3 – 3.7, we propose the following conjecture:

Conjecture 1. For every positive integer t, the graph tC2n ∪Cn is (a, d)-DA if and only if n is odd
and d = 1.

Next, we consider two classes of 2-regular graphs with two components.

33



www.ejgta.org

On distance labelings of 2-regular graphs | A.A.G. Ngurah and R. Simanjuntak

Theorem 3.8. For n ≥ 7, the graph C6 ∪ Cn is (a, d)-DA iff n is odd and d = 1.

Proof. As an immediate consequence of Corollary 3.1, if C6 ∪ Cn is an (a, d)-DA graph then n is
odd and d = 1. Next, for odd n ≥ 7, let V (C6 ∪ Cn) = {u1, u2, u3, u4, u5, u6} ∪ {vj : 1 ≤ j ≤ n}
and E(C6 ∪ Cn) = {u1u2, u2u3, u3u4, u4u5, u5u6, u6u1} ∪ {vjvj+1 : 1 ≤ j ≤ n − 1} ∪ {vnv1}.
Define h : V (C6 ∪ Cn) −→ {1, 2, 3, . . . , n+ 6} as follows:
Case n ≡ 1 (mod 4)

h([u1, u2, u3, u4, u5, u6]) = [n−1
2
, 3n+17

4
, n+3

2
, 3n+21

4
, n+5

2
, 3n+13

4
].

h(vj) =


1
4
(j + 3), if n− 4, n 6= j ≡ 1 (mod 4),

1
4
(3n+ 9), if j = n− 4,

1
4
(2n+ 11 + j), if n− 2 6= j ≡ 3 (mod 4),

1
4
(n+ 3), if j = n− 2.

Sub case n ≡ 1 (mod 8)
If n = 9, h([v1, v2, v3, . . . , v9]) = [1, 15, 13, 3, 2, 9, 14, 8, 5]. If n ≥ 17,

h(vj) =



1
4
(n− 3 + j), if n− 7 6= j ≡ 2 (mod 8),

1
2
(n+ 1), if j = n− 7,

1
4
(3n+ 21 + j), if n− 5 6= j ≡ 4 (mod 8),
n+ 5, if j = n− 5,
1
4
(n+ 5 + j), if n− 3 6= j ≡ 6 (mod 8),

1
2
(n− 5), if j = n− 3,

1
4
(3n+ 29 + j), if n− 9, n− 1 6= j ≡ 0 (mod 8),
n+ 6, if j = n− 9,
n+ 4, if j = n− 1,
1
4
(3n+ 29), if j = n.

Sub case n ≡ 5 (mod 8)

h(vj) =



1
4
(n− 3 + j), if j ≡ 2 (mod 8),

1
4
(3n+ 29 + j), if n− 1 6= j ≡ 4 (mod 8),
n+ 4, if j = n− 1,
1
4
(n+ 5 + j), if n− 7 6= j ≡ 6 (mod 8),

1
2
(n+ 1), if j = n− 7,

1
4
(3n+ 21 + j), if n− 5 6= j ≡ 0 (mod 8),
n+ 6, if j = n− 5,
1
4
(3n+ 25), if j = n.

It can be checked that h is a bijective function. When n = 9, {wh(ui) : 1 ≤ j ≤ 6} =
{10, 11, 13, 21, 22, 23} and {wh(vj) : 1 ≤ j ≤ 9} = {9, 12, 14, 15, 16, 17, 18, 19, 20}. When
n 6= 9, wh(v2) = n+9

2
, wh(u3) = 3n+19

2
, and the weights of other vertices are consecutive integers

from n+11
2

to 3n+17
2

.
Case n ≡ 3 (mod 4)

h([u1, u2, u3, u4, u5, u6]) = [n+1
2
, 3n+11

4
, n+3

2
, 3n+15

4
, n+5

2
, 3n+19

4
].
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h(vj) =



1
4
(j + 3), if j ≡ 1 (mod 4),

1
4
(2n+ 15 + j), if n− 4, n 6= j ≡ 3 (mod 4),

1
4
(3n+ 23), if j = n− 4,

1
4
(3n+ 27), if j = n,

1
4
(n+ 3 + j), if n− 1 6= j ≡ 2 (mod 4),

1
2
(n+ 7), if j = n− 1,

1
4
(3n+ 27 + j), if j ≡ 0 (mod 4).

It can be checked that h is a bijective function, wh(vn) = n+9
2

, wh(vn−2) = 3n+19
2

, and the
weights of the remaining vertices are consecutive integers from n+11

2
to 3n+17

2
.

Theorem 3.9. For n ≥ 5, the graph C8 ∪ Cn is (a, d)-DA iff n is odd and d = 1.

Proof. As a direct consequence of Corollary 3.1, if C8 ∪ Cn is (a, d)-DA then n is odd and d = 1.
Conversely, For odd n ≥ 5, let V (C8 ∪ Cn) = {ui : 1 ≤ i ≤ 8} ∪ {vj : 1 ≤ j ≤ n} and
E(C8 ∪ Cn) = {uiui+1 : 1 ≤ i ≤ 7} ∪ {u8u1} ∪ {vjvj+1 : 1 ≤ j ≤ n − 1} ∪ {vnv1}. Define
f : V (C8 ∪ Cn) −→ {1, 2, 3, . . . , n+ 8} as follows:

f([u1, u2, u3, u4, u5, u6, u7, u8]) = [1, 3,
n+ 9

2
,
n+ 15

2
, 2, 5,

n+ 13

2
,
n+ 17

2
].

Case n ≡ 1 (mod 4)
When n = 5, f([v1, v2, v3, v4, v5]) = [4, 6, 8, 13, 12]. When n ≥ 9 define f as the following

formula:

f(vj) =



4, if j = 1,
1
4
(4n+ 41− j), if 1 < j ≡ 1 (mod 8),

1
2
(n+ 11), if j = 3,

1
4
(2n+ 17− j), if 3 < j ≡ 3 (mod 8),

1
4
(4n+ 33− j), if j ≡ 5 (mod 8),

1
2
(n+ 7), if j = 7,

1
4
(2n+ 25− j), if 7 < j ≡ 7 (mod 8),

1
4
(n+ 17− j), if n ≡ 1 (mod 8) and j ≡ 2 (mod 8),

1
4
(3n+ 33− j), if n ≡ 1 (mod 8) and j ≡ 4 (mod 8),

1
4
(n+ 25− j), if n ≡ 1 (mod 8) and j ≡ 6 (mod 8),

1
4
(3n+ 41− j), if n ≡ 1 (mod 8) and j ≡ 0 (mod 8),

1
4
(n+ 25− j), if n ≡ 5 (mod 8) and j ≡ 2 (mod 8),

1
4
(3n+ 41− j), if n ≡ 5 (mod 8) and j ≡ 4 (mod 8),

1
4
(n+ 17− j), if n ≡ 5 (mod 8) and j ≡ 6 (mod 8),

1
4
(3n+ 33− j), if n ≡ 5 (mod 8) and j ≡ 0 (mod 8).

Case n ≡ 3 (mod 4)
When n = 7, f([v1, v2, v3, v4, v5, v6, v7]) = [4, 13, 15, 9, 6, 14, 7]. When n ≥ 11,
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f(vj) =



4, if j = 1,
1
2
(n+ 14− j), if j = 3, 7, 11, ,
n+ 7, if j = 5,
n+ 8, if j = 9,
n+ 6, if j = 13,
1
4
(4n+ 33− j), if 17 ≤ j ≡ 1 (mod 8),

1
4
(4n+ 41− j), if 21 ≤ j ≡ 5 (mod 8),

6, if j = n− 3,
1
4
(2n+ 17− j), if n ≡ 3 (mod 8) and 19 ≤ j ≡ 3 (mod 8),

1
4
(n+ 20− j), if n ≡ 3 (mod 8) and 15 ≤ j ≡ 7 (mod 8),

1
4
(3n+ 41− j), if n ≡ 3 (mod 8) and j ≡ 2 (mod 8),

1
4
(n+ 25− j), if n ≡ 3 (mod 8) and j ≡ 4 (mod 8),

1
4
(3n+ 33− j), if n ≡ 3 (mod 8) and j ≡ 6 (mod 8),

1
4
(n+ 17− j), if n ≡ 3 (mod 8) and n− 3 6= j ≡ 0 (mod 8),

1
4
(2n+ 41− j), if n ≡ 7 (mod 8) and 19 ≤ j ≡ 3 (mod 8),

1
4
(2n+ 25− j), if n ≡ 7 (mod 8) and 15 ≤ j ≡ 7 (mod 8),

1
4
(3n+ 33− j), if n ≡ 7 (mod 8) and j ≡ 2 (mod 8),

1
4
(n+ 17− j), if n ≡ 7 (mod 8) and n− 3 6= j ≡ 4 (mod 8),

1
4
(3n+ 41− j), if n ≡ 7 (mod 8) and j ≡ 6 (mod 8),

1
4
(n+ 25− j), if n ≡ 7 (mod 8) and j ≡ 0 (mod 8).

Clearly, f is a bijective function. When n = 5 and 7, {wf (x) : x ∈ V (C8 ∪ Cn)} is
{8, 9, 10, . . . , 20} and {9, 10, 11, . . . , 23}, respectively. When n ≥ 9, it can be checked that the
weights of all vertices are consecutive integers with the first term wf (u2) = n+11

2
and the last term

wf (v4) = 3n+25
2

.

Figure 3. shows the labeling defined in the proof of Theorem 3.9 for n = 15.

Figure 3. A (13, 1)-DA labeling of C8 ∪ C15.

Based on Theorems 3.8 and 3.9, we have the following conjecture:

Conjecture 2. Let k, n ≥ 5 be positive integers. The graph C2k ∪ Cn is (a, d)-DA if and only if n
is odd and d = 1.
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