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Abstract

A graph G of order p and size q is called edge-magic total if there exists a bijection ϕ from
V (G)∪E(G) to the set {1, 2, . . . , p+ q} such that ϕ(s)+ϕ(st)+ϕ(t) is a constant for every edge
st in E(G). An edge-magic total graph with ϕ(V (G)) = {1, 2, . . . , p} is called super edge-magic
total. Furthermore, the edge-magic deficiency of a graph G is the smallest integer n ≥ 0 such that
G ∪ nK1 is edge-magic total. The super edge-magic deficiency of a graph G is either the smallest
integer n ≥ 0 such that G ∪ nK1 is super edge-magic total or +∞ if there exists no such integer
n. In this paper, we study the (super) edge-magic deficiency of join product graphs and 2-regular
graphs.
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1. Introduction

Let G be a finite and simple graph with vertex set V (G) and edge set E(G) such that p =
|V (G)| and q = |E(G)|. An edge-magic total labeling (EMTL) of a graph G is a bijection ϕ :
V (G)∪E(G) → {1, 2, · · · , p+ q} such that ϕ(s) + ϕ(st) + ϕ(t) is a constant k, called the magic
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constant of ϕ, for every st ∈ E(G). An EMTL ϕ of G is called a super edge-magic total labeling
(SEMTL) if ϕ(V (G)) = {1, 2, · · · , p}. A graph that admits a (S)EMTL is called (super) edge-
magic total ((S)EMT). The notions of an EMTL and an EMT graph were introduced in [12] while
the concepts of a SEMTL and a SEMT graph were introduced in [3].

The next lemma provides necessary and sufficient conditions for a graph to be a SEMT graph.

Lemma 1.1. [4] A graph G is SEMT if and only if there exists a bijection ϕ : V (G) → {1, 2, · · · , p}
such that the set S = {ϕ(s) + ϕ(t) : st ∈ E(G)} is a set of q consecutive integers.

In [12], Kotzig and Rosa also introduced the notion of edge-magic deficiency (EMD) of a
graph. The EMD of a graph G, µ(G), is the minimum integer n ≥ 0 such that G ∪ nK1 is an
EMT graph. Kotzig and Rosa proved that every graph has finite EMD. Figueroa-Centeno et al. [5]
introduced the notion of super edge-magic deficiency (SEMD) of a graph. The SEMD of a graph
G, µs(G), is defined as either the minimum integer n ≥ 0 such that G ∪ nK1 is a SEMT graph or
+∞ if there exists no such integer n. Thus, a (S)EMT graph is a graph with zero (S)EMD. Unlike
the EMD, not all graphs have finite SEMD. Lemma 1.2 provides necessary conditions for a graph
to have infinite SEMD.

Lemma 1.2. [5] If G is a graph with q ≡ 2 (mod 4) edges and every vertex of G has even degrees,
then µs(G) = +∞.

Several papers dealing with (S)EMD of graphs for instants see [1, 14, 15, 16, 17, 18]. The
latest developments in these labelings can be found in [7]. Here, we study the (S)EMD of join
product graphs and 2-regular graphs.

2. SEMD of Join Product Graphs

The join product of two graphs G and H , G +H , is a graph having vertex set V (G) ∪ V (H)
and edge set E(G) ∪ E(H) ∪ {st : s ∈ V (G), t ∈ V (H)}. If H is an isolated vertex, then it is
denoted by G+K1. To present the results on SEMD of join product graphs, we need the following
lemma. First, we define a star Sn as a graph with n+1 vertices where one vertex has degree n and
n vertices have degree one.

Lemma 2.1. Let G be a graph with p ≥ 8 vertices and q = 2p− 3 edges. If µs(G) = 0, then 2C3,
C3 ∪ S3 or 2S3 are subgraphs of G.

Proof. Let ϕ be a SEMTL of G. Since q = 2p − 3, then {ϕ(s) + ϕ(t) : st ∈ E(G)} is a unique
set S = {3, 4, 5, . . . 2p− 1}. To get 3, 4, and 5 in S, vertices with labels 1, 2, and 3 should form a
cycle C3 or vertices with labels 1, 2, 3, and 4 should form a star S3, where vertices with labels 2,
3, and 4 are adjacent to the vertex with label 1. In a similar way, vertices with labels p, p− 1, and
p − 2 should form a cycle C3 or vertices with labels p, p − 1, p − 2 and p − 3 should form a star
S3. Since p ≥ 8, so 1, 2, 3, 4, p− 3, p− 2, p− 1 and p are distinct integers. Thus, we have desire
results.
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Lemma 2 is not true in reverse. Let’s look at graph G in Figure 1 as an example. This graph has
p = 8 vertices, q = 2p−3 = 13 edges, and having subgraphs isomorphic to 2C3, C3∪S3, and 2S3.
Suppose µs(G) = 0 with a SEMTL ϕ. Then, {ϕ(u) + ϕ(v) : uv ∈ E(G)} = {3, 4, 5, . . . , 15}. So,

5ϕ(z) + ϕ(v1) + ϕ(v2) + ϕ(v3) + 2ϕ(u) =
15∑
i=3

i− 2
8∑

i=1

i = 45.

It can be verified that we do not get a SEMTL of G for any solutions of this equation. Thus,
µs(G) ≥ 1. By this fact and the labeling of G ∪K1 in Figure 1, we conclude that µs(G) = 1.

Figure 1. A grap G with 8 vertices and 13 edges having subgraphs 2C3, C3 ∪ S3, and 2S3 and a vertex labeling of
G ∪K1.

In [19], Ngurah and Simanjuntak proved the following lemma. They also showed that the
lemma is attainable by some classes of trees and forests.

Lemma 2.2. [19] Let G be a graph without cycle and isolated vertices. If the SEMD of G+K1 is
zero, then G is a tree or a forest.

We now relax the condition of the Lemma 2.2 as in Lemma 2.3. The proof of Lemma 2.3 is
identical to the proof of Lemma 2.2.

Lemma 2.3. Let G be a graph without isolated vertices. If µs(G + K1) = 0, then G is a tree, a
forest, a union of cycles and trees, or a union of unicyclic graphs and trees.

The corona product, G⊙H , of two graphs G and H is defined as the graph formed by taking
one copy of G and |V (G)| copies of H , then connecting the ith vertex of G to every vertex in the
ith copy of H . If H is an isolated vertex, then it is denoted by G⊙K1. The next results show that
Lemma 2.3 is attainable.

Theorem 2.1. a) µs([Cn ∪ Pm] +K1) = 0 if and only if n = 3 and 2 ≤ m ≤ 4.
b) µs([(C3 ⊙K1) ∪ Pm] +K1) = 0 if and only if 2 ≤ m ≤ 4.

Proof. a) First, let Fn,m = [Cn ∪ Pm] +K1 be a graph with V (Fn,m) = {xi : 1 ≤ i ≤ n} ∪ {yj :
1 ≤ j ≤ m} ∪ {z} and E(Fn,m) = {xixi+1 : 1 ≤ i ≤ n − 1} ∪ {xnx1} ∪ {yjyj+1 : 1 ≤ j ≤
m − 1} ∪ {zxi, zyj : 1 ≤ i ≤ n, 1 ≤ j ≤ m}. Thus, Fn,m has p = n + m + 1 vertices and
q = 2n+ 2m− 1 = 2(n+m+ 1)− 3 edges.

Next, we show that, for m ≥ 5, µs(F3,m) > 0. For m ≥ 5, suppose that µs(F3,m) = 0 with a
SEMTL ϕ. Then, S = {ϕ(u) + ϕ(v) : uv ∈ E(F3,m)} = {3, 4, 5, . . . , 2m + 7}. Notice that F3,m

has no subgraphs isomorphic to 2S3. By Lemma 2.1, we should consider the following cases.
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Case 1. Vertices with labels 1, 2, 3 and vertices with label p = m+4, p− 1, p− 2 form a 2C3.
If {ϕ(x1), ϕ(x2), ϕ(x3)} = {1, 2, 3} and ϕ(z) ∈ {p, p − 1, p − 2} then, we fail to get 6 in S. If
{ϕ(x1), ϕ(x2), ϕ(x3)} = {p, p− 1, p− 2} and ϕ(z) ∈ {1, 2, 3} then, we fail to get 2p− 4 in S.

Case 2. Vertices with labels 1, 2, 3 form a C3 and vertices with labels p, p − 1, p − 2, p − 3
form a S3.
In this case, it is easy to check that we fail to get 6 in S.

Case 3. Vertices with labels p, p− 1, p− 2, form a C3 and vertices with label 1, 2, 3, 4 form a
S3.
In this case, we fail to get 2p− 4 in S. Thus, for m ≥ 5, µs(F3,m) > 0.

Now, we show that, for any n ≥ 4 and m ≥ 2, µs(Fn,m) > 0. Since, for n ≥ 4 and m > 2,
Fn,m is a graph with |V (Fn,m)| ≥ 8 and has no subgraphs isomorphic to 2C3, C3 ∪ S3 and 2S3, by
Lemma 2.1, µs(Fn,m) > 0. Thus, the remaining case is to show that µs(F4,2) > 0. Let µs(F4,2) = 0
and let ϕ be a SEMTL of F4,2. Then, 4ϕ(z) +

∑4
i=1 ϕ(xi) = 32. It is simple to confirm that none

of the equation’s solutions result in a SEMTL of F4,2. Thus, µs(F4,2) > 0.
Finaly, we show that, for 2 ≤ m ≤ 4, µs(F3,m) = 0. Define a vertex labeling ϕ as follows.

{ϕ(x1), ϕ(x2), ϕ(x3)} = {1, 2, 3}, ϕ(z) = 5, for m = 2, set {ϕ(y1), ϕ(y2)} to {4, 6}, for m = 3,
set (ϕ(y1), ϕ(y2), ϕ(y3)) to (4, 6, 7), and for m = 4, set (ϕ(y1), ϕ(y2), ϕ(y3), ϕ(y4)) to (4, 6, 8, 7).

b) Let Hm = [(C3 ⊙K1) ∪ Pm] +K1 be a graph with V (Hm) = {ui, vi : 1 ≤ i ≤ 3} ∪ {wj :
1 ≤ j ≤ m}∪{z} and E(Hm) = {uiui+1 : 1 ≤ i ≤ 2}∪{u3u1}∪{uivi : 1 ≤ i ≤ 3}∪{wjwj+1 :
1 ≤ j ≤ m− 1} ∪ {zui, zvi, zwj : 1 ≤ i ≤ 3, 1 ≤ j ≤ m}. Thus Hm has p = m+ 7 vertices and
q = 2m+ 11 = 2(m+ 7)− 3 edges.

First, we prove that, for 2 ≤ m ≤ 4, µs([(C3 ⊙K1)∪Pm] +K1) = 0. Define a vertex labeling
ϕ as follows. (ϕ(u1), ϕ(u2), ϕ(u3)) = (1, 2, 3), (ϕ(v1), ϕ(v2), ϕ(v3)) = (5, 6, 4), ϕ(z) = 8, for
m = 2, set {ϕ(w1), ϕ(w2)} to {7, 9}, for m = 3, set (ϕ(w1), ϕ(w2), ϕ(w3)) to (7, 9, 10), and for
m = 4, set (ϕ(w1), ϕ(w2), ϕ(w3), ϕ(w4)) to (7, 9, 11, 10). It is simple to confirm that ϕ extends to
a SEMTL of [(C3 ⊙K1) ∪ Pm] +K1 for 2 ≤ m ≤ 4.

Next, suppose that, for any m ≥ 5, µs(Hm) = 0. Then, there exists a SEMTL ϕ of Hm

such that S = {ϕ(u) + ϕ(v) : uv ∈ E(Hm)} = {3, 4, 5, . . . , 2p − 1}, in which we note that
2p− 1 = 2m+ 13. By Lemma 2.1, we should consider three cases.

Case 1. Vertices with labels 1, 2, 3 and vertices with labels p, p− 1, p− 2 form a 2C3.
If (ϕ(u1), ϕ(u2), ϕ(u3)) = (1, 2, 3) and ϕ(z) ∈ {p, p − 1, p − 2} then, to get 6, 7, and 8 in S, set
(ϕ(v1), ϕ(v2), ϕ(v3)) to (5, 6, 4) or (6, 4, 5). Thus, we fail to get 9 in S. If (ϕ(u1), ϕ(u2), ϕ(u3)) =
(p, p−1, p−2) and ϕ(z) ∈ {1, 2, 3} then, to get 2p−4, 2p−5, and 2p−6, set (ϕ(v1), ϕ(v2), ϕ(v3))
to (p− 5, p− 3, p− 4) or (p− 4, p− 5, p− 3). In this case, it is not possible to get 2p− 7 in S.

Case 2. Vertices with labels 1, 2, 3 form a C3 and vertices with labels p, p − 1, p − 2, p − 3
form a S3.
If (ϕ(u1), ϕ(u2), ϕ(u3)) = (1, 2, 3) and ϕ(z) ∈ {p, p− 1, p− 2, p− 3} then, by a similar argument
as in the Case 1, we fail to get 9 in S. If ϕ(z) ∈ {1, 2, 3} and (ϕ(u1), ϕ(u2), ϕ(u3), ϕ(v1)) = (p, p−
2, p−3, p−1), then we fail to get 2p−4 in S. If ϕ(z) ∈ {1, 2, 3} and (ϕ(u1), ϕ(u2), ϕ(u3), ϕ(v1)) =
(p, p− 1, p− 3, p− 2), then we fail to get either 2p− 5 or 2p− 6 in S.

Case 3. Vertices with labels p, p− 1, p− 2 form a C3 and vertices with labels 1, 2, 3, 4 form a
S3.
By a similar argument as in the Case 2, this case also do not lead to a SEMTL of Hm.
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Case 4. Vertices with labels 1, 2, 3, 4 and vertices with labels p, p− 1, p− 2, p− 3 form a 2S3.
If ϕ(z) ∈ {1, 2, 3, 4} and (ϕ(u1), ϕ(u2), ϕ(u3), ϕ(v1)) = (p, p − 2, p − 3, p − 1), then we fail to
get 2p − 4 in S. If ϕ(z) ∈ {1, 2, 3, 4} and (ϕ(u1), ϕ(u2), ϕ(u3), ϕ(v1)) = (p, p − 1, p − 3, p − 2),
then we fail to get either 2p − 5 or 2p − 6 in S. If (ϕ(u1), ϕ(u2), ϕ(u3), ϕ(v1)) = (1, 3, 4, 2) and
ϕ(z) ∈ {p, p−1, p−2, p−3} then, it is not possible to get 6 in S. If (ϕ(u1), ϕ(u2), ϕ(u3), ϕ(v1)) =
(1, 2, 4, 3) and ϕ(z) ∈ {p, p− 1, p− 2, p− 3} then, it is not possible to get either 7 or 8 in S. Thus,
µs(Hm) > 0, if m ≥ 5. This complete the proof of part b).

3. (S)EMD of 2-Regular Graphs

In [8], Holden et al. proved that C5 ∪ (2t)C3, C4 ∪ (2t − 1)C3, and C7 ∪ (2t)C3 are strong
vertex-magic total (SVMT) graphs. It is easy to verify that a (S)VMT 2-regular graph is equivalent
to a (S)EMT 2-regular graph. Based on these results, they posed the Conjecture 1.

Conjecture 1. [8]. Let G be a 2-regular graph of odd order. The graph G is SVMT if and only if
G is not one of C4 ∪ C3, C4 ∪ 3C3 or C5 ∪ 2C3.

Cichacz et al. [2] provide a partial solution to Conjecture 1, introducing a method for generating
(S)VMT labelings of 2-regular graphs.

Theorem 3.1. [2]. Let k ≥ 1 be an integer and F = ∪k
i=1Cni

be a 2-regular graph. If F is a
(S)VMT graph, then G = ∪k

i=1Cmni
is a (S)VMT graph for every odd m ≥ 3.

In [6], Figueroa-Centeno et al. provided the following result.

Theorem 3.2. [6]. If a 3-colorable graph G is (S)EMT, then mG is (S)EMT for any odd integer
m.

As mentioning in [7], Ichishima and Oshima [11] investigate the SEMD of 2-regular graphs
Cm ∪ Cn for m = 3, 4, 5, 7 and any n. Krisnawati et al. [13] investigate the SEMD of a 2-regular
graph with three components, namely 2C3 ∪ Cn. In the next theorem, we study the SEMD of a
2-regular graph 2C4 ∪ Cn.

Theorem 3.3. Let n ≥ 4 be a positive integer. Then

µs(2C4 ∪ Cn) =


0, if n ≡ 1 (mod 2),
1, if n = 4 and n ≡ 8, 12 (mod 16),
+∞, if n ≡ 2 (mod 4),

and µs(2C4 ∪ Cn) ≤ 2, if 4 < n ≡ 0, 4 (mod 16).

Proof. First, let H = 2C4 ∪ Cn be a graph with V (H) = {ui, vi : 1 ≤ i ≤ 4} ∪ {wi : 1 ≤ i ≤ n}
and E(H) = {uiui+1, vivi+1 : 1 ≤ i ≤ 3} ∪ {u4u1, v4v1} ∪ {wiwi+1 : 1 ≤ i ≤ n− 1} ∪ {wnw1}.

Next, we show that the graph H is SEMT if and only if n is odd. If H is a SEMT graph
then its magic constant is 1

2
(5n + 43). So, n should be an odd integer. Next, for odd n ≥ 5

define ϕ : V (H) −→ {1, 2, . . . , n + 8} as follows. (ϕ(u1), ϕ(u2), ϕ(u3), ϕ(u4)) = (1, 1
2
(n +
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9), 2, 1
2
(n + 13)), (ϕ(v1), ϕ(v2), ϕ(v3), ϕ(v4)) = (3, 1

2
(n + 15), 5, 1

2
(n + 17)). When n = 7, label

(ϕ(w1), ϕ(w2), ϕ(w3), ϕ(w4), ϕ(w5), ϕ(w6), ϕ(w7) with (6, 7, 13, 9, 14, 4, 15). When n ≥ 9, define
ϕ(w1) = 4, ϕ(w2) =

1
2
(n+11), ϕ(w3) = n+7, ϕ(w4) =

1
2
(n+7), and label the remaining vertices

as follows.
Case 1. n ≡ 1 (mod 4).

ϕ(wi) =


1
2
(2n+ 21− i), if i = 5, 9, 13, . . . , n,

1
2
(n+ 9− i), if i = 6, 10, 14, . . . , n− 3,

1
2
(2n+ 17− i), if i = 7, 11, 15, . . . , n− 2,

1
2
(n+ 13− i), if i = 8, 12, 16, . . . , n− 1.

Case 2. 7 < n ≡ 3 (mod 4).

ϕ(wi) =



n+ 8, if i = 5,
n+ 6, if i = 7,
6, if i = n− 1,
1
2
(n+ 9− i), if i = 6, 10, 14, . . . , n− 5,

1
2
(n+ 13− i), if i = 8, 12, 16, . . . , n− 3,

1
2
(2n+ 17− i), if i = 9, 13, 17, . . . , n− 2,

1
4
(2n+ 21− i), if i = 11, 15, 19, . . . , n.

It can be checked that {ϕ(x) + ϕ(y) : xy ∈ E(H)} = {1
2
(n + 11), 1

2
(n + 13), . . . , 1

2
(3n + 25)}.

By Lemma 1.1, H is a SEMT graph.
Now, we prove that, for n = 4 and n ≡ 8, 12 (mod 16), µs(H) = 1. If n = 4, µs(3C4) = 1

have been proved in [10] (see Corollary 3.6). Next, for n ≡ 8, 12 (mod 16), consider the graph
H∪K1 and define ϕ : V (H∪K1) −→ {1, 2, . . . , n+9} as follows. (ϕ(u1), ϕ(u2), ϕ(u3), ϕ(u4)) =
(1, 1

2
(n+ 10), 2, 1

2
(n+ 14)), (ϕ(v1), ϕ(v2), ϕ(v3), ϕ(v4)) = (4, 1

2
(n+ 12), 5, 1

2
(n+ 16)), ϕ(w1) =

3, ϕ(w2) = 1
2
(n + 24), ϕ(wi) = 1

2
(i + 9) for i = 3, 5, 7, . . . , n − 1, ϕ(wn) = 1

2
(n + 22), and

ϕ(K1) =
1
4
(3n+ 28).

Case 3. n ≡ 8 (mod 16).

ϕ(wi) =



1
2
(n+ 20), if i = 4,

1
2
(n+ 22 + i), if i = 6, 14, 22, . . . , n

2
− 6,

∪ i = 8, 16, 24, . . . , n
2
− 4,

∪ i = 10, 18, 26, . . . , n
2
− 2,

1
2
(n+ 6 + i), if i = 12, 20, 28, . . . , n

2
,

1
2
(n+ 20 + i), if i = n

2
+ 2, n

2
+ 4, n

2
+ 6, . . . , n− 2.

Case 4. n ≡ 12 (mod 16).

ϕ(wi) =



1
2
(n+ 26), if i = 4,

1
2
(n+ 18), if i = 6,

1
2
(n+ 22 + i), if i = 8, 16, 24, . . . , n

2
− 6,

∪ i = 10, 18, 26, . . . , n
2
− 4,

∪ i = 12, 20, 28, . . . , n
2
− 2,

1
2
(n+ 6 + i), if i = 14, 22, 30, . . . , n

2
,

1
2
(n+ 20 + i), if i = n

2
+ 2, n

2
+ 4, n

2
+ 6, . . . , n− 2.
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It is simple to confirm that, by Lemma 1.1, H ∪K1 a SEMT graph. Hence, µs(H) = 1 for n = 4
and n ≡ 8, 12 (mod 16).

Next, we show that, or 4 < n ≡ 0, 4 (mod 16), µs(H) ≤ 2. Let us consider the graph H ∪ 2K1

and define ϕ : V (H ∪ 2K1) −→ {1, 2, . . . , n + 10} as follows. (ϕ(u1), ϕ(u2), ϕ(u3), ϕ(u4)) =
(1, 1

2
(n + 10), 2, 1

2
(n + 14), (ϕ(v1), ϕ(v2), ϕ(v3), ϕ(v4)) = (4, 1

2
(n + 12), 5, 1

2
(n + 16)), ϕ(w1) =

3, ϕ(w2) =
1
2
(n+24), ϕ(w4) =

1
2
(n+26), ϕ(w6) =

1
2
(n+18), ϕ(wi) =

1
2
(i+9), i = 3, 5, 7, . . . , n−

1, and ϕ(wn) =
1
2
(n+ 22).

Case 1. n ≡ 0 (mod 16).

ϕ({2K1}) = {1
4
(3n+ 40), n+ 7}

and

ϕ(wi) =



1
2
(n+ 22 + i), if i = 8, 16, 24, . . . , n

2
− 8,

∪ i = 10, 18, 26, . . . , n
2
− 6,

∪ i = 12, 20, 28, . . . , n
2
− 4,

1
4
(3n+ 48), if i = n

2
,

1
4
(3n+ 52), if i = n

2
+ 2,

1
4
(3n+ 56), if i = n

2
+ 4,

1
2
(n+ 6 + i), if i = 14, 22, 30, . . . , n

2
+ 6,

1
2
(n+ 24 + i), if i = n

2
+ 8, n

2
+ 16, n

2
+ 24, . . . , n− 8,

∪ i = n
2
+ 10, n

2
+ 18, n

2
+ 26, . . . , n− 6,

∪ i = n
2
+ 12, n

2
+ 20, n

2
+ 28, . . . , n− 4,

1
2
(n+ 8 + i), if i = n

2
+ 14, n

2
+ 22, n

2
+ 30, . . . , n− 2.

Case 2. 4 < n ≡ 4 (mod 16).

ϕ({2K1}) = {1
4
(3n+ 36), n+ 8}

and

f(wi) =



1
2
(n+ 22 + i), if i = 8, 16, 24, . . . , n

2
− 2,

∪ i = 10, 18, 26, . . . , n
2
− 8,

∪ i = 12, 20, 28, . . . , n
2
− 6,

1
4
(3n+ 48), if i = n

2
,

1
4
(3n+ 52), if i = n

2
+ 2,

1
2
(n+ 6 + i), if i = 14, 22, 30, . . . , n

2
+ 4,

The labeling of wi when i is even and i ≥ n
2
+ 6 is determined by the following subcases.

Subcase 2.1. 4 < n ≡ 4 (mod 48).

ϕ(wi) =



1
2
(n+ 24 + i), if i = n

2
+ 6, n

2
+ 12, n

2
+ 18, . . . , n− 14,

∪ i = n
2
+ 8, n

2
+ 14, n

2
+ 20, . . . , n− 12,

n+ 10, if i = n− 8,
n+ 7, if i = n− 6,
n+ 9, if i = n− 2,
1
2
(n+ 12 + i), if i = n

2
+ 10, n

2
+ 16, n

2
+ 22, . . . , n− 4.

49



www.ejgta.org

On (S)EMD of some classes of graphs | Ngurah, Simanjuntak and Baskoro

Subcase 2.2. n ≡ 20 (mod 48).
When n = 20, define ϕ(w16) = 26 and ϕ(w18) = 29. When n ≥ 68, label the remaining

vertices by the following formula.

ϕ(wi) =



1
2
(n+ 24 + i), if i = n

2
+ 6, n

2
+ 12, n

2
+ 18, . . . , n− 16,

∪ i = n
2
+ 8, n

2
+ 14, n

2
+ 20, . . . , n− 14,

n+ 9, if i = n− 10,
n+ 6, if i = n− 8,
n+ 10, if i = n− 4,
n+ 7, if i = n− 2,
1
2
(n+ 12 + i), if i = n

2
+ 10, n

2
+ 16, n

2
+ 22, . . . , n− 6.

Subcase 2.3. Subcase n ≡ 36 (mod 48).

ϕ(wi) =


1
2
(n+ 24 + i), if i = n

2
+ 6, n

2
+ 12, n

2
+ 18, . . . , n− 6,

∪ i = n
2
+ 8, n

2
+ 14, n

2
+ 20, . . . , n− 4,

1
2
(n+ 12 + i), if i = n

2
+ 10, n

2
+ 16, n

2
+ 22, . . . , n− 2.

By Lemma 1.1, H ∪ 2K1 is a SEMT graph. Thus, µs(H) ≤ 2 for n ≡ 0, 4 (mod 16).
Finally, as a direct consequence of Lemma 1.2, µs(H) = +∞, if n ≡ 2 (mod 4).

The following corollary is a direct consequence of applying Theorem 3.2 to the Theorem 3.3.

Corollary 3.1. Let l ≡ 2(mod 4), m ≡ 1(mod 2) and n ≥ 4 be positive integers. Then

µs(lC4 ∪mCn) =

{
0, if n ≡ 1 (mod 2),
+∞, if n ≡ 2 (mod 4),

µs(lC4∪mCn) ≤ m, if n = 4 and n ≡ 8, 12 (mod 16), and µs(lC4∪mCn) ≤ 2m, if 4 < n ≡ 0, 4
(mod 16).

The following result is obtained by applying Theorems 3.1 and 3.2 to the facts that µs(2C4 ∪
Cn) = 0 for n ≡ 1 (mod 2) and µs(2C4 ∪ Cn) = +∞ for n ≡ 2 (mod 4).

Corollary 3.2. Letl ≡ 2(mod 4), m ≡ 1(mod 2), n ≥ 4 and r be positive integers. Then

µs(lC4(2r+1) ∪mCn(2r+1)) =

{
0, if n ≡ 1 (mod 2),
+∞, if n ≡ 2 (mod 4),

Unresolved issues related to these results are detailed as follows.

Open Problem 1. Determine the exact value of µs(2C4 ∪ Cn) when n ≡ 0, 4 (mod 16). Further,
for l ≡ 2 (mod 4) and m ≡ 1 (mod 2), find the upper bound of the µs(lC4(2r+1) ∪mCn(2r+1)) when
n ≡ 0 (mod 4).

In [2], Chicacz et al. prove that 2Cn is VMT for n ∈ {4, 6, 8, 10} and posed a conjecture
that, for even value of n, the graph 2Cn is VMT. We able to give support of the validity of this
conjecture by proving 2Cn is EMT for n ∈ {5, 7, 9, 11, 12, 13, 14}, see Figure 2. Theorem 3.4 is a
direct consequence of applying Theorems 3.1 and 3.2 to these results.
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Figure 2. An EMTL of 2Cn for n ∈ {5, 7, 9, 11, 12, 13, 14}.

Theorem 3.4. Let m ≡ 2(mod 4), r be positive integers and n ∈ {5, 7, 9, 11, 12, 13, 14}. Then
mCn(2r+1) has zero EMD.

Based on Theorem 3.4, the following conjecture is proposed.

Conjecture 2. For any integers m ≡ 2 (mod 4), n ≥ 3, and r ≥ 1, the 2-regular graph mCn(2r+1)

has zero EMD.

A graph H ∪ kK1 is called pseudo super edge-magic (PSEM) if there exists a bijection ϕ :
V (H∪kK1) → {1, 2, . . . , |V (H)|+k} such that {ϕ(s)+ϕ(t) : st ∈ E(H)}∪{2ϕ(u) : u ∈ kK1}
is a set of |E(H)| + k consecutive integers. In such a case ϕ is called a pseudo super edge-magic
labeling (PSEML) of H ∪ kK1. These concepts was introduced in [9]. It is easy to verify that if
H is a 2-regular graph and H ∪ kK1 is a PSEM graph, then |V (H)|+ k should be an odd integer.
We discover that Theorem 3.1 also valid for a PSEM graph H ∪ kK1. As an example, see Figure
3. This fact is not mentioned by the authors in [2].

Theorem 3.5. For any integer n ≥ 4, the following graphs are PSEM.
a) Cn ∪K1, if n ≡ 0 (mod 2).
b) Cn ∪ 2K1, if n ≡ 1 (mod 2).
c) C4 ∪ Cn ∪K1, if n ≡ 0 (mod 4).
d) C4 ∪ Cn ∪K1, if n ∈ {6, 10, 14, 18, 22, 26}.
e) 2C4 ∪ Cn ∪K1, if n ≡ 8, 12 (mod 16).
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Proof. a) In [5], Ichishima et al. proved that µs(Cn) = 1, if n ≡ 0 (mod 4). The labeling
defined to prove this result actually is a PSEML of Cn ∪ K1. Next, for n ≡ 2 (mod 4), let
V (Cn ∪K1) = {ui : 1 ≤ i ≤ n} ∪ {v} and E(Cn ∪K1) = {uiui+1 : 1 ≤ i ≤ n− 1} ∪ {unu1}.
Define a vertex labeling ϕ : V (Cn ∪ K1) → {1, 2, . . . , n + 1} as follows. When n = 6, 10 and
14, set (ϕ(u1), ϕ(u2), . . . , ϕ(u6);ϕ(v)) to (1, 7, 2, 5, 6, 4; 3), (ϕ(u1), ϕ(u2), . . . , ϕ(u10);ϕ(v)) to
(1, 8, 2, 9, 3, 11, 5, 10, 7, 6; 4), and (ϕ(u1), ϕ(u2), . . . , ϕ(u14);ϕ(v)) to (1, 10, 2, 12, 3, 13, 4, 9, 14, 6,
15, 7, 11, 8, 1; 5), respectively. When n ≥ 18, define

ϕ(v) =
1

4
(n+ 6)

and

ϕ(ui) =


1
2
(1 + i), if i = 1, 3, 5, . . . , n

2
,

1
4
(n+ 10), if i = 2

2
+ 2,

1
2
(n+ 4 + i), if i = 2, 4, 6, . . . , 1

2
(n− 2).

To label the remaining vertices, we consider the following two cases.
Case 1. n ≡ 2 (mod 8).

ϕ(ui) =



1
2
(5 + i), if i = n

2
+ 4, n

2
+ 8, n

2
+ 12, . . . , n− 1,

1
2
(1 + i), if i = n

2
+ 6, n

2
+ 10, n

2
+ 14, . . . , n− 3,

1
2
(n+ 6 + i), if i = n

2
+ 1, n

2
+ 5, n

2
+ 9, . . . , n− 4,

1
2
(n+ 2 + i), if i = n

2
+ 3, n

2
+ 7, n

2
+ 11, . . . , n− 2,

1
2
(n+ 2), if i = n.

Case 2. n ≡ 6 (mod 8).

ϕ(ui) =



1
2
(5 + i), if i = n

2
+ 4, n

2
+ 8, n

2
+ 12, . . . , n− 7,

1
2
(1 + i), if i = n

2
+ 6, n

2
+ 10, n

2
+ 14, . . . , n− 5,

n
2
, if i = n− 3,

1
2
(n+ 4), if i = n− 1,

1
2
(n+ 6 + i), if i = n

2
+ 1, n

2
+ 5, n

2
+ 9, . . . , n− 10,

1
2
(n+ 2 + i), if i = n

2
+ 3, n

2
+ 7, n

2
+ 11 . . . , n− 8,

n− 1, if i = n− 6,
n+ 1, if i = n− 4,
n, if i = n− 2,
1
2
(n+ 2), if i = n.

It can be checked that {ϕ(ui) + ϕ(ui+1) : 1 ≤ i ≤ n − 1} ∪ {ϕ(un) + ϕ(u1)} ∪ {2ϕ(v)} is
{1
2
(n+ 4), 1

2
(n+ 6), . . . 1

2
(3n+ 4)}. Hence, Cn ∪K1 is a PSEM graph.

b) For odd n, let V (Cn ∪ 2K1) = {ui : 1 ≤ i ≤ n} ∪ {v, w} and E(Cn ∪ 2K1) = {uiui+1 :
1 ≤ i ≤ n− 1} ∪ {unu1}. Define a vertex labeling ϕ of Cn ∪ 2K1 as follows.

Case 1. n ≡ 1 (mod 4).

f({v, w}) = {1
2
(n+ 1),

1

4
(3n+ 5)}
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and

ϕ(ui) =


1
2
(1 + i), if i = 1, 3, 5, . . . , n− 2,

1
2
(n+ 3), if i = n,

1
2
(n+ 3 + i), if i = 2, 4, 6, . . . , 1

2
(n− 5),

1
2
(n+ 5 + i), if i = 1

2
(n− 1), 1

2
(n+ 3), 1

2
(n+ 7), . . . , n− 1.

Case 2. n ≡ 3 (mod 4).
When n = 7 and 11, define (ϕ(u1), ϕ(u2), . . . , ϕ(u7);ϕ(v), ϕ(w)) = (1, 7, 2, 9, 4, 8, 6; 3, 5) and
(ϕ(u1), ϕ(u2), . . . , ϕ(u11);ϕ(v), ϕ(w)) = (1, 9, 2, 11, 3, 13, 5, 10, 7, 12, 8; 4, 6), respectively. When
n ≥ 15, define

ϕ({v, w}) = {1
2
(n+ 3),

1

4
(n+ 5)}

and

ϕ(ui) =


1
2
(1 + i), if i = 1, 3, 5, . . . , 1

2
(n− 1),

1
2
(n+ 5 + i), if i = 2, 4, 6, . . . , 1

2
(n− 3),

1
4
(n+ 9), if i = 1

2
(n+ 3),

Subcase 2.1. n ≡ 3 (mod 8).

ϕ(ui) =



1
2
(n+ 7 + i), if i = 1

2
(n+ 1), 1

2
(n+ 9), . . . , n− 9,

1
2
(n+ 3 + i), if i = 1

2
(n+ 5), 1

2
(n+ 13), . . . , n− 7,

n, if i = n− 5,
n+ 2, if i = n− 3,
n+ 1, if i = n− 1,
1
2
(5 + i), if i = 1

2
(n+ 7), 1

2
(n+ 15), . . . , n− 6,

1
2
(1 + i), if i = 1

2
(n+ 11), 1

2
(n+ 19), . . . , n− 4,

1
2
(n+ 1), if i = n− 2,

1
2
(n+ 5), if i = n.

Subcase 2.1. n ≡ 7 (mod 8).

ϕ(x) =


1
2
(n+ 7 + i), if i = 1

2
(n+ 1), 1

2
(n+ 9), . . . , n− 3,

1
2
(n+ 3 + i), if i = 1

2
(n+ 5), 1

2
(n+ 13), . . . , n− 1,

1
2
(5 + i), if i = 1

2
(n+ 7), 1

2
(n+ 15), . . . , n,

1
2
(1 + i), if i = 1

2
(n+ 11), 1

2
(n+ 19), . . . , n− 2.

It is a routine procedure to verify that ϕ is a PSEML of G.
c) Let us define Gn

∼= C4 ∪ Cn ∪K1, n ≡ 0 (mod 4), as a graph having

V (Gn) = {ui : 1 ≤ i ≤ 4} ∪ {vi : 1 ≤ i ≤ n} ∪ {K1}

and
E(Gn) = {uiui+1 : 1 ≤ i ≤ 3} ∪ {u4u1} ∪ {vivi+1 : 1 ≤ i ≤ n− 1} ∪ {vnv1}.

Next, define ϕ : V (Gn) −→ {1, 2, . . . , n+ 5} as follows.
Case 1. n = 4.

(ϕ(u1), ϕ(u2), ϕ(u3), ϕ(u4)) = (1, 5, 3, 6), (ϕ(v1), ϕ(v2), ϕ(v3), ϕ(v4)) = (2, 8, 4, 9), ϕ(K1) = 7.
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Case 2. n ≥ 8.

ϕ(x) =


(1, 1

2
(n+ 6), 2, 1

2
(n+ 10)), if x = (u1, u2, u3, u4),

1
2
(i+ 7), if x = vi for i = 1, 5, 9, . . . , n− 3,

1
2
(i+ 3), if x = vi for i = 3, 7, 11, . . . , n− 1,

1
2
(n+ 8), if x = vn,

1
4
(3n+ 16), if x = K1.

To label the remaining vertices, we consider the following two subcases.
Case 2.1 n ≡ 0 (mod 8).

ϕ(x) =



1
2
(n+ 12 + i), if x = vi for i = 2, 6, 10, . . . , n

2
− 6,

1
2
(n+ 8 + i), if x = vi for i = 4, 8, 12, . . . , n

2
− 4,

1
2
(n+ 14 + i), if x = vi for i = n

2
− 2, n

2
+ 2, n

2
+ 6, . . . , n− 6,

1
2
(n+ 10 + i), if x = vi for i = n

2
, n
2
+ 4, n

2
+ 8, . . . , n− 4,

n+ 5, if x = vn−2.

Case 2.2 n ≡ 4 (mod 8).

ϕ(x) =



1
2
(n+ 12), if x = vi for i = 2,

1
2
(n+ 12 + i), if x = vi for i = 4, 8, 12, . . . , n

2
− 6,

1
2
(n+ 8 + i), if x = vi for i = 6, 10, 14, . . . , n

2
− 4,

1
2
(n+ 14 + i), if x = vi for i = n

2
− 2, n

2
+ 2, n

2
+ 6, . . . , n− 4,

1
2
(n+ 10 + i), if x = vi for i = n

2
, n
2
+ 4, n

2
+ 8, . . . , n− 2.

It can be checked that ϕ is a PSEML of G.
d) For n ∈ {6, 10, 14, 18, 22, 26}, let Hn = C4 ∪ Cn ∪K1, V (Hn) = {si : 1 ≤ i ≤ 4} ∪ {ti :

1 ≤ i ≤ n} ∪ {w} and E(Hn) = {sisi+1 : 1 ≤ i ≤ 3} ∪ {s4s1} ∪ {titi+1 : 1 ≤ i ≤ n − 1} ∪
{tnt1} ∪ {ww}. It is simple to confirm that ϕ : V (Hn) → {1, 2, . . . , n+ 5} is a PSEML of Hn.

Case 1. n = 6. (ϕ(s1), ϕ(s2), ϕ(s3), ϕ(s4)) = (1, 11, 2, 7), (ϕ(t1), ϕ(t2), . . . , ϕ(t6)) = (3, 8, 9, 6, 10, 4),
and ϕ(w) = 5.
Case 2. n = 10. (ϕ(s1), ϕ(s2), ϕ(s3), ϕ(s4)) = (1, 15, 2, 9), (ϕ(t1), ϕ(t2), . . . , ϕ(t10)) = (4, 10, 3, 12, 11,
8, 14, 7, 13, 5), and ϕ(w) = 6.
Case 3. n = 14. (ϕ(s1), ϕ(s2), ϕ(s3), ϕ(s4)) = (1, 19, 2, 11), (ϕ(t1), ϕ(t2), . . . , ϕ(t14)) = (4, 12, 3, 15, 14,
9, 18, 10, 16, 8, 17, 5, 6, 13), and ϕ(w) = 7.
Case 4. n = 18. (ϕ(s1), ϕ(s2), ϕ(s3), ϕ(s4)) = (1, 23, 2, 13), (ϕ(t1), ϕ(t2), . . . , ϕ(t18)) = (4, 14, 3, 20, 10,
17, 18, 11, 21, 12, 22, 9, 19, 7, 6, 16, 5, 15), and ϕ(w) = 8.
Case 5. n = 22. (ϕ(s1), ϕ(s2), ϕ(s3), ϕ(s4)) = (1, 27, 2, 15), (ϕ(t1), ϕ(t2), . . . , ϕ(t22)) = (4, 16, 3, 24, 12,
21, 20, 11, 23, 14, 26, 13, 25, 10, 22, 8, 7, 19, 6, 18, 5, 17), and f(w) = 9.
Case 6. n = 26. (ϕ(s1), ϕ(s2), ϕ(s3), ϕ(s4)) = (1, 31, 2, 17), (ϕ(t1), ϕ(t2), . . . , ϕ(t26)) = (4, 18, 3, 28, 13,
30, 16, 29, 15, 27, 12, 26, 14, 23, 24, 11, 25, 9, 8, 22, 7, 21, 6, 20, 5, 19), and ϕ(w) = 10.

e) The labeling ϕ in the proof of Theorem 3.3 is a PSEML of 2C4 ∪ Cn ∪ K1 for n ≡ 8, 12
(mod 16).

Corollary 3.3 is a direct consequence of applying first Theorem 3.1 and then Theorem 3.2 to
the graphs in Theorem 3.5.
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Figure 3. (a). A PSEML of C5 ∪ 2K1. (b). A SEMTL of C25 ∪ 2C5 which is obtained by applying Theorem 3.1 to
C5 ∪ 2K1.

Corollary 3.3. Let m, r ≥ 1, l ≥ 2, and n ≥ 4 be positive integers such that m is odd and l ≡ 2
(mod 4). Then all the following graphs have zero SEMD.
a) m[Cn(2r+1) ∪ C2r+1], if n ≡ 0 (mod 2).
b) m[Cn(2r+1) ∪ 2C2r+1], if n ≡ 1 (mod 2).
c) m[C4(2r+1) ∪ Cn(2r+1) ∪ C2r+1], if n ≡ 0 (mod 4).
d) m[C4(2r+1) ∪ Cn(2r+1) ∪ C2r+1], if n ∈ {6, 10, 14, 18, 22, 26}.
e) lC4(2r+1) ∪m[Cn(2r+1) ∪ C2r+1], if n ≡ 8, 12 (mod 16).
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