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Abstract

A graph G of order p and size ¢ is called edge-magic total if there exists a bijection ¢ from
V(G)UE(G)totheset {1,2,...,p+ ¢} such that ¢(s) + ¢(st) + ¢(t) is a constant for every edge
st in E(G). An edge-magic total graph with ¢(V (G)) = {1,2,...,p} is called super edge-magic
total. Furthermore, the edge-magic deficiency of a graph G is the smallest integer n > 0 such that
G UnkK; is edge-magic total. The super edge-magic deficiency of a graph G is either the smallest
integer n > 0 such that G U nK; is super edge-magic total or +oc if there exists no such integer
n. In this paper, we study the (super) edge-magic deficiency of join product graphs and 2-regular
graphs.
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1. Introduction

Let GG be a finite and simple graph with vertex set V(G) and edge set E(G) such that p =
|[V(G)| and ¢ = |E(G)|. An edge-magic total labeling (EMTL) of a graph G is a bijection ¢ :
V(G)UE(G) — {1,2,--- ,p+ q} such that ¢(s) + ¢(st) + ¢(t) is a constant k, called the magic
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constant of ¢, for every st € F(G). An EMTL ¢ of G is called a super edge-magic total labeling
(SEMTL) if ¢(V(G)) = {1,2,--- ,p}. A graph that admits a (S)EMTL is called (super) edge-
magic total ((S)EMT). The notions of an EMTL and an EMT graph were introduced in [12] while
the concepts of a SEMTL and a SEMT graph were introduced in [3].

The next lemma provides necessary and sufficient conditions for a graph to be a SEMT graph.

Lemma 1.1. [4] A graph G is SEMT if and only if there exists a bijection ¢ : V(G) — {1,2,--- ,p}
such that the set S = {¢(s) + ¢(t) : st € E(G)} is a set of q consecutive integers.

In [12], Kotzig and Rosa also introduced the notion of edge-magic deficiency (EMD) of a
graph. The EMD of a graph G, u(G), is the minimum integer n > 0 such that G U nK; is an
EMT graph. Kotzig and Rosa proved that every graph has finite EMD. Figueroa-Centeno ef al. [5]
introduced the notion of super edge-magic deficiency (SEMD) of a graph. The SEMD of a graph
G, 115(G), is defined as either the minimum integer n > 0 such that G U nK; is a SEMT graph or
~+oo if there exists no such integer n. Thus, a (S)EMT graph is a graph with zero (S)EMD. Unlike
the EMD, not all graphs have finite SEMD. Lemma 1.2 provides necessary conditions for a graph
to have infinite SEMD.

Lemma 1.2. [5] If G is a graph with ¢ = 2 (mod 4) edges and every vertex of G has even degrees,
then ps(G) = 4o0.

Several papers dealing with (S)EMD of graphs for instants see [1, 14, 15, 16, 17, 18]. The
latest developments in these labelings can be found in [7]. Here, we study the (S)EMD of join
product graphs and 2-regular graphs.

2. SEMD of Join Product Graphs

The join product of two graphs G and H, G + H, is a graph having vertex set V (G) U V(H)
and edge set £(G) U E(H)U {st : s € V(G),t € V(H)}. If H is an isolated vertex, then it is
denoted by G + K. To present the results on SEMD of join product graphs, we need the following
lemma. First, we define a star S, as a graph with n + 1 vertices where one vertex has degree n and
n vertices have degree one.

Lemma 2.1. Let G be a graph with p > 8 vertices and q = 2p — 3 edges. If us(G) = 0, then 2Cs5,
C5 U S5 or 2S5 are subgraphs of G.

Proof. Let ¢ be a SEMTL of G. Since ¢ = 2p — 3, then {¢(s) + ¢(¢) : st € E(G)} is a unique
set S = {3,4,5,...2p — 1}. To get 3, 4, and 5 in S, vertices with labels 1, 2, and 3 should form a
cycle (5 or vertices with labels 1, 2, 3, and 4 should form a star S3, where vertices with labels 2,
3, and 4 are adjacent to the vertex with label 1. In a similar way, vertices with labels p, p — 1, and
p — 2 should form a cycle Cj or vertices with labels p, p — 1, p — 2 and p — 3 should form a star
Ss. Since p > 8,s01,2,3,4,p—3,p— 2, p— 1 and p are distinct integers. Thus, we have desire
results. ]
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Lemma 2 is not true in reverse. Let’s look at graph G in Figure 1 as an example. This graph has
p = 8 vertices, ¢ = 2p — 3 = 13 edges, and having subgraphs isomorphic to 2C'3, C5U S5, and 255.
Suppose 115(G) = 0 with a SEMTL ¢. Then, {¢(u) + ¢(v) : uv € E(G)} = {3,4,5,...,15}. So,

5¢(2) + ¢(v1) + o(v2) + o(v3) + 20(u 22—222—45

It can be verified that we do not get a SEMTL of GG for any solutions of this equation. Thus,
is(G) > 1. By this fact and the labeling of G U K in Figure 1, we conclude that u5(G) = 1.

mm

GUK,

Figure 1. A grap G with 8 vertices and 13 edges having subgraphs 2C3, C3 U S3, and 253 and a vertex labeling of
GUK;.

n [19], Ngurah and Simanjuntak proved the following lemma. They also showed that the
lemma is attainable by some classes of trees and forests.

Lemma 2.2. [19] Let G be a graph without cycle and isolated vertices. If the SEMD of G + K is
zero, then G is a tree or a forest.

We now relax the condition of the Lemma 2.2 as in Lemma 2.3. The proof of Lemma 2.3 is
identical to the proof of Lemma 2.2.

Lemma 2.3. Let G be a graph without isolated vertices. If us(G + K1) = 0, then G is a tree, a
forest, a union of cycles and trees, or a union of unicyclic graphs and trees.

The corona product, G ® H, of two graphs GG and H is defined as the graph formed by taking
one copy of G and |V (G)| copies of H, then connecting the ith vertex of GG to every vertex in the
ith copy of H. If H is an isolated vertex, then it is denoted by G © K. The next results show that
Lemma 2.3 is attainable.

Theorem 2.1. a) u([C,, U P,,| + K1) = 0ifand only ifn =3 and 2 < m < 4.
b) us([(C3 ® K1) U P, + Ky) =0ifand only if 2 < m < 4.

Proof. a) First, let F,, ,, = [C,, U P,,] + K be a graph with V(F,,,,,) = {z; : 1 <i <n}U{y;:
1 <j<m}U{z}and E(F,,,) = {zzip : 1 <i<n—-1}U{z,21} U{yjyjy1 : 1 <j <
m— 1} U {zz;,2y; 0 1 < i < n,1 <j <m}. Thus, F,,, hasp = n + m + 1 vertices and
g=2n+2m—1=2(n+m+ 1) — 3 edges.

Next, we show that, for m > 5, ps(Fs,,) > 0. For m > 5, suppose that ji5(F5,,) = 0 with a
SEMTL ¢. Then, S = {¢(u) + ¢(v) : uv € E(F3,,)} = {3,4,5,...,2m + 7}. Notice that F},,
has no subgraphs isomorphic to 255. By Lemma 2.1, we should consider the following cases.
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Case 1. Vertices with labels 1, 2, 3 and vertices with label p = m + 4, p — 1, p — 2 form a 2C5.
If {¢(z1), p(x2), p(x3)} = {1,2,3} and ¢(2) € {p,p — 1,p — 2} then, we fail to get 6 in S. If
{6(x1), d(22), p(x3)} = {p,p— 1,p — 2} and ¢(2) € {1,2, 3} then, we fail to get 2p — 4 in S.

Case 2. Vertices with labels 1, 2, 3 form a C3 and vertices with labels p, p — 1, p — 2, p — 3
form a Ss.

In this case, it is easy to check that we fail to get 6 in S.

Case 3. Vertices with labels p, p — 1, p — 2, form a ('3 and vertices with label 1, 2, 3, 4 form a
S3.

In this case, we fail to get 2p — 4 in S. Thus, for m > 5, ps(F3,,) > 0.

Now, we show that, for any n > 4 and m > 2, u(F,,,) > 0. Since, forn > 4 and m > 2,
F,.m is a graph with |V (F,, ;)| > 8 and has no subgraphs isomorphic to 2C3, C5 U S5 and 253, by
Lemma 2.1, y15(F, ) > 0. Thus, the remaining case is to show that ji;(Fy2) > 0. Let p15(Fy2) =0
and let ¢ be a SEMTL of Fj 5. Then, 4¢(2) + 3.+, ¢(x;) = 32. It is simple to confirm that none
of the equation’s solutions result in a SEMTL of F} 5. Thus, 15(Fy2) > 0.

Finaly, we show that, for 2 < m < 4, u,(Fs,,) = 0. Define a vertex labeling ¢ as follows.
{o(21), O(22), O(w3)} = {1,2,3}, ¢(z) = 5, for m = 2, set {$(y1), d(y2) } to {4, 6}, for m = 3,
set (¢(y1), @(y2), @(y3)) to (4,6,7), and for m = 4, set (¢(y1), (y2), ¢(y3), (ya)) to (4,6,8,7).

b) Let H,, = [(C5 ® K1) U P,,] + K, be a graph with V/(H,,,) = {u;,v; : 1 <7 <3} U{w; :
1 <j<m}U{z}and E(H,,) = {uuit1 : 1 <i <2}U{ugu fU{uv; 0 1 <i < 3}U{wwjq e
1<j<m—1}U{zu;,2v;,2w; : 1 <i<3,1<j<m}. Thus H,, has p = m + 7 vertices and
qg=2m+11=2(m+7) — 3 edges.

First, we prove that, for 2 < m < 4, ,([(C5 ® K1) U P,,] + K;) = 0. Define a vertex labeling
¢ as follows. (d(u1), ¢(uz), ¢(us)) = (1,2,3), (¢(v1), d(v2), ¢(vs)) = (5,6,4), ¢(z) = 8, for
m = 2, set {¢(wy), p(wq)} to {7,9}, for m = 3, set (¢p(wy), p(w2), dp(ws)) to (7,9,10), and for
m = 4, set (¢(wy), p(ws), d(ws), p(w,)) to (7,9,11,10). It is simple to confirm that ¢ extends to
a SEMTL of [(C3 ® K1) U Py, + K for2 <m < 4.

Next, suppose that, for any m > 5, us(H,,) = 0. Then, there exists a SEMTL ¢ of H,,
such that S = {¢(u) + ¢(v) : wv € E(H,,)} = {3,4,5,...,2p — 1}, in which we note that
2p — 1 =2m + 13. By Lemma 2.1, we should consider three cases.

Case 1. Vertices with labels 1, 2, 3 and vertices with labels p, p — 1, p — 2 form a 2C5.

If (p(uy), p(ua), d(us)) = (1,2,3) and ¢(z) € {p,p — 1,p — 2} then, to get 6, 7, and 8 in S, set
(p(v1), p(v2), d(v3)) to (5,6,4) or (6,4, 5). Thus, we fail to get 9in S. If (¢(u1), ¢(uz), p(us)) =
(p,p—1,p—2)and ¢(z) € {1, 2,3} then, to get 2p—4,2p—>5, and 2p — 6, set (P(vy), d(v2), P(v3))
to(p—5,p—3,p—4)or(p—4,p—5,p—3). In this case, it is not possible to get 2p — 7in S.

Case 2. Vertices with labels 1, 2, 3 form a C3 and vertices with labels p, p — 1, p — 2, p — 3

form a Ss.
If (p(u1), d(uz), p(usz)) = (1,2,3) and ¢(z) € {p,p— 1,p — 2, p — 3} then, by a similar argument
as in the Case 1, we fail to get 9in S. If ¢(2) € {1,2,3} and (¢(u1), ¢(uz), (us), d(v1)) = (p,p—
2,p—3,p—1), then we fail to get 2p—41in S. If ¢(z) € {1,2,3} and (Pp(uy), p(uz), d(us), d(v1)) =
(p,p— 1,p — 3,p — 2), then we fail to get either 2p — 5 or 2p — 6in S.

Case 3. Vertices with labels p, p — 1, p — 2 form a ('3 and vertices with labels 1, 2, 3, 4 form a
53.

By a similar argument as in the Case 2, this case also do not lead to a SEMTL of H,,.
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Case 4. Vertices with labels 1, 2, 3, 4 and vertices with labels p, p — 1, p — 2, p — 3 form a 255.
If ¢(z) € {1,2,3,4} and (¢(u1), d(usz), ¢(us), d(v1)) = (p,p — 2,p — 3,p — 1), then we fail to
get 2p —4in S. If ¢(Z) S {1? 27 374} and (¢(U1>, ¢(U2), ¢(U3), ¢(v1)) = (p7p - 1,]7 - 3717 - 2))
then we fail to get either 2p — 5 or 2p — 6 in S. If (p(u1), d(uz), P(us), p(v1)) = (1,3,4,2) and
o(z) € {p,p—1,p—2,p—3} then, it is not possible to get 6 in S. If (¢(uy), p(uz), P(us), d(v1)) =
(1,2,4,3) and ¢(z) € {p,p—1,p— 2, p— 3} then, it is not possible to get either 7 or 8 in S. Thus,
ws(Hy,) > 0,if m > 5. This complete the proof of part b). O

3. (S)EMD of 2-Regular Graphs

In [8], Holden et al. proved that C5 U (2t)Cs5, Cy U (2t — 1)C, and C7 U (2t)C5 are strong
vertex-magic total (SVMT) graphs. It is easy to verify that a (S)VMT 2-regular graph is equivalent
to a (S)EMT 2-regular graph. Based on these results, they posed the Conjecture 1.

Conjecture 1. [8]. Let G be a 2-regular graph of odd order. The graph G is SVMT if and only if
G is not one of C4, U C3, Cy U 3C5 or C5 U 2C%5.

Cichacz et al. [2] provide a partial solution to Conjecture 1, introducing a method for generating
(S)VMT labelings of 2-regular graphs.

Theorem 3.1. [2]. Let k > 1 be an integer and F = U%_,C,,. be a 2-regular graph. If F is a
(S)VMT graph, then G = U¥_,C,,.. is a (S)VMT graph for every odd m > 3.

In [6], Figueroa-Centeno et al. provided the following result.

Theorem 3.2. [6]. If a 3-colorable graph G is (S)EMT, then mG is (S)EMT for any odd integer
m.

As mentioning in [7], Ichishima and Oshima [11] investigate the SEMD of 2-regular graphs
Cn UC, form = 3,4,5,7 and any n. Krisnawati et al. [13] investigate the SEMD of a 2-regular
graph with three components, namely 2C5 U C,,. In the next theorem, we study the SEMD of a
2-regular graph 2Cy U C,,.

Theorem 3.3. Let n > 4 be a positive integer. Then

0, ifn=1 (mod2),
us(2C, U C,) =< 1, ifn=4andn = 8,12 (mod 16),
+00, ifn=2(mod4),

and 1s(2C4 U C,) < 2,if4 <n=0,4 (mod 16).

Proof. First, let H = 2C, U C,, be a graph with V(H) = {u;,v; : 1 <i <4} U{w; : 1 <i<n}
and E(H) = {wjuir1,vv41 0 1 <@ < 3} U {uguy, vgo f U {wjw;g 01 <@ <n—1} U{w,w }.

Next, we show that the graph [ is SEMT if and only if n is odd. If A is a SEMT graph
then its magic constant is %(571 + 43). So, n should be an odd integer. Next, for odd n > 5

define ¢ : V(H) — {1,2,...,n + 8} as follows. (¢(u1),d(u2), ¢(us), d(us)) = (1,3(n +
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9),2,3(n 4 13)), (¢(v1), ¢(va), d(v3), p(va)) = (3, 3(n + 15),5,1(n + 17)). When n = 7, label
(p(wn), ( 2), O(ws3), d(wy), ¢(ws), d(ws), d(wy) with (6 7,13,9,14,4,15). Whenn > 9, define
Pp(w1) =4, p(ws) = 5(n+11), p(w3) = n+7, p(ws) = (n+7), and label the remaining vertices
as follows

Case 1. n = 1 (mod 4).

(2n+21—14), ifi=5,9,13,...,n

(n+9—1i), ifi=6,10,14,...,n—3,
(2n+17—14), ifi=7,11,15,...,n—2
(n+13—1i), ifi=8,12,16,...,n— 1.

<
—~
S
T
~—
I
DN [0 [ RO | 0 | —

Case 2. 7 < n =3 (mod4).

(n+8, if i = 5,
n + 6, ifi =7,
6, ifi=n—1,

Pp(w;) =< n+9—1i), ifi=6,10,14,...,n—5,
s(n+13—14), ifi=2812,16,...,n—3,
s@n+17—14), ifi=9,13,17,....,n — 2,
| 1@2n+21—4), ifi=11,15,19,...,n

It can be checked that {¢(z) + ¢(y) : 2y € E(H)} = {3(n+ 11),1(n +13),...,3(3n + 25)}.
By Lemma 1.1, H is a SEMT graph.

Now, we prove that, for n = 4 and n = 8,12 (mod 16), us(H) = 1. If n = 4, pus(3Cy) =1
have been proved in [10] (see Corollary 3.6). Next, for n = 8,12 (mod 16), consider the graph
HUK, anddefine ¢ : V(HUK;) — {1,2,...,n+9} as follows. (¢(u1), ¢(uz), ¢(us), p(us)) =
(17 %(TL + 10)7 27 %(n + 14>>’ (¢(Ul)7 ¢(U2)7 ¢(U3)7 ¢(U4)) = (47 %(n + 12)7 57 %(n + 16)>’ ¢(w1) -
3,0(ws) = 3(n+24), p(w;) = 3(i+9) fori = 3,5,7,...,n — 1, p(w,) = 1(n + 22), and
¢(K1) = 1(3n + 28).

Case 3. n = 8 (mod 16).

(n + 20), if i = 4,

(n+2241), ifi=6,14,22,...,%
Ui=2816,24,...,% — 4,
Ui=10,18,26,...,5 — 2,

(n+6+1), ifi=1220,28,...,%,

( 3(n+20+414), ifi=3+23+4,5+6,...,n—2.

Case 4. n = 12 (mod 16).

N[00 =

P(wi) =

NI NI

( 2(n+26), ifi =4,
3(n+18), ifi =6,
s(n+22+14), ifi=8,16,24,...,% —6,
P(w;) = Ui=10,18,26,...,% — 4,
Ui=12,20,28,...,2 -2,
f(n+6+14), ifi=14,2230,...,%,
| s(n+20+4), ifi=2+22+42+6,...,n—2.
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It is simple to confirm that, by Lemma 1.1, H U K; a SEMT graph. Hence, u(H) = 1 forn = 4
and n = 8,12 (mod 16).

Next, we show that, or 4 < n = 0,4 (mod 16), us(H) < 2. Let us consider the graph H U 2K
and define ¢ : V(H U2K;) — {1,2,...,n + 10} as follows. (¢(uy), p(ua), d(us), p(ug)) =
(17 %(TL + 10)7 27 %(n + 14)’ (¢(U1)7 ¢(U2)7 ¢(U3)7 ¢(U4>) = (47 %(n + 12)7 57 %(n + 16)>’ ¢(w1> =
3, 0(w2) = L(n+24), p(ws) = 1(n+26), d(ws) = S(n+18), ¢(w;) = (i49),i =3,5,7,...,n—
1, and ¢(w,) = 3(n + 22).

Case 1. n = 0 (mod 16).

o({2K1}) = {i(i’m +40),n + 7}

and
( %(n+22+i), ifi:8716,24,...,§—8,
Ui:10,18,26,...,§—67
Ui:12,20,28,...,g—4,

(3n+48), ifi=12,
(3n+452), ifi=1%+2,
(3n + 56), ifi =3 +4,
(n+6+1), ifi=14,2230,...,%+6,
(n4+24+4), ifi=5+8%5+16,5+24,...,n—8,
Ui=5+4+10,5+18,5+26,...,n
Ui=7%5+12,5+20,5+28,...,n
n

[ 3(n+8+41i), ifi=%+14,2+222430,...,

Case 2. 4 < n = 4 (mod 16).

-
—~
S
S
~—
Il
7\
IS N Lt N L

Y

Y

6
—4
2

S({2K,}) = {%(?m +36), 1+ 8}

and
((S(n+22+1i), ifi=8,16,24,...,%2 —2,
Ui=10,18,26,...,% — 8,
Ui=12,20,28,...,2% —6,
flwi) = L3n+48), ifi=1, ’
(Bn+52), ifi=2+2,
[ 5(n+6+1), ifi=14,22,30,...,2+4,

v

The labeling of w; when 7 is even and ¢
Subcase 2.1. 4 < n = 4 (mod 48).

5 + 6 is determined by the following subcases.

(T(n+24+4), ifi=2+62+12,2+18,...,n— 14,
Ui=2+82+14,2+20,...,n— 12,
n + 10, ifi =n-—38,
olwi) =9 47 ifi=n—6,
n+9, ifi=n—2,
| s(n+12+4), ifi=2410,2+16,2+22,....,n—4.
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Subcase 2.2. n = 20 (mod 48).
When n = 20, define ¢(wis) = 26 and ¢(wis) = 29. When n > 68, label the remaining
vertices by the following formula.

tn+24+i), ifi=2+62+122+18,...,n— 16,
Ui=2+82+14,2+20,...,n— 14,
n+9, if i =n — 10,
o(w;) =< n+6, ifi =n—8,
n + 10, ifi=n—4,
n—+7, ifi=n-—2,
| s(n+12+1), ifi=%+10,2+16,2422,...,n—6.

Subcase 2.3. Subcase n = 36 (mod 48).

s(n+24+414), ifi=2+462+12,2+18,...,n—6,
d(w;) = Ui=12+82+14,2+20,...,n—4,
s(n+12+4), ifi=2+10,2+16,2+22,...,n—2.

By Lemma 1.1, H U 2K is a SEMT graph. Thus, us(H) < 2 for n = 0,4 (mod 16).
Finally, as a direct consequence of Lemma 1.2, us(H) = 400, if n = 2 (mod 4). ]

The following corollary is a direct consequence of applying Theorem 3.2 to the Theorem 3.3.

Corollary 3.1. Let | = 2(mod 4), m = 1(mod 2) and n > 4 be positive integers. Then

0, ifn=1(mod2),

,uS(ZC4 Uan) = { +00, lf n=2 (m0d4),

wus(ICLUmC,) < m, ifn =4and n = 8,12 (mod 16), and us(IC,UmC,,) < 2m, if4 <n =0,4
(mod 16).

The following result is obtained by applying Theorems 3.1 and 3.2 to the facts that p,(2C, U
C,) = 0forn =1 (mod 2) and 15(2C, U C,,) = +oco for n = 2 (mod 4).

Corollary 3.2. Letl = 2(mod 4), m = 1(mod 2), n > 4 and r be positive integers. Then

0, ifn=1(mod2),

talCatrny U mCriarn)) = { +oo, if n=2(mod4),

Unresolved issues related to these results are detailed as follows.

Open Problem 1. Determine the exact value of 115(2Cy U C,,) when n = 0,4 (mod 16). Further,
forl =2 (mod4) and m = 1 (mod 2), find the upper bound of the (15(ICy(2y+1) UMCh2r11y) when
n =0 (mod 4).

In [2], Chicacz et al. prove that 2C,, is VMT for n € {4,6,8,10} and posed a conjecture
that, for even value of n, the graph 2C), is VMT. We able to give support of the validity of this
conjecture by proving 2C,, is EMT forn € {5,7,9,11,12,13, 14}, see Figure 2. Theorem 3.4 is a
direct consequence of applying Theorems 3.1 and 3.2 to these results.

50



On (S)EMD of some classes of graphs | Ngurah, Simanjuntak and Baskoro

8 7 10 5 4 13 3 8 17
18471 2645w 33437 %36 22
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2 19 2 7% 25 29257 %22 %10
2 13 2 27 2 20
1 20 16 { 23 30 . 26 _ 23
10 11 15 14 7 1 6 15 9
(2G5) (26)) (2Go)
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41 %35%36 * 5 35 44455 %23 %27 *31 " 38
1 4a 1 52
2031 ¢ 26 427 43 2 34 37 _42 _49 _51
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2 32
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(2€11) (2C13)
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47 ©40 © 31 030 48 53 0 49 C 44 240 v 47 °5a
45 36 51 43
28 .24 _33 41 _39 31 .45 .56 .37 .35 _33
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42 38 035 227 043 50 © 42 039 T 46 U555 T30
37 46 52| 15
29 .26 _ 13 _32 _44 48 _ 41 _34 .32 _38 _36
22 11 25 24 6 12 17 7 24 14 26 8 28
(2€1) (2€14)

Figure 2. An EMTL of 2C,, forn € {5,7,9,11,12,13,14}.

Theorem 3.4. Let m = 2(mod 4), r be positive integers and n € {5,7,9,11,12,13,14}. Then
mCh,2r+1) has zero EMD.

Based on Theorem 3.4, the following conjecture is proposed.

Conjecture 2. For any integers m = 2 (mod 4), n > 3, and r > 1, the 2-regular graph mC, (2, 41)
has zero EMD.

A graph H U kK, is called pseudo super edge-magic (PSEM) if there exists a bijection ¢ :
V(HUEK,) — {1,2,...,|V(H)|+k} suchthat {¢(s)+o(t) : st € E(H)}U{2¢(u) : u € kK }
is a set of |F(H )| + k consecutive integers. In such a case ¢ is called a pseudo super edge-magic
labeling (PSEML) of H U kK. These concepts was introduced in [9]. It is easy to verify that if
H is a 2-regular graph and H U kK is a PSEM graph, then |V (H )| + k should be an odd integer.
We discover that Theorem 3.1 also valid for a PSEM graph H U kK. As an example, see Figure
3. This fact is not mentioned by the authors in [2].

Theorem 3.5. For any integer n > 4, the following graphs are PSEM.
a) C, UKy, ifn =0 (mod 2).

b) C,, U2K7, ifn =1 (mod 2).

¢)Cy UC, UKy, ifn=0(mod4).

d) C,UC, UK, ifn € {6,10,14,18,22,26}.

e)2C, UC, UKy, ifn = 8,12 (mod 16).
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Proof. a) In [5], Ichishima et al. proved that ps(C,) = 1, if n = 0 (mod 4). The labeling
defined to prove this result actually is a PSEML of C,, U K;. Next, for n = 2 (mod 4), let
V(C,UKy) ={u;: 1 <i<n}U{v}and E(C, U K;) = {wuir1 : 1 <i<n—1}U{uyu}.
Define a vertex labeling ¢ : V(C,, U K1) — {1,2,...,n + 1} as follows. When n = 6,10 and
14, set (@(u1), d(uz), ..., d(ug); p(v)) 10 (1,7,2,5,6,4;3), (p(u1), d(uz), ..., p(u10); ¢(v)) to
(1,8,2,9,3,11,5,10,7,6;4), and (p(uq), d(uz), .. ., ¢(u14); d(v)) to (1,10,2,12,3,13,4,9, 14, 6,
15,7,11,8,1;5), respectively. When n > 18, define

o) = 30 +6

and

(1+1), ifi=1,3,5,...,5%,
(n+10), ifz':%+2,

(n+4+1i), ifz':2,4,6,...,%(n—2).

To label the remaining vertices, we consider the following two cases.
Case 1. n = 2 (mod 8).

o(u;) =

N[ [0 | =

1(5+1), ifi=2+42+82+12,...,n—1,
5(1+1), ifi=2+6,%2+10,2+14,...,n—3,
Pu)) =< s(n+6+1d), ifi=2+12+524+9,...,n—4,
s(n+2+14), ifi=2+32472+11,...,n—2,
5(n+2), if i = n.
Case 2. n = 6 (mod 8).
( 3(5+1), ifi=2+4%4+82+12,....,n-7,
5(1+1), ifi=2+6,2+10,2+14,...,n—5,
z ifi =n—3,
s(n+4), ifi=n-—1,
o) = s(n+6+1), ifi=%+1,%2+5%+9,...,n—10,
V) s(n4244), ifi=2432+72+11...,n-8,
n—1, ifi=n—6,
n+1, ifi=n—4,
n, ifi=n-—2,
[ 3(n+2), ifi =n.

It can be checked that {p(u;) + d(uir1) : 1 < i < n— 1} U{od(un) + ¢(ur)} U {26(v)} is
{i(n+4),1(n+6),...2(3n+4)}. Hence, C,, U K is a PSEM graph.

b) For odd n, let V(C,, U2K;) = {u; : 1 <i < n}U{v,w}and E(C, U2K;) = {uu;y1 :
1 <1< n—1}U{uyus}. Define a vertex labeling ¢ of C,, U 2K as follows.

Case 1. n =1 (mod 4).

F(fr,w}) = {50+ 1), 530 +5))
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and
1+41),

(
(n+3),
(n+3+1),
5(n+5+1),
Case 2. n = 3 (mod 4).
When n = 7 and 11, define (¢

(p(ur), P(uz), . ..
n > 15, define

o(u;) =

DO [0 [ =D | =0 | =

(u
, O(u11); ¢(v), p(w

Ngurah, Simanjuntak and Baskoro

ifi=135, ...
if i =n,

ifi =246, %L
ifi=%(n—1),3(n+3),s(n+7),...

= (1,7,2,9,4,8,6;3,5) and
=(1,9,2,11,3,13,5,10,7,12,8; 4, 6), respectively. When

1
o({v.w}) = {5(n+3), 7(n +5)}
and
(1 +1), ifi=1,35...,5(n—1),
Pu;) =< s(n+5+14), ifi=2,4,6,...,5(n—3),
1(n+9), ifi = (n+3),

Subcase 2.1. n = 3 (mod 8).

(f(n+7+14), ifi=3(n+1),3(n+9),...,n—9,
s(n+3+1), ifi=3(n+5),5(n+13),....,n—7,
n, ifi=n—2>5,
n+ 2, ifi=n—3,

d(u;)) = ¢ n+1, ifi=n-1,
(5 +1), ifi=3(n+7),3(n+15),....,n—6,
%(1—1—2) %fz.:%(n+11),%(n+19),...,n—4,
5( 1), ifi=n-—2,
| 5(n+5), ifi = n.

Subcase 2.1. n = 7 (mod 8).

t(n+7+14), ifi=3(n+1),3(n+9),...,n—3,

o) = s(n+3+14), ifi=3(n+5),35(n+13),....,n—1,
S(5+1), ifi=3(n+7),5(n+15),...,n,
s(1+1), ifi =3(n+11),3(n+19),...,n — 2.

It is a routine procedure to verify that ¢ is a PSEML of G.

¢) Let us define G,,
V(

and

E(G,) = {uuis :
Next, define ¢ : V(
Case 1. n = 4.

(P(ur), p(uz), p(us), p(us)) =

1 S 1 S 3} U {U4U1} U {Uivi+1 .
G, —{1,2,...,

(1,5,3,6),

=~ (CyUC, UKy, n =0 (mod4), as a graph having
Gn)=A{u;:1<i<4}U{v;: 1 <i<n}U{K}

1<i<n-—-1}U{v,01}.
n + 5} as follows.

(P(v1), d(v2), P(v3), d(vs)) = (2,8,4,9), ¢(K;) =T.

33



On (S)EMD of some classes of graphs | Ngurah, Simanjuntak and Baskoro

Case 2. n > 8.
(1,%(71—1—6),2,%(71—1—10)), if v = (uy, ug, ug, uy),
%(@ 7), ife =v;fori =1,5,9,...,n—3,
o(z) = %(@ 3), ifr=wv;fori=3,711,...,n—1,
5(n+38), if v = vy,
1(3n +16), if v = K.

To label the remaining vertices, we consider the following two subcases.
Case 2.1 n = 0 (mod 8).

%(n+12+i), ifx:vifori:2,6,10,,”,%_67
%(n+8+i), ifx:viforizzl’g,lg"”’%_4’
() = %(n+14+i), ifx:vifori:g_27%+2’%+6’. n—86,
s(n+10+1), ife=vfori=75,%+4,%+8,... ,n—4
n -+ 57 ifx = Un—2-
Case 2.2 n = 4 (mod 8).
(n+12), if v = v; fori = 2,

(n+12+1), ifx =v;fori=4,812,..., 5 —6,
(n+8+1i), ifz=wvfori=6,10,14,...,%2 —4,
(n+14+1), ifz =wv;fori=
(n+10+1), ifz =wv;fori=

¢(r) =

DO [0 [0 [ D0 | 00 |

It can be checked that ¢ is a PSEML of G.

d) Forn € {6,10,14,18,22,26},let H, = C, UC, U K}, V(H,) = {s; : 1 <i <4} U {t; :
1 <i<n}U{w}and E(H,) = {sisi31: 1 <i <3}U{sus1}U{tit;1: 1 <i<n—-1}U
{t,t1} U {ww}. It is simple to confirm that ¢ : V(H,) — {1,2,...,n+ 5} isa PSEML of H,,.

Case 1. n = 6. (¢(s1), §(s2), ¢(s3), ¢(s4)) = (1,11,2,7), (cb( )’¢(t2)’-~7¢(t6)) =

and ¢(w) =

Case 2. n = 10. (§(51), &(52), &(53), &(54)) = (1,15,2,9), (6(t1), (t2), ... d(tw0)) =
(1,19,2,11), (¢(t1), 6(t2), - -, $(t14)) =

8,14,7,13,5), and ¢(w) =

Case3.n = 14. (¢(s1), ¢<52>',¢(33)7¢( ))
9,18,10,16,8,17,5,6,13), and p(w) =

Cased. n = 18. (¢(s1), d(s2), d(s3), &(s ))2(12 21@(¢()#ﬂ®%'~ﬂﬂh9):
17,18,11,21,12,22,9,19,7,6,16,5,15), and ¢(w) =
Case 5. n = 22. (6(s1), &(s2), 6(s3). O (s ))=(12 15), (¢(t1), ( 2); 5 Ot22)) =

(¢
21,20,11,23,14,26, 13,25, 10,22,8,7,19,6,18,5 ) and f(w) =
),

Case 6. n = 26. (¢( ),¢(52),¢(s3),¢( )) (1 31,2,17 (0(t1), ¢ ( 2),- - B(ta)) =

30,16,29, 15,27, 12,26, 14, 23,24, 11, 25,9, 8,22, 7, 21,6, 20, 5, 19), and ¢(w) = 10.

(3,8,9,6,10,4),
(4,10,3,12,11,

(4,12, 3,15, 14,
(4,14, 3,20, 10,
(4,16,3,24,12,

(4,18,3,28,13,

e) The labeling ¢ in the proof of Theorem 3.3 is a PSEML of 2C, U C,, U K; for n = 8,12

(mod 16).

]

Corollary 3.3 is a direct consequence of applying first Theorem 3.1 and then Theorem 3.2 to

the graphs in Theorem 3.5.
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@0

Figure 3. (a). A PSEML of C5 U 2K7. (b). A SEMTL of Cs5 U 2C5 which is obtained by applying Theorem 3.1 to
Cs U2K;.

Corollary 3.3. Let m,r > 1,1 > 2, and n > 4 be positive integers such that m is odd and | = 2
(mod 4). Then all the following graphs have zero SEMD.

a) m[Cpr11) U Copi1), if n = 0 (mod 2).

b) m[Cn(QT_H) U 2027"—0—1]; lfn =1 (mod 2)

C) m[04(27~+1) U On(2T+1) U CQT_H], lfn =0 (mOd 4)

d) m[C4(27«+1) U Cn(2r+1) @) CQH_l], ifne {6, 10, 14, 18, 22, 26}.

€) lC4(2T+1) U m[Cn(ng) U CQT_'_]_], zfn = 8, 12 (mod 16)
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