

Electronic Journal of Graph Theory and Applications

On (super) edge-magic deficiency of some classes of graphs

Anak Agung Gede Ngurah^{*a}, Rinovia Simanjuntak^{b,c}, Edy Tri Baskoro^{b,c}

^aDepartment of Civil Engineering, Universitas Merdeka Malang

Jalan Terusan Raya Dieng 62–64 Malang, Indonesia

^bCombinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences,

Institut Teknologi Bandung, Indonesia

^cCenter for Reseach Collaboration on Graph Theory and Combinatorics, Indonesia

aag.ngurah@unmer.ac.id, {rino, ebaskoro}@itb.ac.id

* corresponding author

Abstract

A graph G of order p and size q is called *edge-magic total* if there exists a bijection ϕ from $V(G) \cup E(G)$ to the set $\{1, 2, \ldots, p+q\}$ such that $\phi(s) + \phi(st) + \phi(t)$ is a constant for every edge st in E(G). An edge-magic total graph with $\phi(V(G)) = \{1, 2, \ldots, p\}$ is called super edge-magic total. Furthermore, the edge-magic deficiency of a graph G is the smallest integer $n \ge 0$ such that $G \cup nK_1$ is edge-magic total. The super edge-magic deficiency of a graph G is either the smallest integer $n \ge 0$ such that $G \cup nK_1$ is super edge-magic total or $+\infty$ if there exists no such integer n. In this paper, we study the (super) edge-magic deficiency of join product graphs and 2-regular graphs.

Keywords: (super) edge-magic graph, (super) edge magic deficiency, join product graph, 2-regular graph Mathematics Subject Classification : 05C78 DOI: 10.5614/ejgta.2025.13.1.4

1. Introduction

Let G be a finite and simple graph with vertex set V(G) and edge set E(G) such that p = |V(G)| and q = |E(G)|. An *edge-magic total labeling* (EMTL) of a graph G is a bijection $\phi : V(G) \cup E(G) \rightarrow \{1, 2, \dots, p+q\}$ such that $\phi(s) + \phi(st) + \phi(t)$ is a constant k, called the *magic*

Received: 9 July 2019, Revised: 27 January 2025, Accepted: 2 February 2025.

constant of ϕ , for every $st \in E(G)$. An EMTL ϕ of G is called a *super edge-magic total labeling* (SEMTL) if $\phi(V(G)) = \{1, 2, \dots, p\}$. A graph that admits a (S)EMTL is called (*super) edge-magic total* ((S)EMT). The notions of an EMTL and an EMT graph were introduced in [12] while the concepts of a SEMTL and a SEMT graph were introduced in [3].

The next lemma provides necessary and sufficient conditions for a graph to be a SEMT graph.

Lemma 1.1. [4] A graph G is SEMT if and only if there exists a bijection $\phi : V(G) \to \{1, 2, \dots, p\}$ such that the set $S = \{\phi(s) + \phi(t) : st \in E(G)\}$ is a set of q consecutive integers.

In [12], Kotzig and Rosa also introduced the notion of edge-magic deficiency (EMD) of a graph. The *EMD* of a graph G, $\mu(G)$, is the minimum integer $n \ge 0$ such that $G \cup nK_1$ is an EMT graph. Kotzig and Rosa proved that every graph has finite EMD. Figueroa-Centeno *et al.* [5] introduced the notion of super edge-magic deficiency (SEMD) of a graph. The *SEMD* of a graph G, $\mu_s(G)$, is defined as either the minimum integer $n \ge 0$ such that $G \cup nK_1$ is a SEMT graph or $+\infty$ if there exists no such integer n. Thus, a (S)EMT graph is a graph with zero (S)EMD. Unlike the EMD, not all graphs have finite SEMD. Lemma 1.2 provides necessary conditions for a graph to have infinite SEMD.

Lemma 1.2. [5] If G is a graph with $q \equiv 2 \pmod{4}$ edges and every vertex of G has even degrees, then $\mu_s(G) = +\infty$.

Several papers dealing with (S)EMD of graphs for instants see [1, 14, 15, 16, 17, 18]. The latest developments in these labelings can be found in [7]. Here, we study the (S)EMD of join product graphs and 2-regular graphs.

2. SEMD of Join Product Graphs

The *join product* of two graphs G and H, G + H, is a graph having vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H) \cup \{st : s \in V(G), t \in V(H)\}$. If H is an isolated vertex, then it is denoted by $G + K_1$. To present the results on SEMD of join product graphs, we need the following lemma. First, we define a star S_n as a graph with n + 1 vertices where one vertex has degree n and n vertices have degree one.

Lemma 2.1. Let G be a graph with $p \ge 8$ vertices and q = 2p - 3 edges. If $\mu_s(G) = 0$, then $2C_3$, $C_3 \cup S_3$ or $2S_3$ are subgraphs of G.

Proof. Let ϕ be a SEMTL of G. Since q = 2p - 3, then $\{\phi(s) + \phi(t) : st \in E(G)\}$ is a unique set $S = \{3, 4, 5, \dots 2p - 1\}$. To get 3, 4, and 5 in S, vertices with labels 1, 2, and 3 should form a cycle C_3 or vertices with labels 1, 2, 3, and 4 should form a star S_3 , where vertices with labels 2, 3, and 4 are adjacent to the vertex with label 1. In a similar way, vertices with labels p, p - 1, and p - 2 should form a cycle C_3 or vertices with labels p, p - 1, p - 2 and p - 3 should form a star S_3 . Since $p \ge 8$, so 1, 2, 3, 4, p - 3, p - 2, p - 1 and p are distinct integers. Thus, we have desire results.

Lemma 2 is not true in reverse. Let's look at graph G in Figure 1 as an example. This graph has p = 8 vertices, q = 2p - 3 = 13 edges, and having subgraphs isomorphic to $2C_3$, $C_3 \cup S_3$, and $2S_3$. Suppose $\mu_s(G) = 0$ with a SEMTL ϕ . Then, $\{\phi(u) + \phi(v) : uv \in E(G)\} = \{3, 4, 5, \dots, 15\}$. So,

$$5\phi(z) + \phi(v_1) + \phi(v_2) + \phi(v_3) + 2\phi(u) = \sum_{i=3}^{15} i - 2\sum_{i=1}^{8} i = 45.$$

It can be verified that we do not get a SEMTL of G for any solutions of this equation. Thus, $\mu_s(G) \ge 1$. By this fact and the labeling of $G \cup K_1$ in Figure 1, we conclude that $\mu_s(G) = 1$.

Figure 1. A grap G with 8 vertices and 13 edges having subgraphs $2C_3$, $C_3 \cup S_3$, and $2S_3$ and a vertex labeling of $G \cup K_1$.

In [19], Ngurah and Simanjuntak proved the following lemma. They also showed that the lemma is attainable by some classes of trees and forests.

Lemma 2.2. [19] Let G be a graph without cycle and isolated vertices. If the SEMD of $G + K_1$ is zero, then G is a tree or a forest.

We now relax the condition of the Lemma 2.2 as in Lemma 2.3. The proof of Lemma 2.3 is identical to the proof of Lemma 2.2.

Lemma 2.3. Let G be a graph without isolated vertices. If $\mu_s(G + K_1) = 0$, then G is a tree, a forest, a union of cycles and trees, or a union of unicyclic graphs and trees.

The corona product, $G \odot H$, of two graphs G and H is defined as the graph formed by taking one copy of G and |V(G)| copies of H, then connecting the ith vertex of G to every vertex in the ith copy of H. If H is an isolated vertex, then it is denoted by $G \odot K_1$. The next results show that Lemma 2.3 is attainable.

Theorem 2.1. a) $\mu_s([C_n \cup P_m] + K_1) = 0$ if and only if n = 3 and $2 \le m \le 4$. b) $\mu_s([(C_3 \odot K_1) \cup P_m] + K_1) = 0$ if and only if $2 \le m \le 4$.

Proof. a) First, let $F_{n,m} = [C_n \cup P_m] + K_1$ be a graph with $V(F_{n,m}) = \{x_i : 1 \le i \le n\} \cup \{y_j : 1 \le j \le m\} \cup \{z\}$ and $E(F_{n,m}) = \{x_i x_{i+1} : 1 \le i \le n-1\} \cup \{x_n x_1\} \cup \{y_j y_{j+1} : 1 \le j \le m-1\} \cup \{zx_i, zy_j : 1 \le i \le n, 1 \le j \le m\}$. Thus, $F_{n,m}$ has p = n + m + 1 vertices and q = 2n + 2m - 1 = 2(n + m + 1) - 3 edges.

Next, we show that, for $m \ge 5$, $\mu_s(F_{3,m}) > 0$. For $m \ge 5$, suppose that $\mu_s(F_{3,m}) = 0$ with a SEMTL ϕ . Then, $S = \{\phi(u) + \phi(v) : uv \in E(F_{3,m})\} = \{3, 4, 5, \dots, 2m + 7\}$. Notice that $F_{3,m}$ has no subgraphs isomorphic to $2S_3$. By Lemma 2.1, we should consider the following cases.

Case 1. Vertices with labels 1, 2, 3 and vertices with label p = m + 4, p - 1, p - 2 form a $2C_3$. If $\{\phi(x_1), \phi(x_2), \phi(x_3)\} = \{1, 2, 3\}$ and $\phi(z) \in \{p, p - 1, p - 2\}$ then, we fail to get 6 in S. If $\{\phi(x_1), \phi(x_2), \phi(x_3)\} = \{p, p - 1, p - 2\}$ and $\phi(z) \in \{1, 2, 3\}$ then, we fail to get 2p - 4 in S.

Case 2. Vertices with labels 1, 2, 3 form a C_3 and vertices with labels p, p - 1, p - 2, p - 3 form a S_3 .

In this case, it is easy to check that we fail to get 6 in S.

Case 3. Vertices with labels p, p - 1, p - 2, form a C_3 and vertices with label 1, 2, 3, 4 form a S_3 .

In this case, we fail to get 2p - 4 in S. Thus, for $m \ge 5$, $\mu_s(F_{3,m}) > 0$.

Now, we show that, for any $n \ge 4$ and $m \ge 2$, $\mu_s(F_{n,m}) > 0$. Since, for $n \ge 4$ and m > 2, $F_{n,m}$ is a graph with $|V(F_{n,m})| \ge 8$ and has no subgraphs isomorphic to $2C_3$, $C_3 \cup S_3$ and $2S_3$, by Lemma 2.1, $\mu_s(F_{n,m}) > 0$. Thus, the remaining case is to show that $\mu_s(F_{4,2}) > 0$. Let $\mu_s(F_{4,2}) = 0$ and let ϕ be a SEMTL of $F_{4,2}$. Then, $4\phi(z) + \sum_{i=1}^4 \phi(x_i) = 32$. It is simple to confirm that none of the equation's solutions result in a SEMTL of $F_{4,2}$. Thus, $\mu_s(F_{4,2}) > 0$.

Finaly, we show that, for $2 \le m \le 4$, $\mu_s(F_{3,m}) = 0$. Define a vertex labeling ϕ as follows. $\{\phi(x_1), \phi(x_2), \phi(x_3)\} = \{1, 2, 3\}, \phi(z) = 5$, for m = 2, set $\{\phi(y_1), \phi(y_2)\}$ to $\{4, 6\}$, for m = 3, set $(\phi(y_1), \phi(y_2), \phi(y_3))$ to (4, 6, 7), and for m = 4, set $(\phi(y_1), \phi(y_2), \phi(y_3), \phi(y_4))$ to (4, 6, 8, 7).

b) Let $H_m = [(C_3 \odot K_1) \cup P_m] + K_1$ be a graph with $V(H_m) = \{u_i, v_i : 1 \le i \le 3\} \cup \{w_j : 1 \le j \le m\} \cup \{z\}$ and $E(H_m) = \{u_i u_{i+1} : 1 \le i \le 2\} \cup \{u_3 u_1\} \cup \{u_i v_i : 1 \le i \le 3\} \cup \{w_j w_{j+1} : 1 \le j \le m-1\} \cup \{zu_i, zv_i, zw_j : 1 \le i \le 3, 1 \le j \le m\}$. Thus H_m has p = m + 7 vertices and q = 2m + 11 = 2(m + 7) - 3 edges.

First, we prove that, for $2 \le m \le 4$, $\mu_s([(C_3 \odot K_1) \cup P_m] + K_1) = 0$. Define a vertex labeling ϕ as follows. $(\phi(u_1), \phi(u_2), \phi(u_3)) = (1, 2, 3), (\phi(v_1), \phi(v_2), \phi(v_3)) = (5, 6, 4), \phi(z) = 8$, for m = 2, set $\{\phi(w_1), \phi(w_2)\}$ to $\{7, 9\}$, for m = 3, set $(\phi(w_1), \phi(w_2), \phi(w_3))$ to (7, 9, 10), and for m = 4, set $(\phi(w_1), \phi(w_2), \phi(w_3), \phi(w_4))$ to (7, 9, 11, 10). It is simple to confirm that ϕ extends to a SEMTL of $[(C_3 \odot K_1) \cup P_m] + K_1$ for $2 \le m \le 4$.

Next, suppose that, for any $m \ge 5$, $\mu_s(H_m) = 0$. Then, there exists a SEMTL ϕ of H_m such that $S = \{\phi(u) + \phi(v) : uv \in E(H_m)\} = \{3, 4, 5, \dots, 2p - 1\}$, in which we note that 2p - 1 = 2m + 13. By Lemma 2.1, we should consider three cases.

Case 1. Vertices with labels 1, 2, 3 and vertices with labels p, p - 1, p - 2 form a $2C_3$. If $(\phi(u_1), \phi(u_2), \phi(u_3)) = (1, 2, 3)$ and $\phi(z) \in \{p, p - 1, p - 2\}$ then, to get 6, 7, and 8 in S, set $(\phi(v_1), \phi(v_2), \phi(v_3))$ to (5, 6, 4) or (6, 4, 5). Thus, we fail to get 9 in S. If $(\phi(u_1), \phi(u_2), \phi(u_3)) = (p, p - 1, p - 2)$ and $\phi(z) \in \{1, 2, 3\}$ then, to get 2p - 4, 2p - 5, and 2p - 6, set $(\phi(v_1), \phi(v_2), \phi(v_3))$ to (p - 5, p - 3, p - 4) or (p - 4, p - 5, p - 3). In this case, it is not possible to get 2p - 7 in S.

Case 2. Vertices with labels 1, 2, 3 form a C_3 and vertices with labels p, p - 1, p - 2, p - 3 form a S_3 .

If $(\phi(u_1), \phi(u_2), \phi(u_3)) = (1, 2, 3)$ and $\phi(z) \in \{p, p-1, p-2, p-3\}$ then, by a similar argument as in the Case 1, we fail to get 9 in S. If $\phi(z) \in \{1, 2, 3\}$ and $(\phi(u_1), \phi(u_2), \phi(u_3), \phi(v_1)) = (p, p-2, p-3, p-1)$, then we fail to get 2p-4 in S. If $\phi(z) \in \{1, 2, 3\}$ and $(\phi(u_1), \phi(u_2), \phi(u_3), \phi(v_1)) = (p, p-1, p-3, p-2)$, then we fail to get either 2p-5 or 2p-6 in S.

Case 3. Vertices with labels p, p - 1, p - 2 form a C_3 and vertices with labels 1, 2, 3, 4 form a S_3 .

By a similar argument as in the Case 2, this case also do not lead to a SEMTL of H_m .

Case 4. Vertices with labels 1, 2, 3, 4 and vertices with labels p, p-1, p-2, p-3 form a $2S_3$. If $\phi(z) \in \{1, 2, 3, 4\}$ and $(\phi(u_1), \phi(u_2), \phi(u_3), \phi(v_1)) = (p, p-2, p-3, p-1)$, then we fail to get 2p - 4 in S. If $\phi(z) \in \{1, 2, 3, 4\}$ and $(\phi(u_1), \phi(u_2), \phi(u_3), \phi(v_1)) = (p, p-1, p-3, p-2)$, then we fail to get either 2p - 5 or 2p - 6 in S. If $(\phi(u_1), \phi(u_2), \phi(u_3), \phi(v_1)) = (1, 3, 4, 2)$ and $\phi(z) \in \{p, p-1, p-2, p-3\}$ then, it is not possible to get 6 in S. If $(\phi(u_1), \phi(u_2), \phi(u_3), \phi(v_1)) = (1, 2, 4, 3)$ and $\phi(z) \in \{p, p-1, p-2, p-3\}$ then, it is not possible to get either 7 or 8 in S. Thus, $\mu_s(H_m) > 0$, if $m \ge 5$. This complete the proof of part b). \Box

3. (S)EMD of 2-Regular Graphs

In [8], Holden et al. proved that $C_5 \cup (2t)C_3$, $C_4 \cup (2t-1)C_3$, and $C_7 \cup (2t)C_3$ are strong vertex-magic total (SVMT) graphs. It is easy to verify that a (S)VMT 2-regular graph is equivalent to a (S)EMT 2-regular graph. Based on these results, they posed the Conjecture 1.

Conjecture 1. [8]. Let G be a 2-regular graph of odd order. The graph G is SVMT if and only if G is not one of $C_4 \cup C_3$, $C_4 \cup 3C_3$ or $C_5 \cup 2C_3$.

Cichacz et al. [2] provide a partial solution to Conjecture 1, introducing a method for generating (S)VMT labelings of 2-regular graphs.

Theorem 3.1. [2]. Let $k \ge 1$ be an integer and $F = \bigcup_{i=1}^{k} C_{n_i}$ be a 2-regular graph. If F is a (S)VMT graph, then $G = \bigcup_{i=1}^{k} C_{mn_i}$ is a (S)VMT graph for every odd $m \ge 3$.

In [6], Figueroa-Centeno et al. provided the following result.

Theorem 3.2. [6]. If a 3-colorable graph G is (S)EMT, then mG is (S)EMT for any odd integer m.

As mentioning in [7], Ichishima and Oshima [11] investigate the SEMD of 2-regular graphs $C_m \cup C_n$ for m = 3, 4, 5, 7 and any n. Krisnawati et al. [13] investigate the SEMD of a 2-regular graph with three components, namely $2C_3 \cup C_n$. In the next theorem, we study the SEMD of a 2-regular graph $2C_4 \cup C_n$.

Theorem 3.3. Let $n \ge 4$ be a positive integer. Then

 $\mu_s(2C_4 \cup C_n) = \begin{cases} 0, & \text{if } n \equiv 1 \pmod{2}, \\ 1, & \text{if } n = 4 \text{ and } n \equiv 8, 12 \pmod{16}, \\ +\infty, & \text{if } n \equiv 2 \pmod{4}, \end{cases}$

and $\mu_s(2C_4 \cup C_n) \le 2$, if $4 < n \equiv 0, 4 \pmod{16}$.

Proof. First, let $H = 2C_4 \cup C_n$ be a graph with $V(H) = \{u_i, v_i : 1 \le i \le 4\} \cup \{w_i : 1 \le i \le n\}$ and $E(H) = \{u_i u_{i+1}, v_i v_{i+1} : 1 \le i \le 3\} \cup \{u_4 u_1, v_4 v_1\} \cup \{w_i w_{i+1} : 1 \le i \le n-1\} \cup \{w_n w_1\}.$

Next, we show that the graph H is SEMT if and only if n is odd. If H is a SEMT graph then its magic constant is $\frac{1}{2}(5n + 43)$. So, n should be an odd integer. Next, for odd $n \ge 5$ define $\phi : V(H) \longrightarrow \{1, 2, ..., n + 8\}$ as follows. $(\phi(u_1), \phi(u_2), \phi(u_3), \phi(u_4)) = (1, \frac{1}{2}(n + 6))$

9), 2, $\frac{1}{2}(n+13)$), $(\phi(v_1), \phi(v_2), \phi(v_3), \phi(v_4)) = (3, \frac{1}{2}(n+15), 5, \frac{1}{2}(n+17))$. When n = 7, label $(\phi(w_1), \phi(w_2), \phi(w_3), \phi(w_4), \phi(w_5), \phi(w_6), \phi(w_7)$ with (6, 7, 13, 9, 14, 4, 15). When $n \ge 9$, define $\phi(w_1) = 4$, $\phi(w_2) = \frac{1}{2}(n+11)$, $\phi(w_3) = n+7$, $\phi(w_4) = \frac{1}{2}(n+7)$, and label the remaining vertices as follows.

Case 1. $n \equiv 1 \pmod{4}$.

$$\phi(w_i) = \begin{cases} \frac{1}{2}(2n+21-i), & \text{if } i = 5, 9, 13, \dots, n, \\ \frac{1}{2}(n+9-i), & \text{if } i = 6, 10, 14, \dots, n-3, \\ \frac{1}{2}(2n+17-i), & \text{if } i = 7, 11, 15, \dots, n-2, \\ \frac{1}{2}(n+13-i), & \text{if } i = 8, 12, 16, \dots, n-1. \end{cases}$$

Case 2. $7 < n \equiv 3 \pmod{4}$.

$$\phi(w_i) = \begin{cases} n+8, & \text{if } i = 5, \\ n+6, & \text{if } i = 7, \\ 6, & \text{if } i = n-1, \\ \frac{1}{2}(n+9-i), & \text{if } i = 6, 10, 14, \dots, n-5, \\ \frac{1}{2}(n+13-i), & \text{if } i = 8, 12, 16, \dots, n-3, \\ \frac{1}{2}(2n+17-i), & \text{if } i = 9, 13, 17, \dots, n-2, \\ \frac{1}{4}(2n+21-i), & \text{if } i = 11, 15, 19, \dots, n. \end{cases}$$

It can be checked that $\{\phi(x) + \phi(y) : xy \in E(H)\} = \{\frac{1}{2}(n+11), \frac{1}{2}(n+13), \dots, \frac{1}{2}(3n+25)\}.$ By Lemma 1.1, *H* is a SEMT graph.

Now, we prove that, for n = 4 and $n \equiv 8, 12 \pmod{16}$, $\mu_s(H) = 1$. If n = 4, $\mu_s(3C_4) = 1$ have been proved in [10] (see Corollary 3.6). Next, for $n \equiv 8, 12 \pmod{16}$, consider the graph $H \cup K_1$ and define $\phi : V(H \cup K_1) \longrightarrow \{1, 2, \dots, n+9\}$ as follows. $(\phi(u_1), \phi(u_2), \phi(u_3), \phi(u_4)) = (1, \frac{1}{2}(n+10), 2, \frac{1}{2}(n+14)), (\phi(v_1), \phi(v_2), \phi(v_3), \phi(v_4)) = (4, \frac{1}{2}(n+12), 5, \frac{1}{2}(n+16)), \phi(w_1) = 3, \phi(w_2) = \frac{1}{2}(n+24), \phi(w_i) = \frac{1}{2}(i+9)$ for $i = 3, 5, 7, \dots, n-1$, $\phi(w_n) = \frac{1}{2}(n+22)$, and $\phi(K_1) = \frac{1}{4}(3n+28)$.

Case 3. $n \equiv 8 \pmod{16}$.

$$\phi(w_i) = \begin{cases} \frac{1}{2}(n+20), & \text{if } i = 4, \\ \frac{1}{2}(n+22+i), & \text{if } i = 6, 14, 22, \dots, \frac{n}{2} - 6, \\ & \cup i = 8, 16, 24, \dots, \frac{n}{2} - 4, \\ & \cup i = 10, 18, 26, \dots, \frac{n}{2} - 2, \\ \frac{1}{2}(n+6+i), & \text{if } i = 12, 20, 28, \dots, \frac{n}{2}, \\ \frac{1}{2}(n+20+i), & \text{if } i = \frac{n}{2} + 2, \frac{n}{2} + 4, \frac{n}{2} + 6, \dots, n-2 \end{cases}$$

Case 4. $n \equiv 12 \pmod{16}$.

$$\phi(w_i) = \begin{cases} \frac{1}{2}(n+26), & \text{if } i = 4, \\ \frac{1}{2}(n+18), & \text{if } i = 6, \\ \frac{1}{2}(n+22+i), & \text{if } i = 8, 16, 24, \dots, \frac{n}{2} - 6, \\ & \cup i = 10, 18, 26, \dots, \frac{n}{2} - 4, \\ & \cup i = 12, 20, 28, \dots, \frac{n}{2} - 2, \\ \frac{1}{2}(n+6+i), & \text{if } i = 14, 22, 30, \dots, \frac{n}{2}, \\ \frac{1}{2}(n+20+i), & \text{if } i = \frac{n}{2} + 2, \frac{n}{2} + 4, \frac{n}{2} + 6, \dots, n-2. \end{cases}$$

www.ejgta.org

It is simple to confirm that, by Lemma 1.1, $H \cup K_1$ a SEMT graph. Hence, $\mu_s(H) = 1$ for n = 4 and $n \equiv 8, 12 \pmod{16}$.

Next, we show that, or $4 < n \equiv 0, 4 \pmod{16}, \mu_s(H) \leq 2$. Let us consider the graph $H \cup 2K_1$ and define $\phi : V(H \cup 2K_1) \longrightarrow \{1, 2, \dots, n+10\}$ as follows. $(\phi(u_1), \phi(u_2), \phi(u_3), \phi(u_4)) = (1, \frac{1}{2}(n+10), 2, \frac{1}{2}(n+14), (\phi(v_1), \phi(v_2), \phi(v_3), \phi(v_4)) = (4, \frac{1}{2}(n+12), 5, \frac{1}{2}(n+16)), \phi(w_1) = 3, \phi(w_2) = \frac{1}{2}(n+24), \phi(w_4) = \frac{1}{2}(n+26), \phi(w_6) = \frac{1}{2}(n+18), \phi(w_i) = \frac{1}{2}(i+9), i = 3, 5, 7, \dots, n-1$, and $\phi(w_n) = \frac{1}{2}(n+22)$.

Case 1. $n \equiv \tilde{0} \pmod{16}$.

$$\phi(\{2K_1\}) = \{\frac{1}{4}(3n+40), n+7\}$$

and

$$\phi(w_i) = \begin{cases} \frac{1}{2}(n+22+i), & \text{if } i = 8, 16, 24, \dots, \frac{n}{2} - 8, \\ & \cup i = 10, 18, 26, \dots, \frac{n}{2} - 6, \\ & \cup i = 12, 20, 28, \dots, \frac{n}{2} - 4, \end{cases} \\ \frac{1}{4}(3n+48), & \text{if } i = \frac{n}{2}, \\ \frac{1}{4}(3n+52), & \text{if } i = \frac{n}{2} + 2, \\ \frac{1}{4}(3n+56), & \text{if } i = \frac{n}{2} + 4, \\ \frac{1}{2}(n+6+i), & \text{if } i = 14, 22, 30, \dots, \frac{n}{2} + 6, \\ \frac{1}{2}(n+24+i), & \text{if } i = \frac{n}{2} + 8, \frac{n}{2} + 16, \frac{n}{2} + 24, \dots, n-8, \\ & \cup i = \frac{n}{2} + 10, \frac{n}{2} + 18, \frac{n}{2} + 26, \dots, n-6, \\ & \cup i = \frac{n}{2} + 12, \frac{n}{2} + 20, \frac{n}{2} + 28, \dots, n-4, \\ \frac{1}{2}(n+8+i), & \text{if } i = \frac{n}{2} + 14, \frac{n}{2} + 22, \frac{n}{2} + 30, \dots, n-2. \end{cases}$$

Case 2. $4 < n \equiv 4 \pmod{16}$.

$$\phi(\{2K_1\}) = \{\frac{1}{4}(3n+36), n+8\}$$

and

$$f(w_i) = \begin{cases} \frac{1}{2}(n+22+i), & \text{if } i = 8, 16, 24, \dots, \frac{n}{2} - 2, \\ & \cup i = 10, 18, 26, \dots, \frac{n}{2} - 8, \\ & \cup i = 12, 20, 28, \dots, \frac{n}{2} - 6, \end{cases}$$
$$\frac{1}{4}(3n+48), & \text{if } i = \frac{n}{2}, \\ \frac{1}{4}(3n+52), & \text{if } i = \frac{n}{2} + 2, \\ & \frac{1}{2}(n+6+i), & \text{if } i = 14, 22, 30, \dots, \frac{n}{2} + 4, \end{cases}$$

The labeling of w_i when *i* is even and $i \ge \frac{n}{2} + 6$ is determined by the following subcases. Subcase 2.1. $4 < n \equiv 4 \pmod{48}$.

$$\phi(w_i) = \begin{cases} \frac{1}{2}(n+24+i), & \text{if } i = \frac{n}{2}+6, \frac{n}{2}+12, \frac{n}{2}+18, \dots, n-14, \\ & \cup i = \frac{n}{2}+8, \frac{n}{2}+14, \frac{n}{2}+20, \dots, n-12, \\ n+10, & \text{if } i = n-8, \\ n+7, & \text{if } i = n-6, \\ n+9, & \text{if } i = n-2, \\ \frac{1}{2}(n+12+i), & \text{if } i = \frac{n}{2}+10, \frac{n}{2}+16, \frac{n}{2}+22, \dots, n-4. \end{cases}$$

www.ejgta.org

Subcase 2.2. $n \equiv 20 \pmod{48}$.

When n = 20, define $\phi(w_{16}) = 26$ and $\phi(w_{18}) = 29$. When $n \ge 68$, label the remaining vertices by the following formula.

$$\phi(w_i) = \begin{cases} \frac{1}{2}(n+24+i), & \text{if } i = \frac{n}{2}+6, \frac{n}{2}+12, \frac{n}{2}+18, \dots, n-16, \\ & \cup i = \frac{n}{2}+8, \frac{n}{2}+14, \frac{n}{2}+20, \dots, n-14, \\ n+9, & \text{if } i = n-10, \\ n+6, & \text{if } i = n-8, \\ n+10, & \text{if } i = n-4, \\ n+7, & \text{if } i = n-2, \\ \frac{1}{2}(n+12+i), & \text{if } i = \frac{n}{2}+10, \frac{n}{2}+16, \frac{n}{2}+22, \dots, n-6. \end{cases}$$

Subcase 2.3. Subcase $n \equiv 36 \pmod{48}$.

$$\phi(w_i) = \begin{cases} \frac{1}{2}(n+24+i), & \text{if } i = \frac{n}{2}+6, \frac{n}{2}+12, \frac{n}{2}+18, \dots, n-6, \\ & \cup i = \frac{n}{2}+8, \frac{n}{2}+14, \frac{n}{2}+20, \dots, n-4, \\ \frac{1}{2}(n+12+i), & \text{if } i = \frac{n}{2}+10, \frac{n}{2}+16, \frac{n}{2}+22, \dots, n-2. \end{cases}$$

By Lemma 1.1, $H \cup 2K_1$ is a SEMT graph. Thus, $\mu_s(H) \le 2$ for $n \equiv 0, 4 \pmod{16}$. Finally, as a direct consequence of Lemma 1.2, $\mu_s(H) = +\infty$, if $n \equiv 2 \pmod{4}$.

The following corollary is a direct consequence of applying Theorem 3.2 to the Theorem 3.3.

Corollary 3.1. Let $l \equiv 2 \pmod{4}$, $m \equiv 1 \pmod{2}$ and $n \ge 4$ be positive integers. Then

$$\mu_s(lC_4 \cup mC_n) = \begin{cases} 0, & \text{if } n \equiv 1 \pmod{2}, \\ +\infty, & \text{if } n \equiv 2 \pmod{4}, \end{cases}$$

 $\mu_s(lC_4 \cup mC_n) \le m$, if n = 4 and $n \equiv 8, 12 \pmod{16}$, and $\mu_s(lC_4 \cup mC_n) \le 2m$, if $4 < n \equiv 0, 4 \pmod{16}$.

The following result is obtained by applying Theorems 3.1 and 3.2 to the facts that $\mu_s(2C_4 \cup C_n) = 0$ for $n \equiv 1 \pmod{2}$ and $\mu_s(2C_4 \cup C_n) = +\infty$ for $n \equiv 2 \pmod{4}$.

Corollary 3.2. Let $l \equiv 2 \pmod{4}$, $m \equiv 1 \pmod{2}$, $n \geq 4$ and r be positive integers. Then

$$\mu_s(lC_{4(2r+1)} \cup mC_{n(2r+1)}) = \begin{cases} 0, & \text{if } n \equiv 1 \pmod{2}, \\ +\infty, & \text{if } n \equiv 2 \pmod{4}, \end{cases}$$

Unresolved issues related to these results are detailed as follows.

Open Problem 1. Determine the exact value of $\mu_s(2C_4 \cup C_n)$ when $n \equiv 0, 4 \pmod{16}$. Further, for $l \equiv 2 \pmod{4}$ and $m \equiv 1 \pmod{2}$, find the upper bound of the $\mu_s(lC_{4(2r+1)} \cup mC_{n(2r+1)})$ when $n \equiv 0 \pmod{4}$.

In [2], Chicacz et al. prove that $2C_n$ is VMT for $n \in \{4, 6, 8, 10\}$ and posed a conjecture that, for even value of n, the graph $2C_n$ is VMT. We able to give support of the validity of this conjecture by proving $2C_n$ is EMT for $n \in \{5, 7, 9, 11, 12, 13, 14\}$, see Figure 2. Theorem 3.4 is a direct consequence of applying Theorems 3.1 and 3.2 to these results.

Figure 2. An EMTL of $2C_n$ for $n \in \{5, 7, 9, 11, 12, 13, 14\}$.

Theorem 3.4. Let $m \equiv 2 \pmod{4}$, *r* be positive integers and $n \in \{5, 7, 9, 11, 12, 13, 14\}$. Then $mC_{n(2r+1)}$ has zero EMD.

Based on Theorem 3.4, the following conjecture is proposed.

Conjecture 2. For any integers $m \equiv 2 \pmod{4}$, $n \geq 3$, and $r \geq 1$, the 2-regular graph $mC_{n(2r+1)}$ has zero EMD.

A graph $H \cup kK_1$ is called *pseudo super edge-magic* (PSEM) if there exists a bijection ϕ : $V(H \cup kK_1) \rightarrow \{1, 2, ..., |V(H)| + k\}$ such that $\{\phi(s) + \phi(t) : st \in E(H)\} \cup \{2\phi(u) : u \in kK_1\}$ is a set of |E(H)| + k consecutive integers. In such a case ϕ is called a *pseudo super edge-magic labeling* (PSEML) of $H \cup kK_1$. These concepts was introduced in [9]. It is easy to verify that if H is a 2-regular graph and $H \cup kK_1$ is a PSEM graph, then |V(H)| + k should be an odd integer. We discover that Theorem 3.1 also valid for a PSEM graph $H \cup kK_1$. As an example, see Figure 3. This fact is not mentioned by the authors in [2].

Theorem 3.5. For any integer $n \ge 4$, the following graphs are PSEM. a) $C_n \cup K_1$, if $n \equiv 0 \pmod{2}$. b) $C_n \cup 2K_1$, if $n \equiv 1 \pmod{2}$. c) $C_4 \cup C_n \cup K_1$, if $n \equiv 0 \pmod{4}$. d) $C_4 \cup C_n \cup K_1$, if $n \in \{6, 10, 14, 18, 22, 26\}$. e) $2C_4 \cup C_n \cup K_1$, if $n \equiv 8, 12 \pmod{16}$. *Proof.* a) In [5], Ichishima et al. proved that $\mu_s(C_n) = 1$, if $n \equiv 0 \pmod{4}$. The labeling defined to prove this result actually is a PSEML of $C_n \cup K_1$. Next, for $n \equiv 2 \pmod{4}$, let $V(C_n \cup K_1) = \{u_i : 1 \le i \le n\} \cup \{v\}$ and $E(C_n \cup K_1) = \{u_i u_{i+1} : 1 \le i \le n-1\} \cup \{u_n u_1\}$. Define a vertex labeling $\phi : V(C_n \cup K_1) \to \{1, 2, \dots, n+1\}$ as follows. When n = 6, 10 and 14, set $(\phi(u_1), \phi(u_2), \dots, \phi(u_6); \phi(v))$ to (1, 7, 2, 5, 6, 4; 3), $(\phi(u_1), \phi(u_2), \dots, \phi(u_{10}); \phi(v))$ to (1, 8, 2, 9, 3, 11, 5, 10, 7, 6; 4), and $(\phi(u_1), \phi(u_2), \dots, \phi(u_{14}); \phi(v))$ to (1, 10, 2, 12, 3, 13, 4, 9, 14, 6, 15, 7, 11, 8, 1; 5), respectively. When $n \ge 18$, define

$$\phi(v) = \frac{1}{4}(n+6)$$

and

$$\phi(u_i) = \begin{cases} \frac{1}{2}(1+i), & \text{if } i = 1, 3, 5, \dots, \frac{n}{2}, \\ \frac{1}{4}(n+10), & \text{if } i = \frac{2}{2} + 2, \\ \frac{1}{2}(n+4+i), & \text{if } i = 2, 4, 6, \dots, \frac{1}{2}(n-2). \end{cases}$$

To label the remaining vertices, we consider the following two cases.

Case 1. $n \equiv 2 \pmod{8}$.

$$\phi(u_i) = \begin{cases} \frac{1}{2}(5+i), & \text{if } i = \frac{n}{2} + 4, \frac{n}{2} + 8, \frac{n}{2} + 12, \dots, n-1, \\ \frac{1}{2}(1+i), & \text{if } i = \frac{n}{2} + 6, \frac{n}{2} + 10, \frac{n}{2} + 14, \dots, n-3, \\ \frac{1}{2}(n+6+i), & \text{if } i = \frac{n}{2} + 1, \frac{n}{2} + 5, \frac{n}{2} + 9, \dots, n-4, \\ \frac{1}{2}(n+2+i), & \text{if } i = \frac{n}{2} + 3, \frac{n}{2} + 7, \frac{n}{2} + 11, \dots, n-2, \\ \frac{1}{2}(n+2), & \text{if } i = n. \end{cases}$$

Case 2. $n \equiv 6 \pmod{8}$.

$$\phi(u_i) = \begin{cases} \frac{1}{2}(5+i), & \text{if } i = \frac{n}{2} + 4, \frac{n}{2} + 8, \frac{n}{2} + 12, \dots, n-7, \\ \frac{1}{2}(1+i), & \text{if } i = \frac{n}{2} + 6, \frac{n}{2} + 10, \frac{n}{2} + 14, \dots, n-5, \\ \frac{n}{2}, & \text{if } i = n-3, \\ \frac{1}{2}(n+4), & \text{if } i = n-1, \\ \frac{1}{2}(n+6+i), & \text{if } i = \frac{n}{2} + 1, \frac{n}{2} + 5, \frac{n}{2} + 9, \dots, n-10, \\ \frac{1}{2}(n+2+i), & \text{if } i = \frac{n}{2} + 3, \frac{n}{2} + 7, \frac{n}{2} + 11 \dots, n-8, \\ n-1, & \text{if } i = n-6, \\ n+1, & \text{if } i = n-4, \\ n, & \text{if } i = n-2, \\ \frac{1}{2}(n+2), & \text{if } i = n. \end{cases}$$

It can be checked that $\{\phi(u_i) + \phi(u_{i+1}) : 1 \le i \le n-1\} \cup \{\phi(u_n) + \phi(u_1)\} \cup \{2\phi(v)\}$ is $\{\frac{1}{2}(n+4), \frac{1}{2}(n+6), \dots, \frac{1}{2}(3n+4)\}$. Hence, $C_n \cup K_1$ is a PSEM graph.

b) For odd n, let $V(\overline{C}_n \cup 2K_1) = \{u_i : 1 \le i \le n\} \cup \{v, w\}$ and $E(C_n \cup 2K_1) = \{u_i u_{i+1} : 1 \le i \le n-1\} \cup \{u_n u_1\}$. Define a vertex labeling ϕ of $C_n \cup 2K_1$ as follows.

Case 1. $n \equiv 1 \pmod{4}$.

$$f(\{v,w\}) = \{\frac{1}{2}(n+1), \frac{1}{4}(3n+5)\}$$

and

$$\phi(u_i) = \begin{cases} \frac{1}{2}(1+i), & \text{if } i = 1, 3, 5, \dots, n-2, \\ \frac{1}{2}(n+3), & \text{if } i = n, \\ \frac{1}{2}(n+3+i), & \text{if } i = 2, 4, 6, \dots, \frac{1}{2}(n-5), \\ \frac{1}{2}(n+5+i), & \text{if } i = \frac{1}{2}(n-1), \frac{1}{2}(n+3), \frac{1}{2}(n+7), \dots, n-1 \end{cases}$$

Case 2. $n \equiv 3 \pmod{4}$.

When n = 7 and 11, define $(\phi(u_1), \phi(u_2), \dots, \phi(u_7); \phi(v), \phi(w)) = (1, 7, 2, 9, 4, 8, 6; 3, 5)$ and $(\phi(u_1), \phi(u_2), \dots, \phi(u_{11}); \phi(v), \phi(w)) = (1, 9, 2, 11, 3, 13, 5, 10, 7, 12, 8; 4, 6)$, respectively. When $n \ge 15$, define

$$\phi(\{v,w\}) = \{\frac{1}{2}(n+3), \frac{1}{4}(n+5)\}$$

and

$$\phi(u_i) = \begin{cases} \frac{1}{2}(1+i), & \text{if } i = 1, 3, 5, \dots, \frac{1}{2}(n-1), \\ \frac{1}{2}(n+5+i), & \text{if } i = 2, 4, 6, \dots, \frac{1}{2}(n-3), \\ \frac{1}{4}(n+9), & \text{if } i = \frac{1}{2}(n+3), \end{cases}$$

Subcase 2.1. $n \equiv 3 \pmod{8}$.

$$\phi(u_i) = \begin{cases} \frac{1}{2}(n+7+i), & \text{if } i = \frac{1}{2}(n+1), \frac{1}{2}(n+9), \dots, n-9, \\ \frac{1}{2}(n+3+i), & \text{if } i = \frac{1}{2}(n+5), \frac{1}{2}(n+13), \dots, n-7, \\ n, & \text{if } i = n-5, \\ n+2, & \text{if } i = n-3, \\ n+1, & \text{if } i = n-1, \\ \frac{1}{2}(5+i), & \text{if } i = \frac{1}{2}(n+7), \frac{1}{2}(n+15), \dots, n-6, \\ \frac{1}{2}(1+i), & \text{if } i = \frac{1}{2}(n+11), \frac{1}{2}(n+19), \dots, n-4, \\ \frac{1}{2}(n+1), & \text{if } i = n-2, \\ \frac{1}{2}(n+5), & \text{if } i = n. \end{cases}$$

Subcase 2.1. $n \equiv 7 \pmod{8}$.

$$\phi(x) = \begin{cases} \frac{1}{2}(n+7+i), & \text{if } i = \frac{1}{2}(n+1), \frac{1}{2}(n+9), \dots, n-3, \\ \frac{1}{2}(n+3+i), & \text{if } i = \frac{1}{2}(n+5), \frac{1}{2}(n+13), \dots, n-1, \\ \frac{1}{2}(5+i), & \text{if } i = \frac{1}{2}(n+7), \frac{1}{2}(n+15), \dots, n, \\ \frac{1}{2}(1+i), & \text{if } i = \frac{1}{2}(n+11), \frac{1}{2}(n+19), \dots, n-2. \end{cases}$$

It is a routine procedure to verify that ϕ is a PSEML of G.

c) Let us define $G_n \cong C_4 \cup C_n \cup K_1$, $n \equiv 0 \pmod{4}$, as a graph having

$$V(G_n) = \{u_i : 1 \le i \le 4\} \cup \{v_i : 1 \le i \le n\} \cup \{K_1\}$$

and

$$E(G_n) = \{u_i u_{i+1} : 1 \le i \le 3\} \cup \{u_4 u_1\} \cup \{v_i v_{i+1} : 1 \le i \le n-1\} \cup \{v_n v_1\}$$

Next, define $\phi : V(G_n) \longrightarrow \{1, 2, \dots, n+5\}$ as follows.
Case 1. $n = 4$.

www.ejgta.org

Case 2. $n \ge 8$.

$$\phi(x) = \begin{cases} (1, \frac{1}{2}(n+6), 2, \frac{1}{2}(n+10)), & \text{if } x = (u_1, u_2, u_3, u_4), \\ \frac{1}{2}(i+7), & \text{if } x = v_i \text{ for } i = 1, 5, 9, \dots, n-3, \\ \frac{1}{2}(i+3), & \text{if } x = v_i \text{ for } i = 3, 7, 11, \dots, n-1, \\ \frac{1}{2}(n+8), & \text{if } x = v_n, \\ \frac{1}{4}(3n+16), & \text{if } x = K_1. \end{cases}$$

To label the remaining vertices, we consider the following two subcases.

Case 2.1 $n \equiv 0 \pmod{8}$.

$$\phi(x) = \begin{cases} \frac{1}{2}(n+12+i), & \text{if } x = v_i \text{ for } i = 2, 6, 10, \dots, \frac{n}{2} - 6, \\ \frac{1}{2}(n+8+i), & \text{if } x = v_i \text{ for } i = 4, 8, 12, \dots, \frac{n}{2} - 4, \\ \frac{1}{2}(n+14+i), & \text{if } x = v_i \text{ for } i = \frac{n}{2} - 2, \frac{n}{2} + 2, \frac{n}{2} + 6, \dots, n - 6, \\ \frac{1}{2}(n+10+i), & \text{if } x = v_i \text{ for } i = \frac{n}{2}, \frac{n}{2} + 4, \frac{n}{2} + 8, \dots, n - 4, \\ n+5, & \text{if } x = v_{n-2}. \end{cases}$$

Case 2.2 $n \equiv 4 \pmod{8}$.

$$\phi(x) = \begin{cases} \frac{1}{2}(n+12), & \text{if } x = v_i \text{ for } i = 2, \\ \frac{1}{2}(n+12+i), & \text{if } x = v_i \text{ for } i = 4, 8, 12, \dots, \frac{n}{2} - 6, \\ \frac{1}{2}(n+8+i), & \text{if } x = v_i \text{ for } i = 6, 10, 14, \dots, \frac{n}{2} - 4, \\ \frac{1}{2}(n+14+i), & \text{if } x = v_i \text{ for } i = \frac{n}{2} - 2, \frac{n}{2} + 2, \frac{n}{2} + 6, \dots, n - 4, \\ \frac{1}{2}(n+10+i), & \text{if } x = v_i \text{ for } i = \frac{n}{2}, \frac{n}{2} + 4, \frac{n}{2} + 8, \dots, n - 2. \end{cases}$$

It can be checked that ϕ is a PSEML of G.

d) For $n \in \{6, 10, 14, 18, 22, 26\}$, let $H_n = C_4 \cup C_n \cup K_1$, $V(H_n) = \{s_i : 1 \le i \le 4\} \cup \{t_i : 1 \le i \le n\} \cup \{w\}$ and $E(H_n) = \{s_i s_{i+1} : 1 \le i \le 3\} \cup \{s_4 s_1\} \cup \{t_i t_{i+1} : 1 \le i \le n-1\} \cup \{t_n t_1\} \cup \{ww\}$. It is simple to confirm that $\phi : V(H_n) \to \{1, 2, \dots, n+5\}$ is a PSEML of H_n .

Case 1. n = 6. $(\phi(s_1), \phi(s_2), \phi(s_3), \phi(s_4)) = (1, 11, 2, 7), (\phi(t_1), \phi(t_2), \dots, \phi(t_6)) = (3, 8, 9, 6, 10, 4),$ and $\phi(w) = 5.$

Case 2. n = 10. $(\phi(s_1), \phi(s_2), \phi(s_3), \phi(s_4)) = (1, 15, 2, 9), (\phi(t_1), \phi(t_2), \dots, \phi(t_{10})) = (4, 10, 3, 12, 11, 8, 14, 7, 13, 5), \text{ and } \phi(w) = 6.$

Case 3. n = 14. $(\phi(s_1), \phi(s_2), \phi(s_3), \phi(s_4)) = (1, 19, 2, 11), (\phi(t_1), \phi(t_2), \dots, \phi(t_{14})) = (4, 12, 3, 15, 14, 9, 18, 10, 16, 8, 17, 5, 6, 13), and <math>\phi(w) = 7$.

Case 4. n = 18. $(\phi(s_1), \phi(s_2), \phi(s_3), \phi(s_4)) = (1, 23, 2, 13), (\phi(t_1), \phi(t_2), \dots, \phi(t_{18})) = (4, 14, 3, 20, 10, 17, 18, 11, 21, 12, 22, 9, 19, 7, 6, 16, 5, 15), and <math>\phi(w) = 8.$

Case 5. $n = 22. (\phi(s_1), \phi(s_2), \phi(s_3), \phi(s_4)) = (1, 27, 2, 15), (\phi(t_1), \phi(t_2), \dots, \phi(t_{22})) = (4, 16, 3, 24, 12, 21, 20, 11, 23, 14, 26, 13, 25, 10, 22, 8, 7, 19, 6, 18, 5, 17), and <math>f(w) = 9.$

Case 6. $n = 26. (\phi(s_1), \phi(s_2), \phi(s_3), \phi(s_4)) = (1, 31, 2, 17), (\phi(t_1), \phi(t_2), \dots, \phi(t_{26})) = (4, 18, 3, 28, 13, 30, 16, 29, 15, 27, 12, 26, 14, 23, 24, 11, 25, 9, 8, 22, 7, 21, 6, 20, 5, 19), \text{ and } \phi(w) = 10.$

e) The labeling ϕ in the proof of Theorem 3.3 is a PSEML of $2C_4 \cup C_n \cup K_1$ for $n \equiv 8, 12 \pmod{16}$.

Corollary 3.3 is a direct consequence of applying first Theorem 3.1 and then Theorem 3.2 to the graphs in Theorem 3.5.

Figure 3. (a). A PSEML of $C_5 \cup 2K_1$. (b). A SEMTL of $C_{25} \cup 2C_5$ which is obtained by applying Theorem 3.1 to $C_5 \cup 2K_1.$

Corollary 3.3. Let $m, r \ge 1, l \ge 2$, and $n \ge 4$ be positive integers such that m is odd and $l \equiv 2$ (mod 4). Then all the following graphs have zero SEMD. a) $m[C_{n(2r+1)} \cup C_{2r+1}]$, if $n \equiv 0 \pmod{2}$. b) $m[C_{n(2r+1)} \cup 2C_{2r+1}]$, if $n \equiv 1 \pmod{2}$. c) $m[C_{4(2r+1)} \cup C_{n(2r+1)} \cup C_{2r+1}]$, if $n \equiv 0 \pmod{4}$. d) $m[C_{4(2r+1)} \cup C_{n(2r+1)} \cup C_{2r+1}]$, if $n \in \{6, 10, 14, 18, 22, 26\}$. e) $lC_{4(2r+1)} \cup m[C_{n(2r+1)} \cup C_{2r+1}]$, if $n \equiv 8, 12 \pmod{16}$.

Acknowledgement

The authors express their gratitude to the referee for his/her insightful comments. The first author has been supported by "Hibah Kompetensi 2018", 019/SP2H/K2/KM/2018, from the Directorate General of Higher Education, Indonesia.

References

- [1] A. Ahmad, I. Javaid and M.F. Nadeem, Further results on super edge-magic deficiency of unicyclic graphs, Ars Combin. 99 (2011), 129–138.
- [2] S. Cichacz-Przenioslo, D. Froncek, and I. Singgih, Vertex magic total labelings of 2-regular graphs, Discrete Math., 340 (1) (2017), 3117–3124. DOI: 10.1016/j.disc.2016.06.022
- [3] H. Enomoto, A. Llado, T. Nakamigawa, and G. Ringel, Super edge magic graphs, SUT J. Math., 34 (1998), 105–109.
- [4] R.M. Figueroa-Centeno, R. Ichishima, and F.A. Muntaner-Batle, The place of super edgemagic labelings among other classes of labelings, Discrete Math., 231 (2001), 153-168.

- [5] R.M. Figueroa-Centeno, R. Ichishima, and F.A. Muntaner-Batle, On the super edge-magic deficiency of graphs, *Ars Combin.*, **78** (2002), 33–45.
- [6] R.M. Figueroa-Centeno, R. Ichishima, and F.A. Muntaner-Batle, On edge-magic labelings of certain disjoint unions of graphs, *Australas J. Combin.* **32** (2005), 225–242.
- [7] J.A. Gallian, A dinamic survey of graph labelings, *Electron. J. Combin.* 16 (2024) # DS6.
- [8] J. Holden, D. McQuillan and J.M. McQuillan, A conjecture on strong magic labelings of 2-regular graphs, *Discrete Math.* **309** (2009), 4130–4136.
- [9] R. Ichishima, F.A. Muntaner-Batle and A. Oshima, Enlarging the classes of super edge-magic 2-regular graphs, *AKCE Int. J. Graphs Comb.* **10** (2) (2013), 129–146.
- [10] R. Ichishima and A. Oshima, On the super edge-magic deficiency and α -valuation of graphs, *J. Indones. Math. Soc.* Special Edition (2011), 59–69.
- [11] R. Ichishima and A. Oshima, On the super edge-magic deficiency of 2-regular graphs with two components, *Ars Combin.* **129** (2016), 437–447.
- [12] A. Kotzig and A. Rosa, Magic valuation of finite graphs, *Canad. Math. Bull.* **13** (4) (1970), 451–461.
- [13] V.H. Krisnawati, A.A.G. Ngurah, N. Hidayat, and A.R. Alghofari, On the super edge-magic deficiency of some graphs, *Heliyon* 6 (2020), 1–10.
- [14] A.A.G. Ngurah, On super edge-magic deficiency of chain graphs, J. Combin. Math. Combin. Comput. 103 (2017), 225–236.
- [15] A.A.G. Ngurah and Adiwijaya, New results on the (super) edge-magic deficiency of chain graphs, *International Journal of Mathematics and Mathematical Sciences*, Vol. 2017, Article ID 5156974, 6 pages, https://doi.org/10.1155/2017/5156974.
- [16] A.A.G. Ngurah, E.T. Baskoro, and R. Simanjuntak, On super edge-magic deficiency of graphs, *Australas. J. Combin.* 40 (2008), 3–14.
- [17] A.A.G. Ngurah and R. Simanjuntak, Super edge-magic labelings: deficiency and maximality, *Electron. J. Graph Theory Appl.* **5** (2) (2017), 212–220.
- [18] A.A.G. Ngurah and R. Simanjuntak, Super edge-magic deficiency of join-product graphs, Util. Math. 105 (2017), 279 -- 289.
- [19] A.A.G. Ngurah and R. Simanjuntak, On the super edge-magic deficiency of join product and chain graphs, *Electron. J. Graph Theory Appl.* 7 (1) (2019), 157–167.