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Abstract

A symmetric triple-hyperstar is a connected, 3-uniform hypergraph where, for some edge {a, b, c},
vertices a, b, and c all have degree k > 1 and all other edges contain exactly 2 vertices of degree 1.
Let H denote the symmetric triple-hyperstar with 4 edges and, for positive integers λ and v, let
λK

(3)
v denote the λ-fold complete 3-uniform hypergraph on v vertices. We find maximum packings

of λK(3)
v with copies of H .
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1. Introduction

A hypergraph H consists of a finite, nonempty set V of vertices and a finite collection E =
{e1, e2, . . . , em} of nonempty subsets of V called hyperedges or simply edges. For a given hyper-
graph H , we use V (H) and E(H) to denote the vertex set and the edge set (or multiset) of H ,
respectively. We call |V (H)| and |E(H)| the order and size of H , respectively. A hypergraph H
is simple if no edge appears more than once in E(H). If for each e ∈ E(H) we have |e| = t,
then H is said to be t-uniform. Thus t-uniform hypergraphs are generalizations of the concept
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of a graph (where t = 2). Graphs with repeated edges are often called multigraphs. If H is a
simple hypergraph and λ is a positive integer, then λ-fold H , denoted λH , is the multi-hypergraph
obtained from H by repeating each edge exactly λ times. The hypergraph with vertex set V and
edge set the set of all t-element subsets of V is called the complete t-uniform hypergraph on V and
is denoted by K(t)

V . If v = |V |, then λK
(t)
v is called the λ-fold complete t-uniform hypergraph of

order v and is used to denote any hypergraph isomorphic to λK
(t)
V . When t = 2, we will use λKv in

place of λK(2)
v . Similarly, if λ = 1, then we will use K(t)

v in place of 1K
(t)
v . If H ′ is a subhypergraph

of H , then H \H ′ denotes the hypergraph obtained from H by deleting the edges of H ′. We may
refer to H \H ′ as the hypergraph H with a hole H ′. The vertices in H ′ may be referred to as the
vertices in the hole.

A commonly studied problem in combinatorics concerns decompositions of graphs or multi-
graphs into edge-disjoint subgraphs. A decomposition of a multigraphK is a set ∆ = {G1, G2, . . . ,
Gs} of subgraphs of K such that {E(G1), E(G2), . . . , E(Gs)} is a partition of E(K). If each el-
ement of ∆ is isomorphic to a fixed graph G, then ∆ is called a G-decomposition of K. If exactly
one element L ∈ ∆ is not isomorphic to G, then ∆ is called a G-packing of K with leave L. Such
aG-packing is maximum if no other possibleG-packing ofK has a leave of a smaller size than that
of L. Clearly, if |E(L)| < |E(G)|, then theG-packing is maximum. Moreover, aG-decomposition
of K can be viewed as a maximum G-packing with an empty leave.

A G-decomposition of λKv is also known as a G-design of order v and index λ. A Kk-design
of order v and index λ is usually known as a 2-(v, k, λ) design or as a balanced incomplete block
design of index λ or a (v, k, λ)-BIBD. The problem of determining all v for which there exists a
G-design of order v is of special interest (see [1] for a survey).

The notion of decompositions of graphs naturally extends to hypergraphs. A decomposition
of a hypergraph K is a set ∆ = {H1, H2, . . . , Hs} of subhypergraphs of K such that {E(H1),
E(H2), . . . , E(Hs)} is a partition of E(K). Any element of ∆ isomorphic to a fixed hypergraph
H is called an H-block. If all elements of ∆ are H-blocks, then ∆ is called an H-decomposition
of K. If exactly one element L ∈ ∆ is not an H-block, then ∆ is called an H-packing of K
with leave L, where we again define such a packing to be maximum if L has the fewest edges
possible. An H-decomposition of λK(t)

v is called an H-design of order v and index λ. The problem
of determining all v for which there exists an H-design of order v and index λ is called the λ-fold
spectrum problem for H-designs.

A K
(t)
k -design of order v and index λ is a generalization of 2-(v, k, λ) designs and is known

as a t-(v, k, λ) design or simply as a t-design. A summary of results on t-designs appears in
[16]. A t-(v, k, 1) design is also known as a Steiner system and is denoted by S(t, v, k) (see
[9] for a summary of results on Steiner systems). Keevash [15] has recently shown that for all
t and k the obvious necessary conditions for the existence of an S(t, k, v)-design are sufficient
for sufficiently large values of v. Similar results were obtained by Glock, Kühn, Lo, and Osthus
[10, 11] and extended to include the corresponding asymptotic results for H-designs of order v for
all uniform hypergraphs H . These results for t-uniform hypergraphs mirror the celebrated results
of Wilson [24] for graphs. Although these asymptotic results assure the existence of H-designs
for sufficiently large values of v for any uniform hypergraph H , the spectrum problem has been
settled for very few hypergraphs of uniformity larger than 2.
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In the study of graph decompositions, a fair amount of the focus has been onG-decompositions
of Kv where G is a graph with a relatively small number of edges (see [1] and [6] for known re-
sults). Some authors have investigated the corresponding problem for 3-uniform hypergraphs. For
example, in [4], the 1-fold spectrum problem is settled for all 3-uniform hypergraphs on 4 or fewer
vertices. More recently, the 1-fold spectrum problem was settled in [5] for all 3-uniform hyper-
graphs with at most 6 vertices and at most 3 edges. In [5], they also settle the 1-fold spectrum
problem for the 3-uniform hypergraph of order 6 whose edges form the lines of the Pasch con-
figuration. Authors have also considered H-designs where H is a 3-uniform hypergraph whose
edge set is defined by the faces of a regular polyhedron. Let T , O, and I denote the tetrahedron,
the octahedron, and the icosahedron hypergraphs, respectively. The hypergraph T is the same as
K

(3)
4 , and its spectrum was settled in 1960 by Hanani [12]. In another paper [13], Hanani settled

the spectrum problem for O-designs and gave necessary conditions for the existence of I-designs.
The 1-fold spectrum problem is also settled for a type of 3-uniform hyperstars which is part of a
larger class of hypergraphs known as delta-systems. For a positive integer m, let S(3)

m denote the
3-uniform hypergraph of size m that consists of one vertex of degree m and 2m vertices of degree
one. Necessary and sufficient conditions for the existence of S(3)

m -decompositions ofK(3)
v are given

in [22] for m ∈ {4, 5, 6} and settled in [19] for any m. Some results on maximum S
(3)
m -packings

of K(3)
v are given in [20]. Perhaps the best known general result on decompositions of complete

t-uniform hypergraphs is Baranyai’s result [3] on the existence of 1-factorizations of K(t)
mt for all

positive integers m. There are, however, several articles on decompositions of complete t-uniform
hypergraphs (see [2] and [21]) and of t-uniform t-partite hypergraphs (see [17] and [23]) into vari-
ations on the concept of a Hamilton cycle. There are also several results on decompositions of
3-uniform hypergraphs into structures known as Berge cycles with a given number of edges (see
for example [14] and [18]). We note however that the Berge cycles in these decompositions are not
required to be isomorphic.

In this paper we are interested in maximum H-packings of λK
(3)
v , where H is a 3-uniform

symmetric triple-hyperstar with 4 edges. A triple-hyperstar is a connected 3-uniform hypergraph
where, for some edge {a, b, c}, vertices a, b, and c all have degree greater than 1 and all other
edges contain exactly two vertices of degree 1. That is, if the degrees of vertices a, b, and c in the
triple-hyperstar are m1 + 1, m2 + 1, and m3 + 1, respectively, then the removal of edge {a, b, c}
would result in the hypergraph consisting of three components, namely S(3)

m1 , S(3)
m2 , and S(3)

m3 . We
call such a triple-hyperstar symmetric if m1 = m2 = m3 = m. Thus a symmetric triple-hyperstar
has 6m+ 3 vertices and 3m+ 1 edges. We are interested in the case m = 1.

Let H[v1, v2, v3, v4, v5, v6, v7, v8, v9] denote the symmetric triple-hyperstar H with vertex set{
v1, v2, v3, v4, v5, v6, v7, v8, v9

}
and edge set

{
{v1, v2, v3}, {v1, v4, v5}, {v2, v6, v7}, {v3, v8, v9}

}
as seen Figure 1. Here we show that for all v ≥ 9 and λ ≥ 1, there exists a maximum H-packing
of λK(3)

v where the leave has fewer than 4 edges.

1.1. Additional Notation and Terminology
Let Zn denote the group of integers modulo n. We next define some notation for certain types

of 3-uniform hypergraphs.
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v1

v4 v5

v2
v6

v7

v3

v8

v9

Figure 1. The symmetric triple-hyperstar H of size 4, denoted by H[v1, v2, v3, v4, v5, v6, v7, v8, v9].

Let U1, U2, U3 be pairwise disjoint sets. The hypergraph with vertex set U1 ∪U2 ∪U3 and edge
set consisting of all 3-element sets having exactly one vertex in each of U1, U2, U3 is denoted by
K

(3)
U1,U2,U3

. The hypergraph with vertex set U1 ∪ U2 and edge set consisting of all 3-element sets
having at most 2 vertices in each of U1, U2 is denoted by L(3)

U1,U2
. If |Ui| = ui for i ∈ {1, 2, 3},

we may use K(3)
u1,u2,u3 or L(3)

u1,u2 to denote any hypergraph that is isomorphic to K(3)
U1,U2,U3

or L(3)
U1,U2

,
respectively.

2. Main Results

2.1. Decompositions and Packings of Simple Hypergraphs

We begin by giving necessary conditions for the existence of an H-decomposition of K(3)
v . An

obvious necessary condition is that 4 must divide the number of edges in K(3)
v , and thus we must

have v ≡ 0, 1, 2, 4, or 6 (mod 8). Since K(3)
1 and K(3)

2 contain no edges, it is vacuously true that
H decomposes K(3)

1 and K(3)
2 . Also, since H has order 9, there is no H-decomposition of K(3)

4 ,
K

(3)
6 , or K(3)

8 . Hence, we have the following.

Lemma 1. There exists an H-decomposition of K(3)
v only if v ≡ 0, 1, 2, 4, or 6 (mod 8) and

v 6∈ {4, 6, 8}.

We intend to prove that the above conditions are sufficient by showing how to construct H-
decompositions of K(3)

v for all v ≡ 0, 1, 2, 4, or 6 (mod 8) with v ≥ 9. Our constructions are
dependent on the many small examples given in the Appendix. We begin by proving a lemma that
is fundamental to our constructions.

Lemma 2. Let n, x, and r be nonnegative integers such that nx + r ≥ 3. There exists a decom-
position of K(3)

nx+r that is comprised of isomorphic copies of each of the following under the given
conditions:

• K(3)
r if x = 0,

• K(3)
n+r if x ≥ 1,
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• K(3)
n+r \K

(3)
r if x ≥ 2,

• K(3)
r,n,n ∪ L(3)

n,n if x ≥ 2,

• K(3)
n,n,n if x ≥ 3.

Furthermore, if x ≥ 1 and r ≥ 3, then the decomposition contains exactly one isomorphic copy of
K

(3)
n+r.

Proof. If x ∈ {0, 1}, the decomposition is trivial. Similarly, if n = 0, then r ≥ 3, and the result is
trivial because K(3)

r = K
(3)
n+r = K

(3)
nx+r while K(3)

n+r \K
(3)
r , K(3)

r,n,n ∪ L(3)
n,n, and K(3)

n,n,n are all empty
(i.e., contain no edges). For the remainder of the proof, we assume that x ≥ 2 and n ≥ 1.

Let V0, V1, . . . , Vx be pairwise disjoint sets of vertices with |V0| = r and |V1| = |V2| = · · · =

|Vx| = n. Then, the decomposition of K(3)
nx+r results from the fact that the complete 3-uniform

hypergraph on the vertex set V0 ∪ V1 ∪ · · · ∪ Vx, which is nx + r vertices, can be viewed as the
(edge-disjoint) union

K
(3)
V1∪V0 ∪

⋃
2≤i≤x

(
K

(3)
Vi∪V0 \K

(3)
V0

)
∪

⋃
1≤i<j≤x

(
K

(3)
V0,Vi,Vj

∪ L(3)
Vi,Vj

)
∪

⋃
1≤i<j<k≤x

(
K

(3)
Vi,Vj ,Vk

)
.

In addition, if r ≥ 3, the single isomorphic copy of K(3)
n+r in the decomposition is K(3)

V1∪V0 .

We now give our main results.

Theorem 3. There exists an H-decomposition of K(3)
v if and only if v ≡ 0, 1, 2, 4, or 6 (mod 8)

and v 6∈ {4, 6, 8}.

Proof. The necessary conditions for the existence of an H-decomposition of K(3)
v are established

in Lemma 1. Thus we need only to establish their sufficiency. Let v = 8x + r where x ≥ 1

and r ∈ {1, 2, 4, 6, 8}. By Lemma 2 it suffices to find H-decompositions of K(3)
8+r, K

(3)
8+r \ K

(3)
r ,

K
(3)
r,8,8 ∪ L

(3)
8,8, and K(3)

8,8,8. We note that if r ∈ {1, 2} then K(3)
8+r \K

(3)
r is isomorphic to K(3)

8+r. Also,
K

(3)
3,8,8 decomposesK(3)

6,8,8, andK(3)
4,8,8 decomposesK(3)

8,8,8. Thus, it suffices to findH-decompositions
of K(3)

9 , K(3)
10 , K(3)

12 , K(3)
14 , K(3)

16 , K(3)
12 \ K

(3)
4 , K(3)

14 \ K
(3)
6 , K(3)

16 \ K
(3)
8 , K(3)

1,8,8 ∪ L
(3)
8,8, K

(3)
2,8,8 ∪ L

(3)
8,8,

K
(3)
3,8,8, K

(3)
4,8,8, and L(3)

8,8, which are each shown to exist within Examples 1–16.

Theorem 4. If v ≥ 9 is an integer, then there exists a maximum H-packing of K(3)
v where the

leave has fewer than four edges.

Proof. If v ≡ 0, 1, 2, 4, or 6 (mod 8), then the result follows from the H-decomposition result
in Theorem 3, which translates to a maximum H-packing with an empty leave. Hence, we need
only consider when v ≡ 3, 5, or 7 (mod 8). Let v = 8x + r where x ≥ 1 and r ∈ {3, 5, 7}. By
Lemma 2 it suffices to find

• a maximum H-packing of K(3)
8+r with a leave consisting of fewer than four edges and

• H-decompositions of K(3)
8+r \K

(3)
r , K(3)

r,8,8 ∪ L
(3)
8,8, and K(3)

8,8,8.
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We note that an H-decomposition of K(3)
11 \K

(3)
3 is a subset of an H-packing of K(3)

11 with a leave
consisting of the single edge in the hole, which is necessarily then a maximum H-packing of K(3)

11 .
Also, K(3)

7,8,8 is decomposable into copies of K(3)
3,8,8 and K(3)

4,8,8, and K(3)
4,8,8 decomposes K(3)

8,8,8. Thus,
it suffices to find maximum H-packings (with leaves of fewer than four edges) of K(3)

11 , K(3)
13 , and

K
(3)
15 , which are each shown to exist in Examples 17–19, and H-decompositions of K(3)

13 \ K
(3)
5 ,

K
(3)
15 \ K

(3)
7 , K(3)

3,8,8, K(3)
4,8,8, K(3)

5,8,8, and L(3)
8,8, which are each shown to exist within Examples 6–

15.

2.2. Results for any Positive Index

We show here the necessary conditions for an H-decomposition of λ-fold K(3)
v for any positive

integer λ. This will inform our choice on which combinations of λ and v we search for decompo-
sitions of λK(3)

v versus finding maximum packings.

Lemma 5. Let v ≥ 9 be an integer. There exists an H-decomposition of λ-fold K(3)
v only if the

following hold:

• if gcd(λ, 4) = 1, then v ≡ 0, 1, 2, 4, or 6 (mod 8);

• if gcd(λ, 4) = 2, then v ≡ 0, 1, or 2 (mod 4);

• if gcd(λ, 4) = 4, then v ≥ 9.

Proof. Suppose there exists an H-decomposition of λK
(3)
v . Since |E(H)| = 4, we must have

4 | λ
(
v
3

)
= λv(v − 1)(v − 2)/6, and thus 8 | λv(v − 1)(v − 2). First, if gcd(λ, 4) = 1, then

8 | v(v − 1)(v − 2), and thus v ≡ 0, 1, 2, 4, or 6 (mod 8). Second, if gcd(λ, 4) = 2, then 4 |
v(v−1)(v−2), and thus v ≡ 0, 1, or 2 (mod 4). Finally, if gcd(λ, 4) = 4, then 2 | v(v−1)(v−2),
which is true for any v ≥ 9.

Next, we settle the decomposition and maximum packing results for some small values of λ.

Theorem 6. Let v ≥ 9 be an integer. There exists an H-decomposition of 2-fold K(3)
v if v ≡ 0, 1,

or 2 (mod 4).

Proof. If v ≡ 0, 1, 2, 4, or 6 (mod 8), then the result follows from 2 copies of anH-decomposition
of K(3)

v , which exists by Theorem 3. Hence, we need only consider when v ≡ 5 (mod 8).
First, we consider when v = 13. Let v1, v2, . . . , v9 ∈ V

(
K

(3)
v

)
. By Example 18, there exist

both a maximum H-packing, say ∆1, of K(3)
13 with a leave consisting of two edges that share a

single vertex and a maximum H-packing, say ∆2, of K(3)
13 with a leave consisting of two vetex-

disjoint edges. Let L1 and L2 be the leaves of ∆1 and ∆2, respectively. Without loss of generality,
we may assume that

E(L1) =
{
{v1, v2, v3}, {v1, v4, v5}

}
,

E(L2) =
{
{v2, v6, v7}, {v3, v8, v9}

}
.
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Now, let L′ be the hypergraph with edge set E(L1) ∪ E(L2). Hence, L′ is isomorphic to H , and
the (multi-)set (

∆1 \ {L1}
)
∪
(
∆2 \ {L2}

)
∪ {L′}

is a collection of H-blocks such that each edge of K(3)
13 is represented exactly twice. Therefore, we

have an H-decomposition of 2K
(3)
13 .

Now, let v = 8x + 5 where x ≥ 2. By Lemma 2 it suffices to find H-decompositions of
(2-fold) K(3)

13 , K(3)
13 \K

(3)
5 , K(3)

5,8,8 ∪L
(3)
8,8, and K(3)

8,8,8. We note that K(3)
4,8,8 decomposes K(3)

8,8,8, and we
already have that H decomposes 2K

(3)
13 . Thus, we need only additionally find H-decompositions of

K
(3)
13 \K

(3)
5 , K(3)

5,8,8, L
(3)
8,8, and K(3)

4,8,8, which exist by Examples 13, 11, 6, and 10, respectively.

Theorem 7. If v ≥ 9 is an integer, then there exists a maximum H-packing of 2-fold K(3)
v where

the leave has no edges or two vertex-disjoint edges.

Proof. If v ≡ 0, 1, or 2 (mod 4), then the result follows from the H-decomposition result in
Theorem 6, which translates to a maximum H-packing with an empty leave. Hence, we need only
consider when v ≡ 3 (mod 4).

First, we consider when v = 11. Let ∆1 and ∆2 be maximum H-packings of K(3)
11 with leaves

L1 and L2, respectively, which exist by Example 17. Now, let L′ be the hypergraph with edge
(multi-)set E(L1) ∪ E(L2). Hence, L′ consists of two edges. In fact, we further note that L′ can
be any hypergraph with two edges, including 2K

(3)
3 . Hence, the (multi-)set(

∆1 \ {L1}
)
∪
(
∆2 \ {L2}

)
∪ {L′}

is a maximum H-packing of 2K
(3)
11 with a leave, L′, consisting of two (possibly vertex-disjoint)

edges.
Second, we consider when v = 15. Let v1, v2, . . . , v9 ∈ V

(
K

(3)
v

)
. By Example 19, there exist

maximum H-packings of K(3)
15 where the leaves consist of three disjoint edges. Let ∆1 and ∆2 be

such H-packings of K(3)
15 with leaves L1 and L2, respectively. Without loss of generality, we may

assume that

E(L1) =
{
{v1, v2, v3}, {v4, v5, v6}, {v7, v8, v9}

}
,

E(L2) =
{
{v1, v4, v5}, {v2, v6, v7}, {v3, v8, v9}

}
.

Now, let L′ be the hypergraph with edge set E(L1) ∪ E(L2). We note that L′ is decomposable
into copies of K(3)

3 and H . That is, if we let L′′ be the hypergraph with edge set
{
{v4, v5, v6},

{v7, v8, v9}
}

, then L′ \ L′′ is isomorphic to H , and the (multi-)set(
∆1 \ {L1}

)
∪
(
∆2 \ {L2}

)
∪ {L′ \ L′′, L′′}

is a maximum H-packing of 2K
(3)
15 with a leave, L′′, consisting of two (disjoint) edges.

Now, let v = 8x+ r where x ≥ 2 and r ∈ {3, 7}. By Lemma 2 it suffices to find
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• a maximum H-packing of (2-fold) K(3)
8+r with a leave consisting of fewer than four edges

and

• H-decompositions of K(3)
8+r \K

(3)
r , K(3)

r,8,8 ∪ L
(3)
8,8, and K(3)

8,8,8.

We already have the maximum H-packing results. Also, we note that K(3)
7,8,8 is decomposable into

copies of K(3)
3,8,8 and K(3)

4,8,8, and K(3)
4,8,8 decomposes K(3)

8,8,8, Thus, we need only additionally find
H-decompositions of K(3)

11 \ K
(3)
3 , K(3)

15 \ K
(3)
7 , K(3)

3,8,8, K
(3)
4,8,8, and L(3)

8,8, which exist by Examples
17, 15, 9, 10, and 6, respectively.

Theorem 8. If v ≥ 9 is an integer, then there exists a maximum H-packing of 3-fold K(3)
v where

the leave has fewer than four edges.

Proof. If v ≡ 0, 1, 2, 4, or 6 (mod 8), then the result follows from the H-decomposition result in
Theorem 3, which translates to a maximum H-packing with an empty leave. Hence, we need only
consider when v ≡ 3, 5, or 7 (mod 8).

First, we consider when v = 11. Let ∆1 be a maximum H-packing of K(3)
11 with leave L1

consisting of a single edge, which exists by Example 17, and let ∆2 be a maximum H-packing
of 2K

(3)
11 with leave L2 consisting of two edges, which exists by Theorem 7, Now, let L′ be the

hypergraph with edge (multi-)set E(L1) ∪ E(L2). Hence, L′ consists of three edges. In fact, we
further note that L′ can be any hypergraph with three edges, including 3K

(3)
3 . Hence, the (multi-)set(

∆1 \ {L1}
)
∪
(
∆2 \ {L2}

)
∪ {L′}

is a maximum H-packing of 3K
(3)
11 with a leave, L′, consisting of three edges.

Second, we consider when v = 13. Let ∆1 be a maximum H-packing of K(3)
13 with leave L1

consisting of two edges, which exists by Example 18, and let ∆2 be an H-decomposition of 2K
(3)
13 ,

which exists by Theorem 6, Hence, the (multi-)set ∆1 ∪ ∆2 is a maximum H-packing of 3K
(3)
13

with a leave, L1, consisting of two edges.
Third, we consider when v = 15. Let v1, v2, . . . , v9 ∈ V

(
K

(3)
v

)
, let ∆1 be a maximum

H-packing of K(3)
15 with leave L1 consisting of a three vertex-disjoint edges, which exists by Ex-

ample 19, and let ∆2 be a maximum H-packing of 2K
(3)
15 with leave L2 consisting of two vertex-

disjoint edges, which exists by Theorem 7, Without loss of generality, we may assume that

E(L1) =
{
{v1, v4, v5}, {v2, v6, v7}, {v3, v8, v9}

}
,

E(L2) =
{
{v1, v2, v3}, {v4, v5, v6}

}
.

Now, let L′ be the hypergraph with edge set E(L1)∪E(L2). We note that L′ is decomposable into
copies of K(3)

3 and H . That is, if we let L′′ be the hypergraph with the single edge {v4, v5, v6},
then L′ \ L′′ is isomorphic to H , and the (multi-)set(

∆1 \ {L1}
)
∪
(
∆2 \ {L2}

)
∪ {L′ \ L′′, L′′}

is a maximum H-packing of 3K
(3)
15 with a leave, L′′, consisting of one edges.

Now, let v = 8x+ r where x ≥ 2 and r ∈ {3, 5, 7}. By Lemma 2 it suffices to find
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• a maximum H-packing of (3-fold) K(3)
8+r with a leave consisting of fewer than four edges

and

• H-decompositions of K(3)
8+r \K

(3)
r , K(3)

r,8,8 ∪ L
(3)
8,8, and K(3)

8,8,8.

We already have the maximum H-packing results. Also, we note that K(3)
7,8,8 is decomposable into

copies of K(3)
3,8,8 and K(3)

4,8,8, and K(3)
4,8,8 decomposes K(3)

8,8,8, Thus, we need only additionally find
H-decompositions of K(3)

11 \ K
(3)
3 , K(3)

13 \ K
(3)
5 , K(3)

15 \ K
(3)
7 , K(3)

3,8,8, K
(3)
5,8,8, K

(3)
4,8,8, and L(3)

8,8, which
exist by Examples 17, 13, 15, 9, 11, 10, and 6, respectively.

Theorem 9. Let v ≥ 9 be an integer. There exists an H-decomposition of 4-fold K(3)
v .

Proof. If v ≡ 0, 1, or 2 (mod 4), then the result follows from 2 copies of an H-decomposition
of 2K

(3)
v , which exists by Theorem 6. Hence, we need only consider when v ≡ 3 (mod 4). Let

v1, v2, . . . , v9 ∈ V
(
K

(3)
v

)
.

First, we consider when v = 11. For i ∈ {1, 2, 3, 4}, let ∆i be a maximum H-packing of K(3)
11

with leave Li consisting of a single edge, which exists by Example 17, Without loss of generality,
we may assume that

E(L1) =
{
{v1, v2, v3}

}
, E(L2) =

{
{v1, v4, v5}

}
,

E(L3) =
{
{v2, v6, v7}

}
, E(L4) =

{
{v3, v8, v9}

}
.

Now, let L′ be the hypergraph with edge set E(L1) ∪ E(L2) ∪ E(L3) ∪ E(L4). Hence, L′ is
isomorphic to H , and the (multi-)set

L′ ∪
4⋃
i=1

(
∆i \ {Li}

)
is a collection ofH-blocks such that each edge ofK(3)

11 is represented exactly four times. Therefore,
we have an H-decomposition of 4K

(3)
11 .

Second, we consider when v = 15. Let ∆1 be a maximum H-packing of K(3)
15 with leave L1

consisting of a three vertex-disjoint edges, which exists by Example 19, and let ∆2 be a maximum
H-packing of 3K

(3)
15 with leave L2 consisting of a single edge, which exists by Theorem 8, Without

loss of generality, we may assume that

E(L1) =
{
{v1, v4, v5}, {v2, v6, v7}, {v3, v8, v9}

}
,

E(L2) =
{
{v1, v2, v3}

}
.

Now, let L′ be the hypergraph with edge set E(L1) ∪ E(L2). Hence, L′ is isomorphic to H , and
the (multi-)set (

∆1 \ {L1}
)
∪
(
∆2 \ {L2}

)
∪ {L′}

is a collection ofH-blocks such that each edge ofK(3)
15 is represented exactly four times. Therefore,

we have an H-decomposition of 4K
(3)
15 .
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Now, let v = 8x + r where x ≥ 2 and r ∈ {3, 7}. By Lemma 2 it suffices to find H-
decompositions of (4-fold) K(3)

8+r, K
(3)
8+r \ K

(3)
r , K(3)

r,8,8 ∪ L
(3)
8,8, and K(3)

8,8,8. We note that K(3)
7,8,8 is

decomposable into copies of K(3)
3,8,8 and K(3)

4,8,8. Also, K(3)
4,8,8 decomposes K(3)

8,8,8, and we already
have that H decomposes 4K

(3)
11 and 4K

(3)
15 . Thus, we need only additionally find H-decompositions

of K(3)
11 \K

(3)
3 , K(3)

15 \K
(3)
7 , K(3)

3,8,8, K
(3)
4,8,8, and L(3)

8,8, which exist by Examples 17, 15, 9, 10, and 6,
respectively.

Finally, we show that the necessary conditions for the existence of an H-decomposition of
λ-fold K(3)

v are sufficient.

Theorem 10. Let λ and v be positive integers with v ≥ 9. There exists an H-decomposition of
λ-fold Kv if and only if the following hold:

• if gcd(λ, 4) = 1, then v ≡ 0, 1, 2, 4, or 6 (mod 8);

• if gcd(λ, 4) = 2, then v ≡ 0, 1, or 2 (mod 4);

• if gcd(λ, 4) = 4, then v ≥ 9.

Proof. The necessary conditions are established in Lemma 5. For sufficiency, we consider the
following cases.

Case 1. λ ≡ 0 (mod 4)
Let λ = 4t for some positive integer t. Then the result follows from t copies of an H-decomposi-
tion of 4K

(3)
v , which exists by Theorem 9.

Case 2. λ ≡ 1 or 3 (mod 4)
Since gcd(λ, 4) = 1, we have that v ≡ 0, 1, 2, 4, or 6 (mod 8). Let λ = 4t + r for some integers
t ≥ 0 and r ∈ {1, 3}. Then the result follows from t copies of an H-decomposition of 4K

(3)
v , which

exists by Theorem 9, and r copies of an H-decomposition of K(3)
v , which exists by Theorem 3.

Case 3. λ ≡ 2 (mod 4)
Since gcd(λ, 4) = 2, we have that v ≡ 0, 1, or 2 (mod 4). Let λ = 4t + 2 for some nonnegative
integer t. Then the result follows from t copies of an H-decomposition of 4K

(3)
v , which exists by

Theorem 9, and 1 copy of an H-decomposition of 2K
(3)
v , which exists by Theorem 6.

Theorem 11. If v ≥ 9 is an integer, then there exists a maximum H-packing of λ-fold K(3)
v where

the leave has fewer than four edges.

Proof. If 1 ≤ λ ≤ 3, then the result follows from Theorems 4, 7, and 8. If λ = 4, then the result
follows from theH-decomposition result in Theorem 9, which translates to a maximumH-packing
with an empty leave. For the remainder of the proof, we assume that λ ≥ 5. Let λ = 4t + r for
some integers t ≥ 1 and r ∈ {1, 4}. Then the result follows from t copies of an H-decomposition
of 4K

(3)
v , which exists by Theorem 9, and 1 copy of a maximum H-packing of r-fold K(3)

v .
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Appendix: Some Small Examples

We give several examples of H-decompositions and H-packings that are used in proving our
main result.

Decomposition Examples

Example 1. Let V
(
K

(3)
9

)
= Z7 ∪ {∞1,∞2} and let

B =
{
H[0, 1, 4, 5, 6,∞1, 3,∞2, 2], H[∞1,∞2, 0, 3, 6, 1, 2, 4, 5], H[0, 2, 5,∞2, 4,∞1, 1, 6, 3]

}
.

Then an H-decomposition of K(3)
9 consists of the orbits of the H-blocks in B under the action of

the map∞i 7→ ∞i, for i ∈ {1, 2}, and j 7→ j + 1 (mod 7).
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Example 2. Let V
(
K

(3)
10

)
= Z10 and let

B =
{
H[0, 2, 4, 8, 9, 3, 6, 5, 1], H[0, 2, 7, 1, 6, 5, 8, 9, 3], H[0, 1, 5, 7, 9, 2, 4, 8, 3]

}
.

Then an H-decomposition of K(3)
10 consists of the orbits of the H-blocks in B under the action of

the map j 7→ j + 1 (mod 10).

Example 3. Let V
(
K

(3)
12

)
= Z11 ∪ {∞} and let

B =
{
H[0, 1, 3, 8, 10, 2, 5, 6, 7], H[0, 1, 5,∞, 6, 2, 8, 10, 3], H[0, 6, 9, 2, 5, 10, 3,∞, 8],

H[∞, 0, 3, 8, 10, 2, 4, 6, 9], H[0, 1, 2,∞, 7, 5, 10, 3, 8]
}
.

Then an H-decomposition of K(3)
12 consists of the orbits of the H-blocks in B under the action of

the map∞ 7→ ∞ and j 7→ j + 1 (mod 11).

Example 4. Let V
(
K

(3)
14

)
= Z13 ∪ {∞} and let

B =
{
H[0, 1, 3, 10, 12, 2, 5, 6, 7], H[0, 1, 5, 7, 12, 2, 10, 6, 11], H[∞, 4, 6, 0, 1, 2, 3, 5, 12],

H[∞, 4, 8, 0, 3, 7, 12, 11, 1], H[∞, 6, 11, 12, 5, 8, 10, 2, 7], H[0, 2, 7, 6, 10, 4, 11, 12, 1],

H[0, 2, 5, 8, 11, 6, 12, 3, 9]
}
.

Then an H-decomposition of K(3)
14 consists of the orbits of the H-blocks in B under the action of

the map∞ 7→ ∞ and j 7→ j + 1 (mod 13).

Example 5. Let V
(
K

(3)
16

)
= Z15 ∪ {∞} and let

B1 =
{
H[0, 1, 3, 5, 6, 2, 14, 4, 9], H[0, 2, 5, 3, 11, 4, 14, 8, 12], H[0, 1, 4,∞, 7, 2, 13, 8, 12],

H[0, 2, 6, 3, 9, 4, 13,∞, 11], H[0, 2, 8, 7, 14, 4, 11,∞, 10], H[0, 1, 7, 4, 9, 2, 10,∞, 13],

H[0, 1, 5, 3, 6, 2, 12,∞, 8], H[0, 2, 7,∞, 1, 4, 12, 9, 11], H[0, 3, 8, 4, 10, 6, 13,∞, 12]
}
,

B2 =
{
H[0, 5, 10, 1, 2, 6, 7, 11, 12], H[1, 6, 11, 2, 3, 7, 8, 12, 13], H[2, 7, 12, 3, 4, 8, 9, 13, 14],

H[3, 8, 13, 4, 5, 9, 10, 14, 0], H[4, 9, 14, 5, 6, 10, 11, 0, 1]
}
.

Then an H-decomposition of K(3)
16 consists of the orbits of the H-blocks in B1 under the action of

the map∞ 7→ ∞ and j 7→ j + 1 (mod 15) along with the H-blocks in B2.

Example 6. Let V
(
L
(3)
8,8

)
= Z16 with vertex partition

{
{0, 2, 4, 6, 8, 10, 12, 14}, {1, 3, 5, 7, 9, 11,

13, 15}
}

and let

B =
{
H[0, 1, 2, 7, 9, 4, 14, 8, 13], H[0, 1, 3, 5, 14, 2, 15, 8, 10], H[0, 4, 5, 7, 15, 8, 3, 12, 13],

H[0, 6, 13, 3, 7, 12, 15, 1, 4], H[0, 1, 7, 9, 15, 3, 14, 2, 4], H[0, 1, 6, 10, 15, 8, 12, 13, 2],

H[0, 1, 4, 3, 11, 2, 14, 12, 15]
}
.

Then an H-decomposition of L(3)
8,8 consists of the orbits of the H-blocks in B under the action of

the map j 7→ j + 1 (mod 16).
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Example 7. Let V
(
L
(3)
8,8 ∪K

(3)
1,8,8

)
= Z16 ∪ {∞} with vertex partition

{
{∞}, {0, 2, 4, 6, 8, 10, 12,

14}, {1, 3, 5, 7, 9, 11, 13, 15}
}

and let

B =
{
H[0, 1, 3, 5, 14, 2, 15, 8, 10], H[0, 4, 5, 7, 15, 8, 3, 12, 13], H[0, 6, 13, 3, 7, 12, 15, 1, 4],

H[0, 1, 7, 9, 15, 3, 14, 2, 4], H[0, 1, 6, 10, 15, 8, 12, 13, 2], H[0, 1, 4, 3, 11, 2, 14, 12, 15],

H[∞, 0, 9, 10, 13, 7, 14, 15, 4], H[∞, 0, 11, 3, 4, 1, 2, 5, 8]
}
.

Then an H-decomposition of L(3)
8,8 ∪ K

(3)
1,8,8 consists of the orbits of the H-blocks in B under the

action of the map∞ 7→ ∞ and j 7→ j + 1 (mod 16).

Example 8. Let V
(
L
(3)
8,8 ∪K

(3)
2,8,8

)
= Z16 ∪ {∞1,∞2} with vertex partition

{
{∞1,∞2}, {0, 2, 4,

6, 8, 10, 12, 14}, {1, 3, 5, 7, 9, 11, 13, 15}
}

and let

B =
{
H[0, 1, 3, 5, 14, 2, 15, 8, 10], H[0, 4, 5, 7, 15, 8, 3, 12, 13], H[∞1, 0, 15, 3, 10, 1, 4, 11, 14],

H[0, 1, 7, 9, 15, 3, 14, 2, 4], H[0, 1, 6, 10, 15, 8, 12, 13, 2], H[∞1, 0, 3, 9, 14, 5, 13, 8, 11],

H[0, 6, 13, 3, 7, 12, 15, 1, 4], H[∞2, 0, 9, 5, 6, 14, 15, 11, 2], H[∞2, 0, 13, 5, 10, 3, 6, 2, 7]
}
.

Then an H-decomposition of L(3)
8,8 ∪ K

(3)
2,8,8 consists of the orbits of the H-blocks in B under the

action of the map∞i 7→ ∞i, for i ∈ {1, 2}, and j 7→ j + 1 (mod 16).

Example 9. Let V
(
K

(3)
3,8,8

)
= Z16 ∪ {∞1,∞2,∞3} with vertex partition

{
{∞1,∞2,∞3}, {0, 2,

4, 6, 8, 10, 12, 14}, {1, 3, 5, 7, 9, 11, 13, 15}
}

and let

B =
{
H[∞1, 0, 1, 2, 5,∞2, 7,∞3, 6], H[∞2, 0, 1, 2, 5,∞3, 7,∞1, 6],

H[∞3, 0, 1, 2, 5,∞1, 7,∞2, 6]
}
.

Then an H-decomposition of K(3)
3,8,8 consists of the orbits of the H-blocks in B under the action of

the map∞i 7→ ∞i, for i ∈ {1, 2, 3}, and j 7→ j + 1 (mod 16).

Example 10. Let V
(
K

(3)
4,8,8

)
= Z16 ∪ {∞1,∞2,∞3,∞3,∞4} with vertex partition

{
{∞1,∞2,

∞3,∞4}, {0, 2, 4, 6, 8, 10, 12, 14}, {1, 3, 5, 7, 9, 11, 13, 15}
}

and let

B =
{
H[∞1, 0, 1, 2, 5,∞2, 7,∞3, 6], H[∞2, 0, 1, 2, 5,∞3, 7,∞4, 6],

H[∞3, 0, 1, 2, 5,∞4, 7,∞1, 6], H[∞4, 0, 1, 2, 5,∞1, 7,∞2, 6]
}
.

Then an H-decomposition of K(3)
4,8,8 consists of the orbits of the H-blocks in B under the action of

the map∞i 7→ ∞i, for i ∈ {1, . . . , 4}, and j 7→ j + 1 (mod 16).

Example 11. Let V
(
K

(3)
5,8,8

)
= Z16 ∪ {∞1,∞2,∞3,∞4,∞5} with vertex partition

{
{∞1,∞2,

∞3,∞4,∞5}, {0, 2, 4, 6, 8, 10, 12, 14}, {1, 3, 5, 7, 9, 11, 13, 15}
}

and let

B =
{
H[∞1, 0, 1, 2, 5,∞2, 7,∞3, 6], H[∞2, 0, 1, 2, 5,∞3, 7,∞4, 6],

H[∞3, 0, 1, 2, 5,∞4, 7,∞5, 6], H[∞4, 0, 1, 2, 5,∞5, 7,∞1, 6],

H[∞5, 0, 1, 2, 5,∞1, 7,∞2, 6]
}
.
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Then an H-decomposition of K(3)
5,8,8 consists of the orbits of the H-blocks in B under the action of

the map∞i 7→ ∞i, for i ∈ {1, . . . , 5}, and j 7→ j + 1 (mod 16).

Example 12. Let V
(
K

(3)
12 \K

(3)
4

)
= Z12 with 0, 3, 6, 9 being the vertices in the hole and let

B1 =
{
H[0, 3, 7, 2, 5, 6, 11, 9, 4], H[0, 2, 6, 1, 11, 4, 10, 8, 9],

H[0, 1, 6, 7, 11, 2, 8, 10, 5], H[0, 1, 4, 8, 11, 3, 5, 9, 2]
}
,

B2 =
{
H[7, 8, 10, 1, 4, 2, 5, 0, 9], H[1, 2, 4, 7, 10, 8, 11, 3, 6], H[8, 9, 11, 0, 4, 6, 7, 2, 5],

H[1, 10, 11, 5, 9, 4, 7, 0, 2], H[2, 3, 5, 6, 10, 0, 1, 8, 11], H[4, 5, 7, 1, 10, 6, 8, 11, 3]
}
.

Then an H-decomposition of K(3)
12 \K

(3)
4 consists of the orbits of the H-blocks in B1 under the

action of the map j 7→ j + 1 (mod 12) along with the H-blocks in B2.

Example 13. Let V
(
K

(3)
13 \ K

(3)
5

)
= Z8 ∪ {∞1,∞2,∞3,∞4,∞5} with ∞1,∞2,∞3,∞4,∞5

being the vertices in the hole and let

B1 =
{
H[∞3,∞5, 0, 1, 3,∞2, 7,∞1,∞4], H[∞4,∞5, 0,∞3, 6,∞1, 7, 2, 3],

H[∞2,∞4, 0, 5, 7, 1, 4,∞5, 3], H[∞4, 0, 2, 4, 5,∞1, 7,∞5, 3]
}
,

B2 =
{
H[∞1,∞3, 0, 3, 5, 1, 2, 4, 6], H[∞1,∞3, 1, 4, 6, 2, 3, 5, 7],

H[∞1,∞3, 2, 5, 7, 3, 4, 6, 0], H[∞1,∞3, 3, 6, 0, 4, 5, 7, 1],

H[∞1,∞3, 4, 7, 1, 5, 6, 0, 2], H[∞1,∞3, 5, 0, 2, 6, 7, 1, 3],

H[∞1,∞3, 6, 1, 3, 7, 0, 2, 4], H[2, 4, 7,∞2,∞3,∞1, 1, 5, 6],

H[3, 5, 0,∞2,∞3,∞1, 2, 6, 7], H[4, 6, 1,∞2,∞3,∞1, 3, 7, 0],

H[5, 7, 2,∞2,∞3,∞1, 4, 0, 1], H[6, 0, 3,∞2,∞3,∞1, 5, 1, 2],

H[7, 1, 4,∞2,∞3,∞1, 6, 2, 3], H[0, 2, 5,∞2,∞3,∞1, 7, 3, 4],

H[2, 3, 7,∞3, 5,∞1,∞2, 1, 6], H[3, 4, 0,∞3, 6,∞1,∞2, 2, 7],

H[4, 5, 1,∞3, 7,∞1,∞2, 3, 0], H[5, 6, 2,∞3, 0,∞1,∞2, 4, 1],

H[6, 7, 3,∞3, 1,∞1,∞2, 5, 2], H[7, 0, 4,∞3, 2,∞1,∞2, 6, 3],

H[0, 1, 5,∞3, 3,∞1,∞2, 7, 4], H[∞2,∞3, 1, 0, 4,∞1, 7, 2, 6],

H[∞2, 1, 5,∞1, 2,∞3, 0, 6, 4], H[1, 3, 6,∞3, 4, 5, 7,∞2, 2],

H[∞1, 0, 3, 2, 4, 5, 6,∞2, 7], H[∞2, 0, 1, 3, 6,∞1, 4,∞3, 5],

H[∞2, 1, 2, 4, 7,∞1, 5,∞3, 6], H[∞2, 2, 3, 5, 0,∞1, 6,∞3, 7],

H[∞2, 3, 4, 6, 1,∞1, 7,∞3, 0], H[∞2, 4, 5, 7, 2,∞4, 0,∞5, 1],

H[∞2, 5, 6, 0, 3,∞4, 1,∞5, 2], H[∞2, 6, 7, 1, 4,∞4, 2,∞5, 3],

H[∞2, 7, 0, 2, 5,∞4, 3,∞5, 4], H[∞5, 0, 2, 1, 3, 4, 5, 6, 7],

H[∞5, 3, 5, 2, 4, 7, 0, 6, 1], H[∞5, 4, 6, 5, 7, 0, 1, 2, 3], H[∞5, 1, 7, 0, 6, 2, 5, 3, 4]
}
.

Then an H-decomposition of K(3)
13 \ K

(3)
5 consists of the orbits of the H-blocks in B1 under the

action of the map∞i 7→ ∞i, for i ∈ {1, . . . , 5}, and j 7→ j + 1 (mod 8) along with the H-blocks
in B2.
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Example 14. Let V
(
K

(3)
14 \K

(3)
6

)
= Z12 ∪ {∞1,∞2} with 0, 3, 6, 9,∞1,∞2 being the vertices in

the hole and let

B1 =
{
H[0, 1, 5, 7, 11, 2, 10, 6, 9], H[∞1, 0, 1, 6, 8, 10, 11,∞2, 2], H[∞2, 0, 4, 1, 3, 9, 11,∞1, 8],

H[0, 1, 6,∞2, 7, 2, 8,∞1, 11], H[0, 2, 5, 7, 10, 4, 8, 9, 11], H[0, 2, 4, 3, 8, 5, 9, 6, 11]
}
,

B2 =
{
H[∞1, 2, 8, 5, 11, 1, 4, 7, 10], H[∞2, 5, 11, 2, 8, 4, 7, 1, 10], H[0, 1, 3, 4, 8,∞1, 7, 2, 5],

H[3, 4, 6, 7, 11,∞1, 10, 5, 8], H[6, 7, 9, 2, 10,∞2, 1, 8, 11], H[0, 9, 10, 2, 11, 1, 5,∞2, 4],

H[∞1,∞2, 1, 2, 5, 8, 11, 4, 7], H[∞1,∞2, 2, 1, 4, 7, 10, 5, 8],

H[∞1,∞2, 4, 5, 8, 2, 11, 7, 10], H[∞1,∞2, 5, 4, 7, 1, 10, 8, 11],

H[∞1,∞2, 7, 8, 11, 2, 5, 1, 10], H[∞1,∞2, 8, 7, 10, 1, 4, 2, 11],

H[∞1,∞2, 10, 2, 11, 5, 8, 1, 4], H[∞1,∞2, 11, 1, 10, 4, 7, 2, 5]
}
.

Then an H-decomposition of K(3)
14 \K

(3)
6 consists of the orbits of the H-blocks in B1 under the

action of the map∞i 7→ ∞i, for i ∈ {1, 2}, and j 7→ j + 1 (mod 12) along with the H-blocks
in B2.

Example 15. Let V
(
K

(3)
15 \ K

(3)
7

)
= Z8 ∪ {∞1,∞2,∞3,∞4,∞5,∞6,∞7} with ∞1,∞2,∞3,

∞4,∞5,∞6,∞7 being the vertices in the hole and let

B1 =
{
H[∞1,∞4, 0,∞5, 5, 3, 4,∞6,∞7], H[∞2,∞4, 0,∞5, 5, 2, 4,∞7, 3],

H[∞3,∞4, 0,∞5, 5,∞7, 4,∞6, 3], H[∞4,∞5, 0, 4, 7,∞6, 1,∞3, 2],

H[∞3,∞6, 0,∞7, 6, 3, 4,∞1, 1], H[∞5,∞7, 0, 5, 6,∞1, 4,∞6, 2],

H[∞2,∞6, 0,∞7, 6,∞4, 2,∞5, 3], H[∞7, 3, 5, 0, 1,∞1,∞6,∞2, 7]
}
,

B2 =
{
H[∞1,∞3, 0, 3, 5, 1, 2, 4, 6], H[∞1,∞3, 1, 4, 6, 2, 3, 5, 7],

H[∞1,∞3, 2, 5, 7, 3, 4, 6, 0], H[∞1,∞3, 3, 6, 0, 4, 5, 7, 1],

H[∞1,∞3, 4, 7, 1, 5, 6, 0, 2], H[∞1,∞3, 5, 0, 2, 6, 7, 1, 3],

H[∞1,∞3, 6, 1, 3, 7, 0, 2, 4], H[2, 4, 7,∞2,∞3,∞1, 1, 5, 6],

H[3, 5, 0,∞2,∞3,∞1, 2, 6, 7], H[4, 6, 1,∞2,∞3,∞1, 3, 7, 0],

H[5, 7, 2,∞2,∞3,∞1, 4, 0, 1], H[6, 0, 3,∞2,∞3,∞1, 5, 1, 2],

H[7, 1, 4,∞2,∞3,∞1, 6, 2, 3], H[0, 2, 5,∞2,∞3,∞1, 7, 3, 4],

H[2, 3, 7,∞3, 5,∞1,∞2, 1, 6], H[3, 4, 0,∞3, 6,∞1,∞2, 2, 7],

H[4, 5, 1,∞3, 7,∞1,∞2, 3, 0], H[5, 6, 2,∞3, 0,∞1,∞2, 4, 1],

H[6, 7, 3,∞3, 1,∞1,∞2, 5, 2], H[7, 0, 4,∞3, 2,∞1,∞2, 6, 3],

H[0, 1, 5,∞3, 3,∞1,∞2, 7, 4], H[∞2,∞3, 1, 0, 4,∞1, 7, 2, 6],

H[∞2, 1, 5,∞1, 2,∞3, 0, 6, 4], H[1, 3, 6,∞3, 4, 5, 7,∞2, 2],

H[∞1, 0, 3, 2, 4, 5, 6,∞2, 7], H[∞2, 0, 1, 3, 6,∞1, 4,∞3, 5],

H[∞2, 1, 2, 4, 7,∞1, 5,∞3, 6], H[∞2, 2, 3, 5, 0,∞1, 6,∞3, 7],
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H[∞2, 3, 4, 6, 1,∞1, 7,∞3, 0], H[∞2, 4, 5, 7, 2,∞4, 0,∞5, 1],

H[∞2, 5, 6, 0, 3,∞4, 1,∞5, 2], H[∞2, 6, 7, 1, 4,∞4, 2,∞5, 3],

H[∞2, 7, 0, 2, 5,∞4, 3,∞5, 4], H[∞6, 0, 4, 2, 6, 5, 7, 1, 3], H[∞6, 1, 5, 3, 7, 6, 0, 2, 4],

H[∞7, 2, 6, 0, 4, 7, 1, 3, 5], H[∞7, 3, 7, 1, 5, 0, 2, 4, 6], H[∞5, 0, 2, 1, 3, 4, 5, 6, 7],

H[∞5, 3, 5, 2, 4, 7, 0, 6, 1], H[∞5, 4, 6, 5, 7, 0, 1, 2, 3], H[∞5, 1, 7, 0, 6, 2, 5, 3, 4]
}
.

Then an H-decomposition of K(3)
15 \ K

(3)
7 consists of the orbits of the H-blocks in B1 under the

action of the map∞i 7→ ∞i, for i ∈ {1, . . . , 7}, and j 7→ j + 1 (mod 8) along with the H-blocks
in B2.

Example 16. Let V
(
K

(3)
16 \K

(3)
8

)
= Z8 ∪ {∞1,∞2,∞3,∞4,∞5,∞6,∞7,∞8} with ∞1,∞2,

∞3,∞4,∞5,∞6,∞7,∞8 being the vertices in the hole and let

B1 =
{
H[∞1,∞2, 0,∞3, 1,∞5, 2,∞4,∞8], H[∞2,∞3, 0,∞4, 1,∞6, 2,∞1,∞5],

H[∞3,∞4, 0,∞5, 1,∞7, 2,∞1,∞8], H[∞4,∞5, 0,∞6, 1,∞8, 2,∞3,∞7],

H[∞5,∞6, 0,∞7, 1,∞1, 2,∞2,∞8], H[∞6,∞7, 0,∞8, 1,∞2, 2,∞1,∞4],

H[∞7,∞8, 0,∞1, 1,∞3, 2,∞2,∞6], H[∞5, 0, 7, 2, 5,∞6, 3,∞8, 4],

H[∞6, 0, 1, 2, 4,∞1, 6,∞7, 3], H[∞7, 0, 1, 3, 6,∞3, 5,∞4, 4],

H[∞8, 0, 1, 2, 4,∞4, 6,∞3, 3], H[0, 1, 4,∞1, 3, 2, 7,∞2, 6], H[0, 2, 4,∞2, 5, 3, 7, 6, 1]
}
,

B2 =
{
H[0, 1, 2,∞1, 4,∞5, 3,∞2, 6], H[1, 2, 3,∞1, 5,∞5, 4,∞2, 7],

H[2, 3, 4,∞1, 6,∞5, 5,∞2, 0], H[3, 4, 5,∞1, 7,∞5, 6,∞2, 1],

H[4, 5, 6,∞3, 0,∞5, 7,∞4, 2], H[5, 6, 7,∞3, 1,∞5, 0,∞4, 3],

H[6, 7, 0,∞3, 2,∞5, 1,∞4, 4], H[7, 0, 1,∞3, 3,∞5, 2,∞4, 5],

H[0, 1, 3,∞5, 4,∞6, 5,∞1, 2], H[1, 2, 4,∞5, 5,∞6, 6,∞1, 3],

H[2, 3, 5,∞5, 6,∞6, 7,∞1, 4], H[3, 4, 6,∞5, 7,∞6, 0,∞1, 5],

H[4, 5, 7,∞7, 0,∞8, 1,∞1, 6], H[5, 6, 0,∞7, 1,∞8, 2,∞1, 7],

H[6, 7, 1,∞7, 2,∞8, 3,∞1, 0], H[7, 0, 2,∞7, 3,∞8, 4,∞1, 1],

H[∞2, 0, 1, 5, 6,∞3, 7,∞4, 2], H[∞3, 0, 1, 5, 6,∞4, 7,∞2, 2],

H[∞4, 0, 1, 5, 6,∞2, 7,∞3, 2], H[∞2, 3, 4, 6, 7,∞3, 2,∞4, 5],

H[∞3, 3, 4, 6, 7,∞4, 2,∞2, 5], H[∞4, 3, 4, 6, 7,∞2, 2,∞3, 5]
}
.

Then an H-decomposition of K(3)
16 \K

(3)
8 consists of the orbits of the H-blocks in B1 under the

action of the map∞i 7→ ∞i, for i ∈ {1, . . . , 8}, and j 7→ j + 1 (mod 8) along with the H-blocks
in B2.

Maximum Packing Examples

Example 17. Let V
(
K

(3)
11

)
= Z10 ∪ {∞} and let

B1 =
{
H[0, 2, 7, 1, 4,∞, 9, 3, 6], H[0, 3, 6, 1, 5,∞, 9, 7, 2], H[0, 2, 5, 1, 3,∞, 4, 7, 8]

}
,
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B2 =
{
H[∞, 0, 1, 8, 9, 2, 6, 5, 7], H[∞, 1, 2, 0, 9, 3, 7, 6, 8], H[∞, 2, 3, 5, 6, 4, 8, 7, 9],

H[∞, 3, 4, 6, 7, 5, 9, 8, 0], H[∞, 4, 5, 7, 8, 6, 0, 9, 1], H[3, 5, 7, 2, 4,∞, 0, 8, 9],

H[4, 6, 8, 3, 5,∞, 1, 0, 2], H[5, 7, 9, 4, 6,∞, 2, 0, 1], H[0, 6, 8, 2, 4, 5, 7,∞, 3],

H[1, 7, 9, 2, 3, 6, 8,∞, 4], H[0, 1, 2, 8, 9, 3, 5, 4, 6]
}
.

Then a maximum H-packing of K(3)
11 consists of the orbits of the H-blocks in B1 under the action

of the map∞ 7→ ∞ and j 7→ j+1 (mod 10) along with theH-blocks inB2 and a leave consisting
of the edge {1, 3, 9}.

Example 18. Let V
(
K

(3)
13

)
= Z13 and let

B1 =
{
H[0, 3, 7, 6, 10, 5, 11, 9, 1], H[0, 2, 11, 1, 7, 5, 12, 3, 8], H[0, 3, 5, 8, 10, 7, 1, 9, 11],

H[0, 1, 5, 8, 12, 2, 7, 10, 11], H[0, 1, 3, 10, 12, 2, 5, 6, 7]
}
,

B2 =
{
H[0, 4, 8, 1, 12, 5, 6, 9, 10], H[1, 5, 9, 2, 3, 6, 7, 10, 11], H[2, 6, 10, 3, 4, 7, 8, 11, 12],

H[3, 4, 5, 7, 11, 8, 12, 10, 1], H[7, 8, 9, 11, 2, 12, 3, 0, 4], H[11, 12, 0, 2, 6, 3, 7, 5, 9]
}
.

Then a maximum H-packing of K(3)
13 consists of the orbits of the H-blocks in B1 under the action

of the map j 7→ j+ 1 (mod 13) along with the H-blocks in B2 and a leave consisting of the edges
{0, 1, 2} and {1, 6, 10}, which share a single vertex. Additionally, let

B′2 =
(
B2 \

{
H[2, 6, 10, 3, 4, 7, 8, 11, 12]

})
∪
{
H[2, 6, 10, 0, 1, 7, 8, 11, 12]

}
.

Then a maximum H-packing of K(3)
13 consists of the orbits of the H-blocks in B1 under the action

of the map j 7→ j+ 1 (mod 13) along with the H-blocks in B′2 and a leave consisting of the edges
{1, 6, 10} and {2, 3, 4}, which are vertex-disjoint.

Example 19. Let V
(
K

(3)
15

)
= Z15 and let

B1 =
{
H[0, 4, 9, 6, 11, 7, 14, 12, 2], H[0, 4, 8, 3, 6, 7, 13, 10, 12], H[0, 1, 3, 12, 14, 2, 5, 6, 7],

H[0, 1, 6, 9, 14, 2, 12, 7, 11], H[0, 2, 8, 7, 13, 4, 12, 1, 3], H[0, 3, 7, 8, 12, 5, 14, 9, 13],

H[0, 2, 12, 7, 8, 10, 1, 3, 11]
}
,

B2 =
{
H[0, 5, 10, 1, 2, 6, 7, 11, 12], H[1, 6, 11, 2, 3, 7, 8, 12, 13], H[2, 7, 12, 3, 4, 8, 9, 13, 14],

H[3, 8, 13, 4, 5, 9, 10, 14, 0], H[4, 9, 14, 5, 6, 10, 11, 0, 1], H[0, 2, 5, 13, 3, 12, 14, 7, 10],

H[4, 6, 9, 14, 1, 8, 11, 12, 7], H[8, 10, 13, 3, 5, 12, 0, 11, 1]
}
.

Then a maximum H-packing of K(3)
15 consists of the orbits of the H-blocks in B1 under the action

of the map j 7→ j+ 1 (mod 15) along with the H-blocks in B2 and a leave consisting of the edges
{1, 3, 6}, {2, 4, 7}, and {9, 11, 14}, which are vertex-disjoint.
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