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Abstract

Two methods for expanding graceful trees are introduced. In constructing a larger graceful trees,
these methods are based on a collection of certain graceful trees and one graceful tree as the core
of the produced graceful tree.
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1. Introduction

All graphs we encounter in this paper are finite undirected simple graph. Let G(V,E) denote
the graph G with vertex set V (G) and edge set E(G). Labeling on a graph is an assignment of a
nonnegative integer on each vertex or each edge, or both of the graph under a certain condition.
Graph labeling has found its application in coding theory, X-ray crystallography, radar and missile
guidance [1]. If X is a set, let us denote by |X| the number of elements in the set X . A graceful
labelling of a graph G is an injective function f : V (G) → {0, 1, . . . , |E(G)|} which induces
a bijective function f ′ : E(G) → {1, 2, . . . , |E(G)|} defined by f ′(uv) = |f(u) − f(v)| for
every uv ∈ E(G). If a graph G has a graceful labeling then G is called graceful. A graceful
labeling is called α-labeling if we can find an integer k such that for every edge uv ∈ G we have
f(u) ≤ k < f(v) or f(v) ≤ k < f(u). Ringel and Kotzig in 1960s gave a conjecture which
was reformulated by Rosa 1967 (see [2]) as “every tree has a graceful labelling”. This conjecture
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is frequently called The Graceful Tree Conjecture or shortly as GTC. Since then many research
results have been formulated which focus on graceful tree problems, and many classes of trees
have already been proved to be graceful. For extensive survey of these results one may consult to
Gallian [2].

In this paper we will introduce some method of constructing larger graceful trees by combining
or identifying smaller graceful trees. The method uses one graceful tree T of m points as a core
and a collection of m graceful trees Ti, 1 ≤ i ≤ m. In some case, this technique needs a specific
core tree which is constructed using m paths of two points. Denote by T ∗ Γ(m) the tree which
is obtained by identifying each vertex of T with exactly one certain vertex of every tree in Γ(m).
Using this kind of method Stanton and Zarnke in [8] and Koh, Rogers and Tan in [3, 4, 5, 6] had
produced some classes of graceful trees. Here we generalized some part of their method to obtain
some new classes of graceful trees which are not yet covered in [3, 4, 5, 6, 7, 8].

2. Result

From now on, ifG is a graph, then the set of all vertex labels ofG will be denoted by L(V (G)).
Let T be a tree and v ∈ V (T ). The parity set P (v) of the vertex v in a tree T is the set of
vertices, including the vertex v, which are at even distance from v. If T has graceful labeling f
then the vertex b of T for which f(b) = 0 is called the base of T . A graceful tree T is called
interlaced if L(P (b)) = {0, 1, 2, . . . , |P (b)| − 1}. It is easy to see that an interlaced tree has
α-labeling with k = |P (b)| − 1. For this reason, one also calls interlaced tree as α-tree. Let
Γ(m) = {T1, T2, . . . , Tm} be a collection of m disjoint graceful trees, where Ti is with ni vertices.
For the sake of efficiency, if Ti is a tree of index i with label function fi, through out this paper we
will denote by Pi for P (bi), with fi(bi) = 0, |Pi| = pi, P c

i for the complement of Pi, and |P c
i | = p∗i .

It is clear that p∗i = ni − pi. Furthermore, let N(a) = Σa
i=1ni for some positive integer a, and for

k, 0 ≤ k ≤ m, let s(k) = Σk
i=1pi and s(k)∗ = Σk

i=1p
∗
i , with s(0) = 0 and s(0)∗ = 0.

Consider the collection Γ(m) as a graph of m components T1, T2, . . . , Tm. Following the ter-
minology of Koh, Rogers, and Tan in [5], we will call Γ(m) a compatible collection if there exists
a labeling function f for Γ(m) such that all vertex labels of Γ(m) are α, 0 ≤ α ≤ N(m)− 1, and
the edge labels of Γ(m) are β, 1 ≤ β ≤ N(m) − 1, with m − 1 missing edge labels. If such the
function f exists, then f is called a compatible labeling of Γ(m) .

The following lemma is due to Koh, Rogers, and Tan in [5] with a slightly different formulation.

Lemma 2.1. If Γ(m) is a collection of m interlaced trees Ti, 1 ≤ i ≤ m, then Γ(m) is compatible
collection with m− 1 missing edge labels N(m)−N(m− i), i = 1, 2, . . . ,m− 1.

Proof. Let fi be the graceful labeling of tree Ti. Inductively we can show using the following label
function

g(v) =

{ fi(v) + s(i− 1) if v ∈ P

fi(v) +N(m)− s(i− 1)∗ − ni if v ∈ P c

(1)

that the vertex labels of Γ(m) will have the following properties:
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1. L(P ) = {0, 1, . . . , s(m)− 1},
2. L(P c) = {s(m), s(m) + 1, . . . , N(m)− 1},

where P =
⋃m

i=1 Pi and P c =
⋃m

i=1 P
c
i .

Based on Eq. (1), for every edge uv in Ti, with 1 ≤ i ≤ m, we have that its label is equal to
|g(u)− g(v)| = |fi(u)− fi(v)|+N(m)−N(i). From these new labels, we can immediately see
that the missing edge labels in the resulting compatible collection Γ(m) are N(m) − N(m − i),
i = 1, . . . ,m− 1.

Example 1 In Figure 1 we show a collection Γ(6) of interlaced trees Ti, 1 ≤ i ≤ 6.After relabeling
Γ(6) using the function in Eq. (1), then we have a compatible labeling as in Figure 2. In this
example we have m = 6 and ni = 8, 1 ≤ i ≤ 6. Thus, according to Lemma 2.1, the 5 missing
edge labels are 8, 16, 24, 32, and 40 as we can see also from Figure 2 .

Figure 1. A collection of interlaced trees Ti, 1 ≤ i ≤ 6.

Lemma 2.2. Let Γ(m) be a collection of interlaced trees Ti, 1 ≤ i ≤ m, where each Ti has n
vertices. Then for some r ∈ {0, 1, . . . , n−1}, for every i = 1, 2, . . . ,m, L(V (Ti)) contains exactly
one label of the form nj + r for every j = 0, 1, . . .m− 1.

Proof. Take some r in {0, 1, . . . , n − 1}. Assume that for some i, 1 ≤ i ≤ m,nj + r, nk + r ∈
L(V (Ti)) with j 6= k and 0 ≤ j, k ≤ m− 1. First, we will show that labels nj+ r and nk+ r both
should be neither in L(Pi) nor in L(P c

i ). Since Ti is interlaced, we can infer that the vertex labels
in Pi and in P c

i constitute pi and p∗i non negative consecutive integers, respectively. On the other
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Figure 2. A compatible labeling of Γ(6).

side |(nj + r)− (nk+ r)| = cn > max{pi, p∗i } for some positive integer c. This indicates that the
labels nj + r and nk + r cannot be both in L(Pi) nor in L(P c

i ).
Next we will show that for every i, Ti contains exactly one label of the form nl + r for some
positive integer l, 0 ≤ l ≤ m− 1. In other words, nj + r ∈ L(Pi) if and only if nk + r 6∈ L(P c

i ).
Without lost of generality, assume that nj + r < nk + r. The number of vertex labels which are
less than nj + r and greater than nk + r in L(V (Γ(i))) are nj + r and N(m) − 1 − nk − r =
mn− nk− 1− r, respectively. This implies that the total labels which have been used for vertices
of Γ(i) is mn+ nj − nk − 1 = dn− 1 with d = m+ j − k.
On the other side, since each Tj has n vertices for every j < i, we may infer based on the way of
labeling Γ(i), that among dn− 1 labels, n− 1 labels are either for vertices of Ti−1 or of Ti.
For the previous case, say that those n − 1 labels all for Ti−1. This means that Ti−1 misses only
one vertex label, that is either nj + r or nk + r. But this contradicts the assumption that nj + r
and nk + r are already in Ti.
For the later case, let those n− 1 labels all be for the vertices of Ti. These labels are different from
nj + r and nk + r. This implies that Ti has n + 1 vertex labels including the labels nj + r and
nk + r, which contradicts the fact that Ti has only n vertices.
Thus, in any case we may conclude that either nj + r or nk + r is in L(V (Ti)).
Moreover, for every j, 0 ≤ j ≤ m − 1, and for every r, 0 ≤ r ≤ n − 1, we can immediately see
that nj+ r ∈ {0, 1, . . . ,mn− 1} = L(V (Γ(m))). For some fixed r, there are m labels of the form
nj + r in Γ(m). Since for every i, 1 ≤ i ≤ m, L(V (Ti)) consists of maximum one label of the
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form nj + r, we may conclude that L(V (Ti)) consists of exactly one label of the form nj + r.

Now, we will define a construction to generate a larger new graceful tree which is obtained
by arranging a tree T and a collection Γ(m). Denote by T ∗ Γ(m) the tree which is obtained by
identifying each vertex of T with exactly one vertex of each tree in Γ(m) of the same label after
relabeling. In the sequel, the tree T will be called the core tree for the T ∗ Γ(m) construction.

Theorem 2.1. Let T be a graceful tree of m vertices. If Γ(m) is a collection of interlaced trees Ti,
1 ≤ i ≤ m, where each Ti has n vertices, then T ∗ Γ(m) is graceful.

Proof. Let f be a graceful labeling of T . For some r, 0 ≤ r < n, define a relabeling function f ∗

for T as follows:

f ∗(v) = f(v)n+ r, if v ∈ T. (2)

Observe that the new vertex labels of T are nj + r for every j ∈ {0, 1, . . . , n − 1}. Since
T is graceful, then based on the function f ∗, the set of the new edge labels of T is equal to
L(E(T )) = {|f ∗(u) − f ∗(v)| : uv ∈ E(T )} = {n, 2n, . . . , (m − 1)n}. These edge labels, by
Lemma 2.1, will complete m− 1 missing labels of Γ(m). Then, by Lemma 2.2, we conclude that
T ∗ Γ(m) is graceful.

Figure 3. A graceful tree of 6 vertices.

Example 2 Let T be a graceful tree on six vertices as in Figure 3, and Γ(6) be a compatible col-
lection of interlaced trees where each Ti has 8 vertices as in Figure 2. Then T ∗ Γ(6) is given as in
Figure 4.

Now we will introduce a method for constructing graceful graphs, including trees, based on
the path of size one. This method has beneficial side in applying the construction technique which
will be described soon after this section. A graceful tree which is produced using the method will
take its role as the core tree of this graceful construction technique. How the graceful graph is
constructed, is implicitly shown in the following theorem.

Theorem 2.2. Let f be the graceful labeling of path P2. For every i, 1 ≤ i ≤ m, we define i
functions f̄i,j, 0 ≤ j ≤ i− 1, as follows:
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Figure 4. Graceful tree T ∗ Γ(6).

f̄i,j(v) =

{
j, if f(v) = 0

m+ 1− (i− j), if f(v) = 1
. (3)

Let i be a positive integer, 1 ≤ i ≤ m, and Ti be a family of paths Ti,j, where j = 0, 1, . . . , i − 1.
Let G be a graph consisting of m paths Ti,j such that for every i = 1, 2, . . . ,m, there is precisely
one path Ti,ji for some ji and the paths are amalgamated at vertices with identical labels. Then G
is graceful.

Proof. By using Eq. (3) we have that the edge labels of G are {|f̄i,j(u)− f̄i,j(v)| : 1 ≤ i ≤ m, 0 ≤
j < i} = {m + 1 − i : i = 1, . . . ,m} = {1, ...,m}. Hence, by the construction of G, we may
conclude that G is graceful.

Note that using a construction as in Theorem 2.2, we have m! graceful graphs, some of them
are graceful trees.

Example 3. We will construct a graph G by using construction as in Theorem 2.2 with T̄i, 1 ≤
i ≤ 5, as in Figure 5 . We choose T1,0, T2,1, T3,1, T4,2 and T5,3, each from one T̄i, 1 ≤ i ≤ 5. Then
we have a graceful graph G as shown in Figure 6.

So far, all trees in the collection Γ(m) have restriction that the number of their vertices are the
same. Now we will introduce another construction based on pairs of trees with possibly different
number of vertices respectively.

222



www.ejgta.org

Expanding graceful trees | I N. Suparta and I D.M.A. Ariawan

Figure 5. A family of T̄i, 1 ≤ i ≤ 5.

Figure 6. An example of Theorem 2.2.
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Let T1 and T2 be interlaced trees on n1 and n2 vertices. If p1 +p2 = p∗1 +p∗2, then {T1, T2} is called
a supplementary-pair. Now, let Γ(m), m even, be a collection of m interlaced trees where for i =
{1, 3, . . . ,m− 1}, {Ti, Ti+1} is a supplementary-pair. Then, by Lemma 2.1, Γ(m) is a compatible
collection, and the missing edge labels of Γ(m) are N(m)−N(m− i), i = 1, 2, . . . ,m− 1.

Let Γ(m), m = 2l for some positive integer l, be a collection of interlaced trees and {Ti, Ti+1}
for i = {1, 3, . . . ,m− 1} be a supplementary-pair such that the following properties hold.

(a) If n1 ≥ n2 then pi≡1(mod 4), p
∗
i≡0(mod 4) > r and

(b) If n1 < n2 then pi≡3(mod 4), p
∗
i≡2(mod 4) > r,

with ni = n1, ni+1 = n2 and r = |n1−n2

2
|.

Let J = {1, 3, . . . ,m − 1}, K = {0, 2, . . . ,m − 2}, L1 = {0, 1, . . . ,min{pi≡1(mod 4) − r −
1, p∗i≡2(mod 4) − 1, pi≡3(mod 4) − 1, p∗i≡0(mod 4) − r − 1}} and L2 = {0, 1, . . . ,min{pi≡1(mod 4) −
1, p∗i≡2(mod 4) − r − 1, pi≡3(mod 4) − r − 1, p∗i≡0(mod 4) − 1}}. We denote by sj = (n1+n2

2
)j and

tk = (n1+n2

2
)k + r.

Lemma 2.3. Let Γ(m), m = 2l for some positive integer l, be a collection of m interlaced trees
and {Ti, Ti+1} for i = {1, 3, . . . ,m − 1} be a supplementary-pair such that the conditions (a)
and (b) above hold. Then, we can label Γ(m) such that there exists exactly one vertex in each
component of Γ(m) which has label sj + w or tk + w with j ∈ J , k ∈ K, and w ∈ L1 if n1 ≥ n2

or with j ∈ K, k ∈ J and w ∈ L2 if n1 < n2.

Proof. Since every {Ti, Ti+1} for i ∈ {1, 3, . . . ,m− 1} is a supplementary-pair, then pi + pi+1 =
p∗i +p∗i+1 = n1+n2

2
. Based on the way we label the vertices of Ti as in Eq. (1) in the proof of Lemma

2.1, we can conclude that the vertex labels of Pi

⋃
Pi+1 and of P c

i

⋃
P c
i+1 are n1+n2

2
consecutive non

negative integers, respectively. More precisely, we haveL(Pi

⋃
Pi+1) = { i−1

2
(n1+n2

2
), . . . , i+1

2
(n1+n2

2
)−

1}, and L(P c
i

⋃
P c
i+1) = {(m − i

2
)(n1+n2

2
), . . . , (m + 2−i

2
)(n1+n2

2
) − 1}. It implies that for every

i, 0 ≤ i ≤ m − 1 the label (n1+n2

2
)i is the label of exactly one vertex of one component of Γ(m).

Note that for every i ∈ {1, 3, . . . ,m − 1} the label (n1+n2

2
)( i−1

2
) = min{L(Pi)} and for every

i ∈ {2, 4, . . . ,m} the label (n1+n2

2
)(m− i

2
) = min{L(P c

i )}.
Observe that { i−1

2
; i ≡ 3 (mod 4), 1 ≤ i ≤ m}

⋃
{m − i

2
; i ≡ 2 (mod 4), 1 ≤ i ≤ m} =

{1, 3, . . . ,m − 1} = J and { i−1
2

; i ≡ 1 (mod 4), 1 ≤ i ≤ m}
⋃
{m − i

2
; i ≡ 0 (mod 4), 1 ≤ i ≤

m} = {0, 2, . . . ,m− 2} = K.
Now we will proceed in two cases:

(1) n1 ≥ n2 which implies pi≡1(mod 4), p
∗
i≡0(mod 4) > r, and

(2) n1 < n2 which implies pi≡3(mod 4), p
∗
i≡2(mod 4) > r.

Case (1) Since w ∈ L1 is a non negative integer, we have the following facts:

(i) min(L(Pi≡3(mod 4)) ≤ sj + w for j = i−1
2

,
(ii) min(L(P c

i≡2(mod 4)) ≤ sj + w for j = m− i
2
,

224



www.ejgta.org

Expanding graceful trees | I N. Suparta and I D.M.A. Ariawan

(iii) min(L(Pi≡1(mod 4)) ≤ tk + w for k = i−1
2

,
(iv) min(L(P c

i≡0(mod 4)) ≤ tk + w for k = m− i
2
.

Moreover, since w ∈ L1 such that w ≤ min{pi≡1(mod 4) − r − 1, p∗i≡2(mod 4) − 1, pi≡3(mod 4) −
1, p∗i≡0(mod 4) − r − 1}}, then we have:

(i’) max(L(Pi≡3(mod 4)) ≥ sj + w for j = i−1
2

,
(ii’) max(L(P c

i≡2(mod 4)) ≥ sj + w for j = m− i
2
,

(iii’) max(L(Pi≡1(mod 4)) ≥ tk + w for k = i−1
2

,
(iv’) max(L(P c

i≡0(mod 4)) ≥ tk + w for k = m− i
2
.

Therefore, by combining (i) and (i′), (ii) and (ii′) , (iii) and (iii′), and (iv) and (iv′) we have
successively:

1. sj + w ∈ L(Pi≡3(mod4)) for j = i−1
2

,
2. sj + w ∈ L(P c

i≡2(mod4)) for j = m− i
2
,

3. tk + w ∈ L(Pi≡1(mod4)) for k = i−1
2

,
4. tk + w ∈ L(P c

i≡0(mod4)) for k = m− i
2
.

From this observation we can conclude that for n1 ≥ n2 we have that sj+w, j ∈ J or tk+w, k ∈ K
with w ∈ L1 is the vertex label of exactly one component of Γ(m).

Case (2)The proof for this case is similar to Case (1).

(i) min(L(Pi≡3(mod 4)) ≤ tk + w for k = i−1
2

,
(ii) min(L(P c

i≡2(mod 4)) ≤ tk + w for k = m− i
2
,

(iii) min(L(Pi≡1(mod 4)) ≤ sj + w for j = i−1
2

,
(iv) min(L(P c

i≡0(mod 4)) ≤ sj + w for j = m− i
2
.

Moreover, since w ∈ L2 such that w ≤ min{pi≡1(mod 4) − 1, p∗i≡2(mod 4) − r − 1, pi≡3(mod 4) − r −
1, p∗i≡0(mod 4) − 1}}, then we have:

(i’) max(L(Pi≡3(mod 4)) ≥ tk + w for j = i−1
2

,
(ii’) max(L(P c

i≡2(mod 4)) ≥ tk + w for k = m− i
2
,

(iii’) max(L(Pi≡1(mod 4)) ≥ sj + w for j = i−1
2

,
(iv’) max(L(P c

i≡0(mod 4)) ≥ sj + w for j = m− i
2
.

Therefore, by combining (i) and (i′), (ii) and (ii′) , (iii) and (iii′), and (iv) and (iv′) we have
successively:

1. tk + w ∈ L(Pi≡3(mod4)) for k = i−1
2

,
2. tk + w ∈ L(Pi≡2(mod4)) for k = m− i

2
,

3. sj + w ∈ L(Pi≡1(mod4)) for j = i−1
2

,
4. sj + w ∈ L(Pi≡0(mod4)) for j = m− i

2
.
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From this observation we can conclude that for n1 < n2 we have that sj+w, j ∈ K or tk+w, k ∈ J
with w ∈ L2 is the vertex label of exactly one component of Γ(m).

Thus, in any case we may conclude that the vertex label sj +w or tk +w is exactly the label of
one vertex in distinct components of Γ(m).

Theorem 2.3. Let T be a tree on m = 2l vertices for some positive integer l which is constructed
as in Theorem 2.2, where for every Ti,ji with i = 2s + 1, 0 ≤ s ≤ l − 1, the value of ji is chosen
from {0, 2, . . . , i− 1}. Then T ∗ Γ(m) is graceful.

Proof. Let f be a graceful labeling of T . Define a new function f ∗ for T as follows:

f ∗(v) =

{
f(v)(n1+n2

2
) + r + w, if f(v) is even

f(v)(n1+n2

2
) + w, if f(v) is odd (4)

if n1 ≥ n2, and

f ∗(v) =

{
f(v)(n1+n2

2
) + w, if f(v) is even

f(v)(n1+n2

2
) + r + w, if f(v) is odd (5)

if n1 < n2.

Note that since the relevant index value of ji for Ti,ji is chosen from {0, 2, . . . , i − 1}, by Eq.
(3), if for edge uv in T we have that |f(u)− f(v)| is odd, then the minimum value of {f(u), f(v)}
is even. This information is important when determining the value of function f ∗ as in Eq.(4) and
Eq.(5).

Then the proof will be divided into two cases:

(i) n1 ≥ n2, and
(ii) n1 < n2.

Case (i) By Eq. (4) we have that the new vertex labels of T are (n1+n2

2
)i+w, i ∈ {1, 3, . . . ,m−1}

and (n1+n2

2
)i + r + w, i ∈ {0, 2, . . . ,m− 2}. Then the label of the edge uv in T if |f(u)− f(v)|

odd (say f(u) < f(v)) will be

|f ∗(u)− f ∗(v)| = |f(u)(n1+n2

2
) + r + w − f(v)(n1+n2

2
)− w|

= |(f(u)− f(v))(n1+n2

2
) + r|

= (f(v)− f(u))(n1+n2

2
)− r,

and if |f(u)− f(v)| even will eventually be

|f ∗(u)− f ∗(v)| = |f(u)(n1+n2

2
)− f(v)(n1+n2

2
)|

= |f(u)− f(v)|(n1+n2

2
).
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Case (ii) Based on Eq. (5), the produced new vertex labels of T are (n1+n2

2
)i+w, i ∈ {0, 2, . . . ,m−

2} and (n1+n2

2
)i+r+w, i ∈ {1, 3, . . . ,m−1}. Thus, the label of the edge uv of T if |f(u)−f(v)|

odd (say f(u) < f(v)), will be

|f ∗(u)− f ∗(v)| = |f(u)(n1+n2

2
) + w − f(v)(n1+n2

2
)− r − w|

= |(f(u)− f(v))(n1+n2

2
)− r|

= (f(v)− f(u))(n1+n2

2
) + r,

and if |f(u)− f(v)| even will finally be
|f ∗(u)− f ∗(v)| = |f(u)(n1+n2

2
)− f(v)(n1+n2

2
)|

= |f(u)− f(v)|(n1+n2

2
).

Then the edge labels of T are:
{ (n1+n2)

2
2, (n1+n2)

2
4, . . . , (n1+n2)

2
(m− 2)}

⋃
{ (n1+n2)

2
− r, (n1+n2)

2
3− r, . . . , (n1+n2)

2
(m− 1)− r} =

{N(m)−N(m− 1), N(m)−N(m− 2), . . . , N(m)−N(1)}, if n1 ≥ n2,
or
{ (n1+n2)

2
2, (n1+n2)

2
4, . . . , (n1+n2)

2
(m− 2)}

⋃
{ (n1+n2)

2
+ r, (n1+n2)

2
3 + r, . . . , (n1+n2)

2
(m− 1) + r} =

{N(m)−N(m− 1), N(m)−N(m− 2), . . . , N(m)−N(1)}, if n1 < n2.
These labels will complete m− 1 missing edge labels of Γ(m) as in Lemma 2.1. Then by Lemma
2.3, we conclude that T ∗Γ(m) is graceful.

Example 4. Let T be a graceful tree on six vertices and Γ(6) be a collection of suplementary-pairs
as in Figure 7. The graph of the resulting graceful tree T ∗ Γ(6) is shown in Figure 8.

In the following we will introduce a similar technique with core tree T of m = 2l+ 1 vertices,
for some positive integer l. The proof of the following lemma is similar to the proof of Lemma
2.3.

Let Γ(m), m = 2l + 1 for some positive integer l, be a collection of interlaced trees and
{Ti, Ti+1} be a supplementary-pair for every i ∈ {2, 4, . . . ,m − 1}, with ni = n2 and ni+1 = n3,
and T1 be with n1 = n2 + n3 vertices, p1 = p∗1, such that the following properties hold.

(a′) If n2 ≥ n3 then pi≡2(mod 4), p
∗
i≡1(mod 4) > r and

(b′) If n2 < n3 then pi≡0(mod 4), p
∗
i≡3(mod 4) > r,

with ni = n2, ni+1 = n3 and r = |n2−n3

2
|.

Let J ′ = {1, 3, ...,m − 2}, K ′ = {0, 2, ...,m − 1}, L′1 = {0, 1, ...,min{pi≡1(mod 4) − r −
1, p∗i≡2(mod 4)−r−1, pi≡3(mod 4)−1, p∗i≡0(mod 4)−1}} andL′2 = {0, 1, ...,min{pi≡1(mod 4)−1, p∗i≡2(mod 4)−
1, pi≡3(mod 4) − r − 1, p∗i≡0(mod 4) − r − 1}}. We denote by sj = (n2+n3

2
)j and tk = (n2+n3

2
)k + r.
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Figure 7. A collection of supplementary-pair trees Γ(6) and its core tree T .

Figure 8. The resulting T ∗ Γ(6) with r = 1 and w = 0.
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Lemma 2.4. Let Γ(m), m = 2l + 1 for some positive integer l, be a collection of m interlaced
trees and {Ti, Ti+1} for i = {2, 4, . . . ,m − 1} be a supplementary-pair with ni = n2, ni+1 = n3

and T1 be a tree with n1 = n2 + n3 vertices and p1 = p∗1 satisfying the properties (a′) and (b′)
above. Then, we can label Γ(m) such that there exists exactly one vertex in each component of
Γ(m) having label sj + w or tk + w, with j ∈ K ′, k ∈ J ′, and w ∈ L′1 if n2 ≥ n3, or with j ∈ J ′,
k ∈ K ′ and w ∈ L′2 if n2 < n3.

Proof. The proof for Γ(m) − T1 is the same as in Lemma 2.3 by considering T2 as T1 of Lemma
2.3. From this we can conclude that there exists exactly one vertex in each component of Γ(m)
having label sj + w or tk + w, with j ∈ {1, 3, . . . ,m− 2}, k ∈ {0, 2, . . . ,m− 1}, and w ∈ L′1 if
n2 ≥ n3 or with j ∈ {0, 2, . . . ,m−1}, k ∈ {1, 3, . . . ,m−2} and w ∈ L′2 if n2 < n3. Now we add
n2+n3

2
to each vertex label of Γ(m)−T1. We notice that the property on the existence of one vertex

with label sj + w or tk + w in Γ(m) − T1 is still maintained. More precisely we have that every
component of Γ(m) − T1 has exactly one vertex with label sj + w or tk + w with j ∈ K ′ − {0},
k ∈ J ′, w ∈ L′1 if n2 ≥ n3 or with j ∈ J ′, k ∈ K ′ − {0}, w ∈ L′2 if n2 < n3.
Now we label T1 by using label function as in Eq. (1) with P = P1. This implies that L(P1) =
{0, 1, . . . , n2+n3

2
− 1} and L(P c

1 ) = {N(m) − n2+n3

2
, N(m) − n2+n3

2
+ 1, . . . , N(m) − 1}. Since

s0 + w = w and t0 + w = r + w and the range of w, we have min(L(P1)) = 0 ≤ s0 + w ≤
t0 + w < n2+n3

2
− 1 = max(L(P1)). So, we can conclude that s0 + w, t0 + w ∈ L(P1). It implies

that s0 + w, t0 + w ∈ L(V (T1)).

Theorem 2.4. Let T be a tree on m = 2l + 1 vertices for some positive integer l which is con-
structed as in Theorem 2.2, where for every Ti,ji with i = 2s + 1, 0 ≤ s ≤ l, the value of ji is
chosen from {1, 3, . . . , i− 2}. Then T ∗ Γ(m) is graceful.

Proof. . Let f be a graceful labeling of T . Define a new function f ∗ for T as follows:

f ∗(v) =

{
f(v)(n1+n2

2
) + w, if f(v) is even

f(v)(n1+n2

2
) + r + w, if f(v) is odd (6)

if n1 ≥ n2, and

f ∗(v) =

{
f(v)(n1+n2

2
) + r + w, if f(v) is even

f(v)(n1+n2

2
) + w, if f(v) is odd (7)

if n1 < n2.

The algebraic process is skipped because it is the same as in Theorem 2.3. We conclude that
the new vertex labels of T are either:
(n1+n2

2
)i+ w, i ∈ {0, 2, . . . ,m− 1} and (n1+n2

2
)i+ r + w, i ∈ {1, 3, . . . ,m− 2} if n1 ≥ n2,, or

(n1+n2

2
)i+w, i ∈ {1, 3, . . . ,m−2} and (n1+n2

2
)i+ r+w, i ∈ {0, 2, . . . ,m−1} if n1 < n2,. Then

we get the edge labels of T are either:
{ (n1+n2)

2
2, (n1+n2)

2
4, . . . , (n1+n2)

2
(m− 1)}

⋃
{ (n1+n2)

2
− r, (n1+n2)

2
3− r, . . . , (n1+n2)

2
(m− 2)− r} =

{N(m)−N(m− 1), N(m)−N(m− 2), . . . , N(m)−N(1)}, if n1 ≥ n2,, or
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{ (n1+n2)
2

2, (n1+n2)
2

4, . . . , (n1+n2)
2

(m − 1)}
⋃
{ (n1+n2)

2
+ r, (n1+n2)

2
3 + r, . . . , (n1+n2)

2
(m − 2) + r}

= {N(m) − N(m − 1), N(m) − N(m − 2), . . . , N(m) − N(1)}, if n1 < n2,. These labels will
complete m− 1 missing edge labels of Γ(m) as in Lemma 2.1. Then by Lemma 2.4, we conclude
that T ∗Γ(m) is graceful.

Example 5. Let Γ(7) be the collection of suplementary-pair trees in Figure 7 with T1 as in Figure
9, and Ti+1 := Ti, i = 1, 2, . . . , 6. Furthermore, the core tree T be a tree with seven vertices as in
Figure 9. The resulting graceful tree T ∗ Γ(7) is shown in Figure 10 .

Figure 9. T1 and a core tree T .

Figure 10. T ∗ Γ(7).

Let Γ(m), m = 2l + 1 for some positive integer l, be a collection of interlaced trees and
{Ti, Ti+1} be a supplementary-pair for every i ∈ {2, 4, . . . ,m − 1}, with ni = n2 and ni+1 = n3,
and T1 is with n1 = n2 + n3 vertices, p1 = p∗1, such that the following properties hold.

(a′′) If n2 ≥ n3 then pi≡0(mod 4), p
∗
i≡3(mod 4) > r and
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(b′′) If n2 < n3 then pi≡2(mod 4), p
∗
i≡1(mod 4) > r,

with ni = n2, ni+1 = n3 and r = |n2−n3

2
|.

Lemma 2.5. Let Γ(m), m = 2l + 1 for some positive integer l, be a collection of interlaced trees
and {Ti, Ti+1} for i = {2, 4, . . . ,m − 1} be a supplementary-pair with ni = n2, ni+1 = n3 and
T1 be a tree with n1 = n2 + n3 vertices and p1 = p∗1 satisfying the properties (a′′) and (b′′) above.
Then, we can label Γ(m) such that there exists exactly one vertex in each component of Γ(m)
which has label sj + w or tk + w with j ∈ J ′, k ∈ K ′, and w ∈ L′2 if n2 ≥ n3 or with j ∈ K ′,
k ∈ J ′ and w ∈ L′1 if n2 < n3.

Proof. The proof is the same as in Lemma 2.4, so the detail is skiped here for the sake of space
efficiency.

Theorem 2.5. Let T be a tree on m = 2l + 1 vertices for some positive integer l which is con-
structed as in Theorem 2.2, where for every Ti,ji with i = 2s + 1, 0 ≤ s ≤ l, the value of ji is
chosen from {0, 2, ..., i− 1}. Then T ∗ Γ(m) is graceful.

Proof. Let f be a graceful labeling of T . Define a new function f ∗ for T as follows:

f ∗(v) =

{
f(v)(n1+n2

2
) + r + w, if f(v) is even

f(v)(n1+n2

2
) + w, if f(v) is odd (8)

if n1 ≥ n2, and

f ∗(v) =

{
f(v)(n1+n2

2
) + w, if f(v) is even

f(v)(n1+n2

2
) + r + w, if f(v) is odd (9)

if n1 < n2.

We skip the detail of calculation process which is the same as in the proof of Theorem 2.3.
Then, we may conclude that the new vertex labels of T are either:
(n1+n2

2
)i+ w, i ∈ {1, 3, . . . ,m− 2} and (n1+n2

2
)i+ r + w, i ∈ {0, 2, . . . ,m− 1} if n1 ≥ n2,

or
(n1+n2

2
)i+ w, i ∈ {0, 2, . . . ,m− 1} and (n1+n2

2
)i+ r + w, i ∈ {1, 3, . . . ,m− 2} if n1 < n2.

From this we can immediately see that the edge labels of T are either

{ (n1+n2)
2

2, (n1+n2)
2

4, . . . , (n1+n2)
2

(m− 1)}
⋃
{ (n1+n2)

2
− r, (n1+n2)

2
3− r, . . . , (n1+n2)

2
(m− 2)− r} =

{N(m)−N(m− 1), N(m)−N(m− 2), . . . , N(m)−N(1)}, if n1 ≥ n2,
or
{ (n1+n2)

2
2, (n1+n2)

2
4, . . . , (n1+n2)

2
(m− 1)}

⋃
{ (n1+n2)

2
+ r, (n1+n2)

2
3 + r, . . . , (n1+n2)

2
(m− 2) + r} =

{N(m)−N(m− 1), N(m)−N(m− 2), . . . , N(m)−N(1)}, if n1 < n2.

These labels will complete m− 1 missing edge labels of Γ(m) as in Lemma 2.1. Thus by Lemma
2.5, we conclude that T ∗Γ(m) is graceful.
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