

Electronic Journal of Graph Theory and Applications

Embedding complete multipartite graphs into Cartesian product of paths and cycles

R. Sundara Rajan^a, A. Arul Shantrinal^a, T.M. Rajalaxmi^b, Jianxi Fan^c, Weibei Fan^d

^aDepartment of Mathematics, Hindustan Institute of Technology and Science, Chennai, India, 603 103

^bDepartment of Mathematics, Sri Sivasubramaniya Nadar College of Engineering, Chennai, India, 603 110

^cSchool of Computer Science and Technology, Soochow University, Suzhou 215006, China

^dSchool of Computer Science & Technology, Nanjing University of Posts and Telecommunications, Jiangsu 210049, China

vprsundar@gmail.com, shandrinashan@gmail.com (Corresponding author), laxmi.raji18@gmail.com, jxfan@suda.edu.cn, fanweibei@163.com

Abstract

Graph embedding is a powerful method in parallel computing that maps a guest network G into a host network H. The performance of an embedding can be evaluated by certain parameters, such as the dilation, the edge congestion and the wirelength. In this manuscript, we obtain the wirelength (exact and minimum) of embedding complete multi-partite graphs into Cartesian product of paths and/or cycles, which include n-cube, n-dimensional mesh (grid), n-dimensional cylinder and n-dimensional torus, etc., as the subfamilies.

Keywords: embedding, edge congestion, wirelength, complete multi-partite graphs, Cartesian product of graphs Mathematics Subject Classification: 05C60, 05C85 DOI: 10.5614/ejgta.2021.9.2.21

1. Introduction and Preliminaries

Given two graphs G (guest) and H (host), an embedding from G to H is an injective mapping $f: V(G) \to V(H)$ and associating a path $P_f(e)$ in H for each edge e of G. We, now define the edge congestion EC(G, H) and the wirelength WL(G, H) [4] as follows:

•
$$EC(G, H) = \min_{f:G \to H} \max_{e=xy \in E(H)} EC_f(e)$$

•
$$WL(G,H) = \min_{f:G \to H} \sum_{e=xy \in E(G)} \operatorname{dist}_H(f(x),f(y)) = \min_{f:G \to H} \sum_{e=xy \in E(H)} EC_f(e)$$

Received: 27 September 2019, Revised: 19 June 2021, Accepted: 14 July 2021.

Figure 1. An embedding f from torus G into a path H with $EC_f(G, H) = 8$ and $WL_f(G, H) = 48$.

where $\operatorname{dist}_H(f(x), f(y))$ is a distance (need not be a shortest distance) between f(x) and f(y) in H and $EC_f(e)$ denote the number of edges e' of G such that e = xy is in the path $P_f(e')$ (need not be a shortest path) between f(x) and f(y) in H. Further, $EC_f(S) = \sum_{e \in S} EC_f(e)$, where $S \subseteq E(H)$.

For example, the edge congestion and the wirelength of an embedding $f : C_3 \Box C_3 \rightarrow P_9$ is given in Fig. 1. It is easy to observe that, the above two parameters are different. But, for any embedding g, the sum of the edge congestion (called edge congestion sum) and the wirelength are all equal. Mathematically, we have the following equality.

$$\sum_{e=xy\in E(H)} EC_g(e) = WL_g(G, H).$$

In this manuscript, we will use the edge congestion sum to estimate the wirelength. Further, if $n \ge 1$, then the set $\{1, 2, ..., n\}$ will be denoted by [n].

For a subgraph M of G of order n,

• $I_G(M) = \{uv \in E \mid u, v \in M\}, \ I_G(k) = \max_{M \subseteq V(G), \ |M|=k} |I_G(M)|$ • $\theta_G(M) = \{uv \in E \mid u \in M, v \notin M\}, \ \theta_G(k) = \min_{M \subseteq V(G), \ |M|=k} |\theta_G(M)|$

 ϵ

The maximum subgraph problem (MSP) for a given $k, k \in [n]$ is a problem of computing a subset M of V(G) such that |M| = k and $|I_G(M)| = I_G(k)$. Further, the subsets M are called the *optimal set* [17, 5, 19]. Similarly, we define the minimum cut problem (MCP) for a given $k, k \in [n]$ is a problem of computing a subset M of V(G) such that |M| = k and $|\theta_G(M)| = \theta_G(k)$. For a regular graph, say r, we have $2I_G(k) + \theta_G(k) = rk, k \in [n]$ [5].

The following lemmas are efficient techniques to find the exact wirelength using MSP and MCP.

Lemma 1.1. [27] Let $f : G \to H$ be an embedding with |V(G)| = |V(H)|. Let $S \subseteq E(H)$ be such that $E(H) \setminus S$ has exactly two subgraphs H_1 and H_2 , and let $G_1 = G[f^{-1}(V(H_1))]$ and $G_2 = G[f^{-1}(V(H_2))]$. Furthermore, let S satisfy the following conditions:

- 1. For every $uv \in E(G_i), i \in [2]$, the path $P_f(uv)$ has no edges in S.
- 2. For every $uv \in E(G)$, $u \in V(G_1)$, $v \in V(G_2)$, the path $P_f(uv)$ has exactly one edge in S.

3. $V(G_1)$ and $V(G_2)$ are optimal sets.

Then $EC_f(S)$ is minimum over all embeddings $f : G \to H$ and $EC_f(S) = \sum_{v \in V(G_1)} deg_G(v) - 2|E(G_1)| = \sum_{v \in V(G_2)} deg_G(v) - 2|E(G_2)|$, where $deg_G(v)$ is the degree of a vertex v in G.

Remark 1.1. For a regular graph G, it is easy to check that, $V(G_2)$ is optimal if and only if $V(G_1)$ is optimal and vice-versa [25].

Lemma 1.2. [27] Let $f : G \to H$. If $\{P_1, \ldots, P_t\}$ is a partition of E(H), where each part P_i is an edge cut that satisfies the conditions of Lemma 1.1, then

$$WL_f(G,H) = \sum_{i=1}^t EC_f(P_i)$$

Moreover, $WL(G, H) = WL_f(G, H)$.

The multipartite graph is one in all the foremost in style convertible and economical topological structures of interconnection networks. The multipartite has several wonderful options and its one in all the most effective topological structure of parallel processing and computing systems. In parallel computing, a large process is often decomposed into a collection of little sub processes which will execute in parallel with communications among these sub processes. Due to these communication relations among these sub processes the multipartite graph can be applied for avoiding conflicts in the network as well as multipartite networks helps to identify the errors occurring areas in easy way. A complete *p*-partite graph $G = K_{n_1,...,n_p}$ is a graph that contains *p* independent sets containing n_i , $i \in [p]$, vertices, and all possible edges between vertices from different parts.

The Cartesian product technique is a very powerful technique for create a huger graph from given little graphs and it is very important technique for planning large-scale interconnection networks [45, 38]. Especially, the *n*-dimensional grid (cylinder and torus) structure of interconnection networks offer a really powerful communication pattern to execute a lot of algorithms in many parallel computing systems [45], which helps to arrange the interconnection network into sequence of sub processors (layers) in uniform distribution manner for transmits the data's in faster way without delay in sending the data packets (messages). Mathematically, we now defined the Cartesian product of graphs as follows:

Definition 1.1. [20] The Cartesian product $G \Box H$ of (not necessarily connected) graphs G and H is the graph with the vertex set $V(G) \times V(G)$, vertices (u, v) and (u', v') being adjacent if either u = u' and $vv' \in E(H)$, or v = v' and $uu' \in E(G)$. If G_1, G_2, \ldots, G_m are graphs of order n_1, n_2, \ldots, n_m respectively, then the Cartesian product of m factors $G_1 \Box G_2 \Box \cdots \Box G_m$ is denoted by $\bigotimes_{i=1}^m G_i$.

Remark 1.2. The graph $\bigotimes_{i=1}^{n} G_i$ is said to be an *n*-dimensional grid or torus or cylinder if all *n* factors are paths or cycles or any one of the factor is path and the remaining (n-1) factors are cycles, respectively.

The graph embedding problem has been well-studied by many authors with a different networks [1,5,6,10,11–45], and to our knowledge, almost all graphs considered as a host graph is a unique family (for example: path P_n , cycle C_n , grid $P_n \Box P_m$, cylinder $P_n \Box C_m$, torus $C_n \Box C_m$, hypercube Q_r and so on). In this paper, we overcome this by taking Cartesian product of paths and/or cycles as a host graph. Moreover, we obtain the wirelength of embedding complete 2^p partite graphs $K_{2^{r-p},2^{r-p},\ldots,2^{r-p}}$ into the Cartesian product of $n \ge 3$ factors of respective order 2^{r_i} , $i \in [n]$, where $r_1 \le r_2 \le \cdots \le r_n$, $r_1 + r_2 + \cdots + r_n = r$ and each factor is a path or a cycle, $r \ge 3, 1 \le p < r$.

Lemma 1.3. [30] If G is a complete p-partite graph $K_{r,r,\dots,r}$ of order $pr, p, r \ge 2$, then

$$I_G(k) = \begin{cases} \frac{k(k-1)}{2}, & k \le p-1, \\ \frac{q^2 p(p-1)}{2}, & l = qp, 1 \le q \le r. \\ \frac{(q-1)^2 p(p-1)}{2} + j(q-1)(p-1) + \frac{j(j-1)}{2}, & l = (q-1)p + j, 1 \le j \le p-1, \\ 2 \le q \le r. \end{cases}$$

2. Main Results

In this section we give an algorithm that computes the minimum wirelength of embedding complete 2^p -partite graphs $K_{2^{r-p},2^{r-p},\dots,2^{r-p}}$ into Cartesian product of n factors are paths or cycles or any one of the factor is path and the remaining (n-1) factors are cycles.

We start with an auxiliary algorithm that accordingly labels the vertices of the complete 2^{p} -partite graph $K_{2^{r-p},2^{r-p},...,2^{r-p}}$. We thus have 2^{r} vertices partitioned into $l = 2^{p}$ parts. Initially, all the vertices are unlabeled. Then label the first vertex in each partition (upto l) by increment of 1 using clockwise direction. Now, label the second vertex in the first partition as l + 1. Now, label the second vertex in the remaining each partition by increment of 1. Continue this process until all the 2^{r} vertices are labeled. The formal algorithm is given below as Algorithm 1.

Algorithm 1:

Input: $N = 2^r$ (Total number of elements)

 $p \ge 1$, where 2^{r-p} represents the number of elements in the each partite **Output**: Labeling of complete 2^p -partite graph $K_{2^{r-p},2^{r-p},\dots,2^{r-p}}$

Step 1. Initialize (z, x), z represent the partite number and y represent the vertex position of the individual partite considered in the loop

Step 2. Initialize j = 1

Step 3. Start the below loop for the first partite

Step 4. for $(x \leftarrow 1 \text{ to } 2^{r-p}, \text{ increment } x \text{ by } 1)$

Step 4.1. for $(z \leftarrow 1 \text{ to } 2^p, \text{ increment } z \text{ by } 1)$

Step 4.1.1. print (z, x) = j**Step 4.1.2.** Increment *j* value by 1

Step 5. Print the labeling of complete 2^p -partite graphs

Step 6. Repeat Step 4 upto 2^p -partite

Step 7. Repeat until 2^{r-p} vertices are labeled in each partite.

Lemma 2.1. If $r, n \ge 3$ and $p \ge 1$, then Algorithm 1 labels the vertices of the complete 2^p -partite graph $K_{2^{r-p},2^{r-p},\dots,2^{r-p}}$ with different integers from $[2^r]$.

Proof. The graph $K_{2^{r-p},2^{r-p},...,2^{r-p}}$ has 2^r vertices partitioned into $l = 2^p$ independent parts. Algorithm proceeds as described before. Specifically, Step 4.1.1 labels the first vertex of the first partition as 1, and continues the same process upto l^{th} partition by increment of 1. The second vertex of the first partition is labeled with l + 1 and do the numbering in clockwise direction. Repeat the same process (Step 4) until we reach the label 2^r . Hence Algorithm 1 labels all the vertices of the complete 2^p -partite graph uniquely from 1 to 2^r . This completes the proof of the lemma.

Figure 2. The complete 4-partite graph $K_{16,16,16,16}$.

To illustrate Algorithm 1, consider the complete 4-partite graph $K_{16,16,16,16}$ as illustrated in Fig. 2. By Algorithm 1, we have N = 64, r = 6 and p = 2. Initialize, j = 1 for z = 1 and x = 1, $z \in [16]$, $x \in [16]$, (1, 1) = 1 (i.e, $x \in [2^{r-p}]$, $z \in [2^p]$, (z, x) = j) and hence label the first vertex of the first partite as 1. Next increment j by 1. For j = 2, we have z = 2 and x = 1, (1, 2) = 2, Now label the first vertex of the second partite as 2 and so. Now go to Step 4, repeat the same process until we reach the label of the last (64^{th}) vertex and the algorithm ends.

An implementation of Algorithm 1 in python and two of its outputs are listed in Annexure I. We continue with an auxiliary algorithm that labels the Cartesian product of $n \ge 3$ factors of respective order 2^{r_i} , $i \in [n]$, where $r_1 + r_2 + \cdots + r_n = r$, $r_1 \le r_2 \le \cdots \le r_n$ and each factor is a path or a cycle, $r \ge 3, 1 \le p < r$.

Algorithm 2:

Input: The dimension $n \ge 3$ and the value of $r_1, r_2, ..., r_n$ **Output**: Labeling of Cartesian product of graphs $\bigotimes_{i=1}^{n} G_i$, where G_i 's are either a path or a cycle Step 1. Initialize R, M, L, and (x, y), where R represents the number of Cartesian product of $(n-1)^{th}$ dimension graph, M represents the number of two dimensional Cartesian product graph in the $(n-1)^{th}$ dimension, $L = 2^r$, $r = r_1 + r_2 + \ldots + r_n$ (i.e, total number of vertices), and in (x, y), x represents the column and y represents the row

Step 2. Initialize variables $j = 1, P = 1, y = 1, Q = 2^{r_1}, K = 2^{r_2}$

Step 3. Set R = 1Step 4. for $(Z \leftarrow 1$ to M, increment Z by 1) // If $r_3 = r_n$, then Z = 1Step 4.1. for $(x \leftarrow 1$ to K, increment x by 1) Step 4.2. $Q = 2^{r_1}$ Step 4.3. for $(y \leftarrow P$ to Q, increment y by 1) Step 4.3.1. print (x, y) = jStep 4.3.2. if $\frac{j}{2^{r_1} \times 2^{r_2} \times M \times R} = 1$, then P = yelse Step 4.3.3 if $(y = 2^{r_1})$, then y = 0 and Q = P - 1Step 4.3.4 j = j + 1Step 4.4. End for Step 4.5. End for

Step 5. End for

Step 6. R = R + 1

Step 7. Repeat Step 4 for 2^{r_n} copies of (n-1) dimensional graph

Step 8. Print the labeling of the Cartesian product of paths and cycles.

Figure 3. The Cartesian product of path graphs $P_4 \Box P_4 \Box P_4$.

Lemma 2.2. If $r \ge 3$ and $i \in n$, then Algorithm 2 labels the Cartesian product of $n \ge 3$ factors of respective order 2^{r_i} , where $r_1 \le r_2 \le \cdots \le r_n$, $r_1 + r_2 + \cdots + r_n = r$, $1 \le p < r$ and each factor is a path or a cycle.

Proof. The graph has 2^r vertices and dimension $n \ge 3$. Algorithm 2 proceeds as described before. We initialize the first two a_1 and a_2 parameter as the two dimensional graph. The a_3 parameter takes input which produces a_3 copies of the base dimension $(a_1 \times a_2)$. Similarly, the a_n parameter takes input which produces a_n copies of the base dimension $(a_1 \times a_2 \cdots \times a_{n-1})$. First label the (n-1) dimensional graph. Then, update the row position and start the labeling in the second copy of (n-1) dimensional graph. Repeat the same process (Step 4) until we reach the label 2^r . Hence Algorithm 2 labels the all the vertices of the Cartesian product of paths and cycles uniquely from 1 to 2^r . This completes the proof of the lemma.

To illustrate Algorithm 2, we consider the graph $P_4 \Box P_4 \Box P_4$ as illustrated in Fig. 3. In Algorithm 2, we have Q = 4 and K = 4. Initialize, R = 1, j = 1, P = 1 for Z = 1, $x \in [4]$, $y \in [4]$, (x, y) = (1, 1) = 1 and hence label the first vertex of the 2-dimensional grid as 1. Then, go to Step 4.3.2, the condition $\frac{j}{2^{r_1} \times 2^{r_2} \times M \times R} = \frac{1}{4 \times 4 \times 1 \times 1} \neq 1$ fails. Next go to Step 4.3.3, the condition $y = 2^{r_1} \Rightarrow 1 \neq 4$ fails. Now increment j by 1. Go to Step 4.3, we have j = 2, x = 1 and y = 2, (1, 2) = 2. Now, label the first vertex of the second row as 2 and so, for j = 5 we have x = 1 and y = 5, the condition $y \not\leq Q = 5 \not\leq 4$ fails. Thus, go to Step 4.1, we have x = 2 and y = 1, (2, 1) = 5 hence label the second vertex of the first row as 5. Continue this process until we reach all vertices of the two dimensional grid. Next go to Step 4.3.2, we have (4, 4) = 16, so the condition $\frac{j}{2^{r_1} \times 2^{r_2} \times M \times R} = \frac{16}{4 \times 4 \times 1 \times 1} = 1$ satisfied. So, take the increment of R by 1. Now, P = y (i.e, P = 4), so (x, y) = (1, 4) = 17, label the first vertex of the last row as 17. Go to Step 4.3.2, the condition fails. Now come to the else part, we have 4 = 4 ($y = 2^{r_1}$). So, y = 0, Q = P - 1 = 4 - 1 = 3. Now increment j by 1. Do the same process until we reach the label of the last (*i.e.*, 64th) vertex.

The Python program and the corresponding implementation of Algorithm 2 are given in Annexure II.

We, now ready to prove the main result.

Theorem 2.1. Let G be the complete 2^p -partite graphs $K_{2^{r-p},2^{r-p},...,2^{r-p}}$ and H be the Cartesian product of $n \ge 3$ factors of respective order 2^{r_i} , $i \in [n]$, where $r_1 \le r_2 \le \cdots \le r_n$, $r_1 + r_2 + \cdots + r_n = r$ and each factor is a path or a cycle, $r \ge 3, 1 \le p < r$. Let $s \ge 0$ factors of H are paths and the remaining (n - s) factors are cycles. Then the embedding f of G into H given by f(x) = x with minimum wirelength and is given by,

$$WL(G,H) = \frac{2^{2r-p}(2^p-1)}{6} \left[(2^{r_1}+2^{r_2}+\dots+2^{r_s}) - \left(\frac{1}{2^{r_1}}+\frac{1}{2^{r_2}}+\dots+\frac{1}{2^{r_s}}\right) \right] + 2^{2r-p-3}(2^p-1)(2^{r_{s+1}}+2^{r_{s+2}}+\dots+2^{r_n}).$$

Proof. Label the vertices of G using Lemma 2.1 from 1 to 2^r . Since the graph H contains an ndimensional grid and label the vertices of n-dimensional grid using Lemma 2.2 from 1 to 2^r . For illustration, see Figures 2, 3, 4, 5 and 6. Let us assume that, the label represent each of the vertex, which is allocated by the above algorithms. Let $f : G \to H$ be an embedding and let f(v) = v for all $v \in V(G)$ and for $uv \in E(G)$, let $P_f(uv)$ be a path (shortest) between f(u) and f(v) in H. Now, we have the following 3 cases.

Case 1. s = n

It is clear that, the graph H becomes an n-dimensional grid $P_{2^{r_1}} \Box P_{2^{r_2}} \Box \cdots \Box P_{2^{r_n}}$. For all $i, j, 1 \le i \le n$ and $1 \le j \le 2^{r_i} - 1$, let S_i^j be the edge cut of $P_{2^{r_1}} \Box P_{2^{r_2}} \Box \cdots \Box P_{2^{r_n}}$ consisting of the edges between the j^{th} and $(j+1)^{th}$ copies of $P_{2^{r_1}} \Box P_{2^{r_2}} \Box \cdots \Box P_{2^{r_{(i-1)}}} \Box P_{2^{r_{(i+1)}}} \Box \cdots \Box P_{2^{r_n}}$. Then $\{S_i^j : 1 \le i \le n \text{ and } 1 \le j \le 2^{r_i} - 1\}$ is an edge-partition of $P_{2^{r_1}} \Box P_{2^{r_2}} \Box \cdots \Box P_{2^{r_n}}$.

For all $i, j, 1 \leq i \leq n$ and $1 \leq j \leq 2^{r_i} - 1$, $E(H) \setminus S_i^j$ has two components H_i^j and \overline{H}_i^j , where $|V(H_i^j)| = (2^{r-r_i})j$ and $|V(\overline{H}_i^j)| = 2^{r-r_i}(2^{r_i} - j)$. Let G_i^j and \overline{G}_i^j be the induced subgraph of the inverse images of $V(H_i^j)$ and $V(\overline{H}_i^j)$ under f respectively. By Lemma 2.1, $deg_G(v) = 2^{r-r_i-p}(2^p - 1)j$, for all $v \in V(G_i^j)$ and hence $I_G((2^{r-r_i})j) = 2^{2r-2r_i-p}(2^p - 1)j^2/2$. By Case 2 of Lemma 1.3, $E(G_i^j)$ is the maximum subgraph on $|V(G_i^j)| = (2^{r-r_i})j$ vertices in G. Thus the edge cut S_i^j fulfil all the conditions of Lemma 1.1. Therefore

$$EC_f(S_i^j) = 2^{r-p}(2^p - 1)(2^{r-r_i})j - 2\left(\frac{2^{2r-2r_i-p}(2^p - 1)j^2}{2}\right)$$
$$= 2^{2r-2r_i-p}(2^p - 1)(2^{r_i} - j)j$$

is minimum for $1 \le i \le n$ and $1 \le j \le 2^{r_i} - 1$. Then by Lemma 1.2,

$$WL(G, H) = \sum_{i=1}^{n} \sum_{j=1}^{2^{r_i}-1} EC_f(S_i^j)$$

=
$$\sum_{i=1}^{n} \sum_{j=1}^{2^{r_i}-1} 2^{2r-2r_i-p}(2^p-1)(2^{r_i}-j)j$$

=
$$\frac{2^{2r-p}(2^p-1)}{6} \left[(2^{r_1}+2^{r_2}+\dots+2^{r_n}) - \left(\frac{1}{2^{r_1}}+\frac{1}{2^{r_2}}+\dots+\frac{1}{2^{r_n}}\right) \right].$$

Case 2. s = 0

It is clear that, the graph H becomes an n-dimensional torus $C_{2^{r_1}} \Box C_{2^{r_2}} \Box \cdots \Box C_{2^{r_n}}$. For all $i, j, 1 \leq i \leq n$ and $1 \leq j \leq 2^{r_i-1}$, let T_i^j be the edge cut of $C_{2^{r_1}} \Box C_{2^{r_2}} \Box \cdots \Box C_{2^{r_n}}$ consisting of the edges between the $(2^{r_i-1}-i+j)^{th} \& (2^{r_i-1}-i+j+1)^{th}$ and $(2^{r_i}-i+j)^{th} \& (2^{r_i}-i+j+1)^{th}$ copies of $C_{2^{r_1}} \Box C_{2^{r_2}} \Box \cdots \Box C_{2^{r_{(i-1)}}} \Box P_{2^{r_i-1}} \Box C_{2^{r_{(i+1)}}} \Box \cdots \Box C_{2^{r_n}}$. Then $\{T_i^j : 1 \leq i \leq n \text{ and } 1 \leq j \leq 2^{r_i-1}\}$ is an edge-partition of $C_{2^{r_1}} \Box C_{2^{r_2}} \Box \cdots \Box C_{2^{r_n}}$.

For all $i, j, 1 \leq i \leq n$ and $1 \leq j \leq 2^{r_i-1}$, $E(H) \setminus T_i^j$ has two components H_i^j and \overline{H}_i^j , where $|V(H_i^j)| = |V(\overline{H}_i^j)| = 2^{r-1}$. Let G_i^j and \overline{G}_i^j be the induced subgraph of the inverse images of $V(H_i^j)$ and $V(\overline{H}_i^j)$ under f respectively. By Lemma 2.1, $deg_G(v) = 2^{r-p-1}(2^p - 1)$, for all $v \in V(G_i^j)$ and hence $I_G(2^{r-1}) = 2^{2r-2p-2}2^p(2^p - 1)/2$. By Case 2 of Lemma 1.3, $E(G_i^j)$ is the maximum subgraph on $|V(G_i^j)| = 2^{r-1}$ vertices in G. Thus the edge cut T_i^j fulfil all the conditions of Lemma 1.1. Therefore

$$EC_f(T_i^j) = 2^{r-p}(2^p - 1)2^{r-1} - 2\left(\frac{2^{2r-2p-2}2^p(2^p - 1)}{2}\right)$$
$$= 2^{2r-p-2}(2^p - 1)$$

is minimum for $1 \le i \le n$ and $1 \le j \le 2^{r_i-1}$. Then by Lemma 1.2,

$$WL(G, H) = \sum_{i=1}^{n} \sum_{j=1}^{2^{r_i-1}} EC_f(T_i^j)$$

=
$$\sum_{i=1}^{n} \sum_{j=1}^{2^{r_i-1}} 2^{2^{r_i-2}} (2^p - 1)$$

=
$$2^{2^{r_i-3}} (2^p - 1) (2^{r_1} + 2^{r_1} + \dots + 2^{r_n})$$

Case 3. *n* > *s* > 0

In this case, we describe H as the Cartesian product of $n \ge 3$ factors of respective order 2^{r_i} , $i \in [n]$ where $i \in [n]$, where $r_1 \le r_2 \le \cdots \le r_n$, $r_1 + r_2 + \cdots + r_n = r$ and each factor is a path or a cycle, $r \ge 3, 1 \le p < r$.

Let s > 0 factors of H are paths and the other (n - s) factors are cycles, then obtained by using the associativity of the Cartesian product and writing that,

$$P_{2^{r_1}} \Box \cdots P_{2^{r_s}} \Box C_{2^{r_{s+1}}} \Box \cdots \Box C_{2^{r_n}} = (P_{2^{r_1}} \Box \cdots \Box P_{2^{r_s}}) \Box (C_{2^{r_{s+1}}} \Box \cdots \Box C_{2^{r_n}})$$

Let S_i^l , $1 \le i \le s$, $1 \le l \le 2^{r_i} - 1$ and T_i^m , $s + 1 \le i \le n$, $1 \le m \le 2^{r_i - 1}$ be the edge cuts of paths and cycles of H respectively.

By similar arguments in Case 1 and Case 2, we get

$$EC_f(S_i^l) = 2^{2r-2r_i-p}(2^p-1)(2^{r_i}-l)l$$

is minimum for $1 \le i \le s$ and $1 \le l \le 2^{r_i} - 1$ and

$$EC_f(T_i^m) = 2^{2r-p-2}(2^p-1)$$

is minimum for $s + 1 \le i \le n$ and $1 \le m \le 2^{r_i - 1}$.

Then by Lemma 1.2,

$$WL(G, H) = \sum_{i=1}^{s} \sum_{l=1}^{2^{r_i-1}} EC_f(S_i^l) + \sum_{i=s+1}^{n} \sum_{m=1}^{2^{r_i-1}} EC_f(T_i^m)$$

$$= \sum_{i=1}^{s} \sum_{l=1}^{2^{r_i-1}} 2^{2r-2r_i-p}(2^p-1)(2^{r_i}-l)l + \sum_{i=s+1}^{n} \sum_{m=1}^{2^{r_i-1}} 2^{2r-p-2}(2^p-1)(2^{2r_i}-1)$$

$$= \frac{1}{6} \sum_{i=1}^{s} 2^{2r-r_i-p}(2^p-1)(2^{r_i}-1)(2^{r_i}+1) + \sum_{i=s+1}^{n} 2^{2r+r_i-p-3}(2^p-1)$$

$$= \frac{2^{2r-p}(2^p-1)}{6} \left[(2^{r_1}+2^{r_2}+\dots+2^{r_s}) - \left(\frac{1}{2^{r_1}}+\frac{1}{2^{r_2}}+\dots+\frac{1}{2^{r_s}}\right) \right]$$

$$+ 2^{2r-p-3}(2^p-1)(2^{r_{s+1}}+2^{r_{s+2}}+\dots+2^{r_n}).$$

Corollary 2.1. If G_1 is a path on 2^{r_1} vertices and G_i is a cycle on 2^{r_i} vertices, $2 \le i \le n$, then the host graph becomes an n-dimensional cylinder $P_{2^{r_1}} \square C_{2^{r_2}} \square \cdots \square C_{2^{r_n}}$ and the wirelength of an embedding f from G into H is given by

$$WL(G,H) = \frac{2^{2r-p}(2^p-1)}{6} \left[2^{r_1} - \frac{1}{2^{r_1}} \right] + 2^{2r-p-3}(2^p-1)(2^{r_2}+2^{r_3}+\dots+2^{r_n}).$$

3. Conclusion and Future Work

In this manuscript, we found the wirelength (exact and minimum) of an embedding complete multi-partite graphs into Cartesian product of paths and/or cycles. Computing the dilation [4] and the edge congestion of embedding complete multi-partite graphs into Cartesian product and other product of graphs are under investigation.

Acknowledgement

The work of R. Sundara Rajan was partially supported by Project no. ECR/2016/1993, Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India. Further, we thank Prof. Gregory Gutin and Prof. Stefanie Gerke, Royal Holloway, University of London, TW20 0EX, UK; Prof. Indra Rajasingh, School of Advanced Sciences, Vellore Institute of Technology, Chennai, India and Dr. N. Parthiban, Department of Computer Science and Engineering, SRM Institute of Science and Technology, Chennai, India, for their fruitful suggestions. Further, the authors would like to thank the anonymous referees for their comments and suggestions. These comments and suggestions were very helpful for improving the quality of this paper.

References

- [1] D. Adolphson and T.C. Hu, Optimal linear ordering, SIAM J. Appl Math. 25, 403–423, 1973.
- [2] M. Arockiaraj, J.N. Delaila, and J. Abraham, Optimal wirelength of balanced complete multipartite graphs onto cartesian product of {Path, Cycle} and trees, Fundam. Inform. 178 (2021), 187-202.
- [3] L. Auletta, A.A. Rescigno, and V. Scarano, Embedding graphs onto the supercube, *IEEE Trans Comput.* **44** (1995), 593–597.
- [4] S.L. Bezrukov, J.D. Chavez, L.H. Harper, M. Röttger, and U.P. Schroeder, Embedding of hypercubes into grids, *MFCS. Lect. Notes Comput. Sci.* **1450** (1998), 693–701.
- [5] S.L. Bezrukov, S.K. Das, and R. Elsässer, An edge-isoperimetric problem for powers of the Petersen graph, *Ann. Comb.* **4** (2000), 153–169.
- [6] S.L. Bezrukov and U.P. Schroeder, The cyclic wirelength of trees, *Discrete. Appl. Math.* 87 (1998), 275–277.
- [7] M.Y. Chan, Embedding of grids into optimal hypercubes, SIAM J. Comput. 20 (1991), 834–864.
- [8] M.Y. Chan and S.J. Lee, Fault-tolerant embedding of complete binary trees in hypercubes, *IEEE Trans Parallel Distrib Syst.* **4** (1993), 277–288.
- [9] B. Cheng, J. Fan, and X. Jia, Dimensional-Permutation-Based independent spanning trees in bijective connection networks, *IEEE Trans Parallel Distrib Syst.* **26** (2015), 45-53.
- [10] B. Cheng, D. Wang, and J. Fan, Constructing completely independent spanning trees in crossed cubes, *Discrete Appl. Math.* **219** (2017), 100-109.
- [11] F.R.K. Chung, F.T. Leighton, and A.L. Rosenberg, Embedding graphs in books: A layout problem with applications to VLSI design, *SIAM J. Alg. Discrete Math.* **8** (1987), 33-58.
- [12] S.A. Choudum and U. Nahdini, Complete binary trees in folded and enhanced cubes, *Networks*, **43** (2004), 266–272.
- [13] J. Diaz, J. Petit, and M. Serna, A Survey of Graph Layout Problems, ACM Comput. Surv. 34 (2002), 313–356.
- [14] J. Ellis, S. Chow, and D. Manke, Many to one embeddings from grids into cylinders, tori and hypercubes, *SIAM J. Comput.* **32** (2003), 386–407.
- [15] J. Fan, X. Lin, X. Jia, and R.W.H. Lau, Edge-Pancyclicity of twisted Cubes, (ISAAC). Lect. Notes Comput. Sci (LNCS). 3827 (2005), 1090-1099.

- [16] J.-F. Fang and K.-C. Lai, Embedding the incomplete hypercube in books, *Inf. Process. Lett.* 96 (2005), 1–6.
- [17] M.R. Garey and D.S. Johnson, *Computers and Intractability, A Guide to the Theory of NP-Completeness*, Freeman, San Francisco, (1979).
- [18] C.-J. Guu, *The Circular Wirelength Problem for Hypercubes*, Ph.D. dissertation, University of California, Riverside, (1997).
- [19] L.H. Harper, *Global Methods for Combinatorial Isoperimetric Problems*, Cambridge University Press, (2004).
- [20] M.H. Khalifeh, H.Y.-Azari, and A.R. Ashrafi, The hyper-Wiener index of graph operations, *Comput. Math. with Appl.* 56 (2008), 1402–1407.
- [21] P. Kulasinghe, and S. Bettayeb, Embedding binary trees into crossed cubes, *IEEE Trans Comput.* 44 (1995), 923–929.
- [22] K.J. Kumar, S. Klavžar, R.S. Rajan, I. Rajasingh, and T.M. Rajalaxmi, An asymptotic relation between the wirelength of an embedding and the wiener index, Discrete Math. Lett., to appear.
- [23] P.-L. Lai and C.-H. Tsai, Embedding of tori and grids into twisted cubes, *Theor. Comput. Sci.* 411 (2010), 3763–3773.
- [24] R.-S. Lo and G.-H. Chen, Embedding Hamiltonian paths in faulty arrangement graphs with the backtracking method, *IEEE Trans Parallel Distrib Syst.* **12** (2001), 209–222.
- [25] P. Manuel, I. Rajasingh, B. Rajan, and H. Mercy, Exact wirelength of hypercube on a grid, *Discret. Appl. Math.* 157 (2009), 1486–1495.
- [26] R.S. Mary and I. Rajasingh, Embedding of complete graphs and cycles into grids with holes, *Procedia Comput. Sci.* **172** (2020), 115–121.
- [27] M. Miller, R.S. Rajan, N. Parthiban, and I. Rajasingh, Minimum linear arrangement of incomplete hypercubes, J. Comput. 58 (2015), 331–337.
- [28] G.K. Nandini, R.S. Rajan, T.M. Rajalaxmi, A.A. Shantrinal, K.S.K. Sharifah, and H. Roslan, Wiener index via wirelength of an embedding, *Discrete Math. Algorithms Appl.* (2021).
- [29] R.S. Rajan, T. Kalinowski, S. Klavžar, H. Mokhtar, and T.M. Rajalaxmi, Lower bounds for dilation, Wirelength, and edge Congestion of embedding graphs into hypercubes, J Supercomput. 77 (2021), 4135-4150.
- [30] R.S. Rajan, T.M. Rajalaxmi, J.B. Liu, and G. Sethuraman, Wirelength of embedding complete multipartite graphs into certain graphs, *Discrete Appl. Math.* **280** (2020), 221-236.

- [31] R.S. Rajan, T.M. Rajalaxmi, S. Stephen, A.A. Shantrinal, and K. Jagadeesh Kumar, Embedding wheel-like networks, *Iran. J. Math. Sci. Inform.* (2020).
- [32] I. Rajasingh, M. Arockiaraj, B. Rajan, and P. Manuel, Minimum wirelength of hypercubes into n-dimensional grid networks, *Inf. Process. Lett.* **112** (2012), 583–586.
- [33] I. Rajasingh, J. Quadras, P. Manuel, and A. William, Embedding of cycles and wheels into arbitrary trees, *Networks*, 44 (2004), 173–178.
- [34] I. Rajasingh and R.S. Rajan, Exact wirelength of embedding circulant networks into necklace and windmill Graphs, *Ars Comb.* **130** (2017), 215–237.
- [35] I. Rajasingh, R.S. Rajan, and P. Manuel, A linear time algorithm for embedding Christmas trees into certain trees, *Parallel Process. Lett.* **25** (2015), 1–17.
- [36] I. Rajasingh, B. Rajan, and R.S. Rajan, Embedding of special classes of circulant networks, hypercubes and generalized Petersen graphs, *Int. J. Comput. Math.* **89** (2012), 1970–1978.
- [37] H. Rostami and J. Habibi, Minimum linear arrangement of chord graphs, *Appl. Math. Comput.* 203 (2008), 358–367.
- [38] B.H. Susanti, A.N.M. Salman, and R. Simanjuntak, The rainbow 2-connectivity of Cartesian products of 2-connected graphs and paths, *Electron. J. Graph Theory Appl.* 8 (2020), 145– 156.
- [39] Y.-C. Tseng, S.-H. Chang, and J.-P. Sheu, Fault-tolerant ring embedding in a star graph with both link and node failures, *IEEE Trans Parallel Distrib Syst.* 8 (1997), 1185–1195.
- [40] A. Wagner and D.G. Corneil, Embedding trees in a hypercube is np-complete, SIAM J. Comput. 19 (1990), 570–590.
- [41] X. Wang, A. Erickson, J. Fan, and X. Jia, Hamiltonian properties of DCell networks, J. Comput. 58 (2015), 2944-2955.
- [42] M.-C. Yang, Path embedding in star graphs, Appl. Math. Comput. 207 (2009), 283–291.
- [43] X. Yang, Q. Dong, and Y.Y. Tan, Embedding meshes/tori in faulty crossed cubes, *Inf. Process. Lett.* 110 (2010), 559–564.
- [44] P.-J. Yang, S.-B. Tien, and C.S. Raghavendra, Embedding of rings and meshes onto faulty hypercubes using free dimensions, *IEEE Trans. Comput.* **43** (1994), 608–613.
- [45] J.M. Xu, *Topological Structure and Analysis of Interconnection Networks*, Kluwer Academic Publishers, (2001).

Annexure I

Python program for labeling of the guest graph

```
def printline(num, boxes, boxesinrow):
    i = 0;
    string = ' '
    for i in range(0, boxesinrow):
      for j in range(0, 4):
        string = string + "\{:< 3d\}".format(num + boxes * j) + ' '
      string = string + ' '
      num = num + 1
      print(string)
def printbox(num, boxes, elements_per_box, boxes_in_row):
     value=num
     temp = elements_per_box // 4
     while temp > 0:
      printline(num, boxes, boxes_ in_ row)
      temp = temp - 1
      num = num + boxes * 4
     print(' n')
    return (value+boxes_in_row)
def printpattern(numl):
    boxes = len(numl)
     elements_Per_box = numl[0]
    num = 1
    temp = boxes
     while temp > 0:
      if temp \ge 4:
        num = printbox(num, boxes, elements_Per_box, 4)
      else:
        num = printbox(num, boxes, elements_ Per_ box, temp)
      temp = temp - 4
printpattern([32,32,...,32])
```

Implementation of the above Python program

Output 1:

]	Ι			Ι	I				Π	Π			Ι	V	
1	9	17	25	2	10	18	26		3	11	19	27	4	12	20	28
33	41	49	57	34	42	50	58		35	43	51	59	36	44	52	60
65	73	81	89	66	74	82	90		67	75	83	91	68	76	84	92
97	105	113	121	98	106	114	122		99	107	115	123	100	108	116	124
129	137	145	153	130	138	146	154		131	139	147	155	132	140	148	156
161	169	177	185	162	170	178	186		163	171	179	187	164	172	180	188
193	201	209	217	194	202	210	218		195	203	211	219	196	204	212	220
225	233	241	249	226	234	242	250		227	235	243	251	228	236	244	252
]								
		7			,	71				17	п			M	п	
	V	V			١	/I				V	II			VI	II	
5	13	V 21	29	6	14	/I 22	30		7	V 15	II 23	31	8	VI 16	II 24	32
5 37			29 61	6 38			30 62		7 39			31 63	8 40			32 64
	13	21	-		14	22			· ·	15	23			16	24	
37	13 45	21 53	61	38	14 46	22 54	62		39	15 47	23 55	63	40	16 48	24 56	64
37 69	13 45 77	21 53 85	61 93	38 70	14 46 78	22 54 86	62 94		39 71	15 47 79	23 55 87	63 95	40 72	16 48 80	24 56 88	64 96
37 69 101	13 45 77 109	21 53 85 117	61 93 125	38 70 102	14 46 78 110	22 54 86 118	62 94 126		39 71 103	15 47 79 111	23 55 87 119	63 95 127	40 72 104	16 48 80 112	24 56 88 120	64 96 128
37 69 101 133	13 45 77 109 141	21 53 85 117 149	61 93 125 157	38 70 102 134	14 46 78 110 142	22 54 86 118 150	62 94 126 158		39 71 103 135	15 47 79 111 143	23 55 87 119 151	63 95 127 159	40 72 104 136	16 48 80 112 144	24 56 88 120 152	64 96 128 160
37 69 101 133 165	13 45 77 109 141 173	21 53 85 117 149 181	61 93 125 157 189	38 70 102 134 166	14 46 78 110 142 174	22 54 86 118 150 182	62 94 126 158 190		39 71 103 135 167	15 47 79 111 143 175	23 55 87 119 151 183	63 95 127 159 191	40 72 104 136 168	16 48 80 112 144 176	24 56 88 120 152 184	64 96 128 160 192

Figure 3: Complete 8-partite graph $K_{32,32,...,32}$

Output 2:

Ι	Π	Ш	IV			
1 33 65 97 129 161 193 225	2 34 66 98 130 162 194 226	3 35 67 99 131 163 195 227	4 36 68 100 132 164 196 228			
V	VI	VII	VIII			
5 37 69 101 133 197 101 229	6 38 70 102 134 166 198 230	7 39 71 103 135 167 199 231	8 40 72 104 136 168 200 232			
IX	Х	XI	ХП			
9 41 73 105 137 169 201 233	10 42 74 106 138 170 202 234	11 43 75 107 139 171 203 235	12 44 76 108 140 172 204 236			
ХШ	XIV	XV	XVI			
13 45 77 109 141 173 205 237	14 46 78 110 142 174 206 238	15 47 79 111 143 175 207 239	16 48 80 112 144 176 208 240			
XVII	XVIIII	XIX	XX			
17 49 81 113 145 177 209 241	18 50 82 114 146 178 210 242	19 51 83 115 147 179 211 243	20 52 84 116 148 180 212 244			
XXI	ХХП	XXIII	XXIV			
21 53 85 117 149 181 213 245	22 54 86 118 150 182 214 246	23 55 87 119 151 183 215 247	24 56 88 120 152 184 216 248			
XXV	XXVI	XXVII	XXVIII			
25 57 89 121 153 185 217 249	26 58 90 122 154 186 218 250	27 59 91 123 155 187 219 251	28 60 92 124 156 188 220 252			
XXIX	XXXX	XXXI	XXXII			
29 61 93 125 157 189 221 253	30 62 94 126 158 190 222 254	31 63 95 127 159 191 223 255	32 64 96 128 160 192 224 256			

Figure 4: Complete 32-partite graph $K_{8,8,\dots,8}$

Annexure II

Python program for labeling of the host graph

n=0 def *disp*_3nr(numl, n, irange): for i in irange: string = str(i+n)for j in range(1, numl[1]): string=string+' '+str(i+n+numl[0]*j) for k in range(1, numl[2]): string=string+' for j in range(0, numl[1]): string = string + ' ' + str(i+ n + numl[0] * j+ k*numl[0]*numl[1]) print(string) def $disp_{-}^{-}$ n(numl): base=numl[0]*numl[1]*numl[2] para_ num=len(numl) order=numl[3:] global n n = -base tnum1=numl[:3] loopri(order, tnum1, base) def rotate(irange): temp=irange[0] for i in range(0, len(irange)-1): irange[i] = irange[i+1] irange[len(irange)-1]=temp return(irange) def loopri(order, tnuml, base): irange = list(range(1, tnuml[0]+1)) if len(order) == 1: for i in range(0, order[0]): global n print(i+1) n = n + basedisp_ 3nr(tnuml, n, irange) irange=rotate(irange) print('') else: for i in range(0, order[-1]): print(i) loopr(order[:-1], tnuml, base, irange) irange=rotate(irange) def loopr(order, tnuml, base, irange): if len(order) == 1: for i in range(0, order[0]): global n n = n + basedisp_ 3nr(tnuml, n, irange) print(' ') else: for i in range(0, order[-1]): print(i) loopr(order[:-1], tnuml, base, irange) disp_ n([4,8,16])

Implementation of the above Python program

Output 1:

Figure 5: 3-dimensional grid $P_4 \Box P_8 \Box P_{16}$

Output 2:

Figure 6: 4-dimensional cylinder $C_4 \Box P_4 \Box P_4 \Box P_8$