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Abstract

Graph embedding is a powerful method in parallel computing that maps a guest network G into a
host network H. The performance of an embedding can be evaluated by certain parameters, such as
the dilation, the edge congestion and the wirelength. In this manuscript, we obtain the wirelength
(exact and minimum) of embedding complete multi-partite graphs into Cartesian product of paths
and/or cycles, which include n-cube, n-dimensional mesh (grid), n-dimensional cylinder and n-
dimensional torus, etc., as the subfamilies.
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1. Introduction and Preliminaries

Given two graphs G (guest) and H (host), an embedding from G to H is an injective mapping
f : V(G) — V(H) and associating a path Py(e) in H for each edge e of G. We, now define the
edge congestion EC(G, H) and the wirelength W L(G, H) [4] as follows:

* FC(G,H) = min max EC{(e)

f:G—H e=zycE(H)
WG H) = min X disu(7(@), /() = min ¥ BCY(e)

—H e=zycE(G) f:GoH e=xycE(H)
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Figure 1. An embedding f from torus G into a path H with EC;(G, H) =8 and WL;(G, H) = 48.

where disty (f(x), f(y)) is a distance (need not be a shortest distance) between f(z) and f(y) in H
and EC(e) denote the number of edges e’ of GG such that e = zy is in the path Py (e’) (need not be
a shortest path) between f(x) and f(y) in H. Further, EC;(S) = > ECY(e), where S C E(H).

ecS
For example, the edge congestion and the wirelength of an embedding f : C30C5 — Py is

given in Fig. 1. It is easy to observe that, the above two parameters are different. But, for any
embedding g, the sum of the edge congestion (called edge congestion sum) and the wirelength are
all equal. Mathematically, we have the following equality.

> EC,(e) = WLy(G, H).

e=zycE(H)

In this manuscript, we will use the edge congestion sum to estimate the wirelength. Further, if
n > 1, then the set {1, 2, ..., n} will be denoted by [n].

For a subgraph M of G of order n,

* [¢(M)={uww e E|uve M}, Igk)= MCV{%?}TMEk | I (M)

* Og(M)={uw e E|lue M,v¢ M}, 0c(k)= MgV(ré’l)l,n\M|:k: |0c(M)|

The maximum subgraph problem (MSP) for a given k, k € [n] is a problem of computing a
subset M of V(G) such that |M| = k and |I5(M)| = I(k). Further, the subsets M are called
the optimal set [17, 5, 19]. Similarly, we define the minimum cut problem (MCP) for a given k,
k € [n] is a problem of computing a subset M of V(G) such that [M| = k and |0c(M)| = 0(k).
For a regular graph, say r, we have 21¢(k) + 0g(k) = rk, k € [n] [5].

The following lemmas are efficient techniques to find the exact wirelength using MSP and
MCP.

Lemma 1.1. [27] Let f : G — H be an embedding with |V (G)| = |V(H)|. Let S C E(H) be
such that E(H) \ S has exactly two subgraphs H, and Hs, and let G, = G[f~'(V(H,))] and
Gy = G[f~Y(V(H,))]. Furthermore, let S satisfy the following conditions:

1. Forevery uv € E(G;),i € [2], the path Ps(uv) has no edges in S.
2. Foreveryuv € E(G),u € V(G1),v € V(Gy2), the path Pr(uv) has exactly one edge in S.
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3. V(G1) and V (Gs) are optimal sets.

Then EC¢(S) is minimum over all embeddings f : G — H and EC;(S) = >  dega(v) —
veV (Gh)

2|E(Gh)| = > degg(v) — 2|E(G3)|, where degg(v) is the degree of a vertex v in G.

’UEV(GQ)

Remark 1.1. For a regular graph G, it is easy to check that, V' (G5) is optimal if and only if V' (G1)
is optimal and vice-versa [25].

Lemma 1.2. [27] Let f : G — H. If {P\,..., P} is a partition of E(H ), where each part P, is
an edge cut that satisfies the conditions of Lemma 1.1, then

WG H) = 3 ECH(P).

Moreover, WL(G,H) = WL(G, H).

The multipartite graph is one in all the foremost in style convertible and economical topologi-
cal structures of interconnection networks. The multipartite has several wonderful options and its
one in all the most effective topological structure of parallel processing and computing systems.
In parallel computing, a large process is often decomposed into a collection of little sub processes
which will execute in parallel with communications among these sub processes. Due to these com-
munication relations among these sub processes the multipartite graph can be applied for avoiding
conflicts in the network as well as multipartite networks helps to identify the errors occurring areas
in easy way. A complete p-partite graph G = K, is a graph that contains p independent sets
containing n;, ¢ € [p], vertices, and all possible edges between vertices from different parts.

The Cartesian product technique is a very powerful technique for create a huger graph from
given little graphs and it is very important technique for planning large-scale interconnection net-
works [45, 38]. Especially, the n-dimensional grid (cylinder and torus) structure of interconnection
networks offer a really powerful communication pattern to execute a lot of algorithms in many par-
allel computing systems [45], which helps to arrange the interconnection network into sequence of
sub processors (layers) in uniform distribution manner for transmits the data’s in faster way with-
out delay in sending the data packets (messages). Mathematically, we now defined the Cartesian
product of graphs as follows:

Definition 1.1. [20] The Cartesian product GOH of (not necessarily connected) graphs G and H
is the graph with the vertex set V(G) x V(G), vertices (u,v) and (u',v") being adjacent if either
u = u and vv' € E(H), orv =" and wi' € E(G). If G1,Gs,...,G,, are graphs of order
ni,Na, . .., Ny, respectively, then the Cartesian product of m factors G0G,0 - - - OG,, is denoted

=1

Remark 1.2. The graph R G; is said to be an n-dimensional grid or torus or cylinder if all n factors
i=1
are paths or cycles or any one of the factor is path and the remaining (n — 1) factors are cycles,

respectively.
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The graph embedding problem has been well-studied by many authors with a different net-
works [1,5,6,10,11-45], and to our knowledge, almost all graphs considered as a host graph is a
unique family (for example: path P,, cycle C,,, grid P,0F,,, cylinder P,0C,,, torus C,0C,,,
hypercube (), and so on). In this paper, we overcome this by taking Cartesian product of paths
and/or cycles as a host graph. Moreover, we obtain the wirelength of embedding complete 2P-
partite graphs Kor—p or—»__ or—p into the Cartesian product of n > 3 factors of respective order 2%,
i € [n],wherer; <1y <--- <r,, 1 +79+ -+ 1, = r and each factor is a path or a cycle,
r>3,1<p<r.

Lemma 1.3. [30] If G is a complete p-partite graph K, . of order pr, p,r > 2, then

( k(k—1)
B k S p— 17
l=qp,1 <qg<r.

—1)2 — . i(j— . .
(a=1)’plp=1) 1)2”(p 1)+](q—1)(p—1)—|—3(]Tl), l=(q—1p+j,1<j<p-—-1,
2<qg<m.

\

2. Main Results

In this section we give an algorithm that computes the minimum wirelength of embedding
complete 2P-partite graphs Kor—p or—» __or—» into Cartesian product of n factors are paths or cycles
or any one of the factor is path and the remaining (n — 1) factors are cycles.

We start with an auxiliary algorithm that accordingly labels the vertices of the complete 27-
partite graph Kor—» or—» _ or—». We thus have 2" vertices partitioned into [ = 27 parts. Initially, all
the vertices are unlabeled. Then label the first vertex in each partition (upto /) by increment of 1
using clockwise direction. Now, label the second vertex in the first partition as [ + 1. Now, label
the second vertex in the remaining each partition by increment of 1. Continue this process until all
the 2" vertices are labeled. The formal algorithm is given below as Algorithm 1.

Algorithm 1:

Input: N = 2" (Total number of elements)
p > 1, where 2" 7P represents the number of elements in the each partite
Output: Labeling of complete 2P-partite graph Kor—p or—p _ or—»

Step 1. Initialize (2, z), 2z represent the partite number and y represent the vertex position
of the individual partite considered in the loop

Step 2. Initialize j = 1

Step 3. Start the below loop for the first partite

Step 4. for (z < 1to 2"7P, increment x by 1)

Step 4.1. for (z < 1 to 2P, increment 2 by 1)
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Step 4.1.1. print (z,2) = j
Step 4.1.2. Increment j value by 1

Step 5. Print the labeling of complete 2P-partite graphs
Step 6. Repeat Step 4 upto 2P-partite
Step 7. Repeat until 2”7 vertices are labeled in each partite.

Lemma 2.1. If r,n > 3 and p > 1, then Algorithm 1 labels the vertices of the complete 2P-partite

graph Kor—p gr—p__or—» with different integers from [27).

-----

Proof. The graph Kyr—p or—»  or—» has 2" vertices partitioned into [ = 2P independent parts. Al-
gorithm proceeds as described before. Specifically, Step 4.1.1 labels the first vertex of the first
partition as 1, and continues the same process upto [*" partition by increment of 1. The second ver-
tex of the first partition is labeled with [ + 1 and do the numbering in clockwise direction. Repeat
the same process (Step 4) until we reach the label 2. Hence Algorithm 1 labels all the vertices of
the complete 2P-partite graph uniquely from 1 to 2". This completes the proof of the lemma. [

1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16
17 21 25 29 18 22 26 30 19 23 27 31 20 24 28 32
33 37 41 45 34 38 42 46 35 39 43 47 36 40 44 48
49 53 57 61 50 54 58 62 51 55 59 63 52 56 60 64

Figure 2. The complete 4-partite graph K6,16,16,16-

To illustrate Algorithm 1, consider the complete 4-partite graph K¢ 16,16,16 as illustrated in Fig.
2. By Algorithm 1, we have N = 64, r = 6 and p = 2. Initialize, j = 1 forz = land z = 1,
z € [16], x € [16], (1,1) = 1 (i.e, x € [2"7P], z € [2P], (2,x) = j ) and hence label the first vertex
of the first partite as 1. Next increment j by 1. For j = 2, we have z = 2 and z = 1, (1,2) = 2,
Now label the first vertex of the second partite as 2 and so. Now go to Step 4, repeat the same
process until we reach the label of the last (64'") vertex and the algorithm ends.

An implementation of Algorithm 1 in python and two of its outputs are listed in Annexure I.
We continue with an auxiliary algorithm that labels the Cartesian product of n > 3 factors of re-
spective order 2", i € [n|, where ry + 1o+ -+ 4+ 1, = 7,11 <19 < --- <1, and each factor is a
pathoracycle, r > 3,1 <p<r.

Algorithm 2:

Input: The dimension n > 3 and the value of 71,75, ...,7,

Output: Labeling of Cartesian product of graphs Q) G;, where G,’s are either a path or a cycle
i=1
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Step 1. Initialize R, M, L, and (x,y), where R represents the number of Cartesian product
of (n — 1)*" dimension graph, M represents the number of two dimensional Cartesian
product graph in the (n — 1)th dimension, L = 2", r = r{ +ro + ... + r, (i.e, total
number of vertices), and in (z, y),  represents the column and y represents the row

Step 2. Initialize variables j =1, P =1,y =1,Q = 2", K = 2™

Step3. Set R=1

Step 4. for (Z < 1to M, increment Z by 1) I 1Ifrs=r,,then Z =1

Step 4.1. for (x < 1 to K, increment = by 1)

Step 4.2. ) = 2"

Step 4.3. for (y < P to (), increment y by 1)
Step 4.3.1. print (z,y) = j

Step 4.3.2. if 5t = Lithen P =y
else
Step 4.3.3 if (y =2"),theny =0and Q) = P — 1
Step4.34 j=7+1
Step 4.4. End for
Step 4.5. End for

Step 5. End for

Step6. R=R+1

Step 7. Repeat Step 4 for 2" copies of (n — 1) dimensional graph
Step 8. Print the labeling of the Cartesian product of paths and cycles.

18 22 26 30 35 39 43 47 52 56 60
1 5 9 13 64
L — 1
2 6 10 14 19 23 27 31 36 40 44 48 49 53 57 61
3 7 11 15 20 24 28 3 33 37 41 45 50, 54 8 ©
4 8 12 16 17 21 25 29 34 38 42 46 51 55 59 63

Figure 3. The Cartesian product of path graphs P,O0FP,0P;.

Lemma 2.2. Ifr > 3 and i € n, then Algorithm 2 labels the Cartesian product of n > 3 factors of
respective order 2", wherer; <re < --- <r,, ri+ro+---4+1r, =1 1< p <randeach factor
is a path or a cycle.
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Proof. The graph has 2" vertices and dimension n > 3. Algorithm 2 proceeds as described before.
We initialize the first two a; and a, parameter as the two dimensional graph. The a3 parameter
takes input which produces a; copies of the base dimension (a; X as). Similarly, the a,, parameter
takes input which produces a,, copies of the base dimension (a; X ag -+ X a,_1). First label the
(n — 1) dimensional graph. Then, update the row position and start the labeling in the second copy
of (n — 1) dimensional graph. Repeat the same process (Step 4) until we reach the label 2". Hence
Algorithm 2 labels the all the vertices of the Cartesian product of paths and cycles uniquely from
1 to 2". This completes the proof of the lemma. [

To illustrate Algorithm 2, we consider the graph P,0FP,0P; as illustrated in Fig. 3. In Algo-
rithm 2, we have ) = 4 and K = 4. Initialize, R=1,j=1,P=1for Z =1,z € [4],y € [4],
(x,y) = (1,1) = 1 and hence label the first vertex of the 2-dimensional grid as 1. Then, go to
Step 4.3.2, the condition g ijxMxR = 77 # 1 fails. Next go to Step 4.3.3, the condition
y = 2" = 1 # 4 fails. Now increment j by 1. Go to Step 4.3, we have j = 2, x = 1 and
y = 2, (1,2) = 2. Now, label the first vertex of the second row as 2 and so, for j = 5 we have
z = 1andy = 5, the condition y £ Q = 5 £ 4 fails. Thus, go to Step 4.1, we have x = 2 and
y = 1, (2,1) = 5 hence label the second vertex of the first row as 5. Continue this process until
we reach all vertices of the two dimensional grid. Next go to Step 4.3.2, we have (4,4) = 16,
so the condition 2r1x2rgx % = o7 = 1 satisfied. So, take the increment of R by 1. Now,
P =y (e, P =4),s0 (z,y) = (1,4) = 17, label the first vertex of the last row as 17. Go to
Step 4.3.2, the condition fails. Now come to the else part, we have 4 = 4 (y = 2"). So, y = 0,
Q=P —-1=4—-1=3. Now increment j by 1. Do the same process until we reach the label of
the last (i.e., 64'") vertex.

The Python program and the corresponding implementation of Algorithm 2 are given in Annexure
II.

We, now ready to prove the main result.

Theorem 2.1. Let G be the complete 2P-partite graphs Kor—p or—» . or—» and H be the Cartesian
product of n > 3 factors of respective order 2"i, i € [n], where ry <1y < - < 1y, v+ 1o+
--- 4+ 1, = r and each factor is a path or a cycle, r > 3,1 < p < r. Let s > 0 factors of H are
paths and the remaining (n — s) factors are cycles. Then the embedding f of G into H given by
f(z) = x with minimum wirelength and is given by,

22r=p (2P — 1 1 1 1
WL(G,H) = LGt )] (2’"1+2”2+...+2Ts)_(_+_+...+ )]

6 2r - 2r2 27s
H2HTPTI(P — 1)(27H 4 27 e 2T,
Proof. Label the vertices of G using Lemma 2.1 from 1 to 2". Since the graph H contains an n-
dimensional grid and label the vertices of n-dimensional grid using Lemma 2.2 from 1 to 2". For

illustration, see Figures 2, 3, 4, 5 and 6. Let us assume that, the label represent each of the vertex,
which is allocated by the above algorithms. Let f : G — H be an embedding and let f(v) = v
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for all v € V(G) and for uv € E(G), let Pr(uv) be a path (shortest) between f(u) and f(v) in H.
Now, we have the following 3 cases.

Casel.s=n
It is clear that, the graph H becomes an n-dimensional grid Pori OPyr, O - - - OPyr,. For all 7, 7,
1<i<nand1 <j <2" —1,let Sij be the edge cut of Pyry 0P, 0 - - - 0P, consisting of the
edges between the 5 and (j + 1) copies of Pyry OPyr; O+« - OPyr_1y OPyr(41y 0 - - - OPyr,. Then
{Sg 1 <i<mand1l < j < 2" — 1} is an edge-partition of Pyri OPpr, O -+« OPyr,.

Foralli,j,1 <i<mnand1l < j < 2% — 1, E(H)\S/ has two components H’ and H},
where |V (H/)| = (2""")j and |V (I )\ — 27"1(2" — §). Let G? and G be the induced subgraph
of the inverse images of V (H/) and V (H, Z) under f respectively. By Lemma 2.1, degg(v) =
2r="i7P(2P — 1)j, for all v € V(GY) and hence I((277")j) = 22r=2~7(2? — 1);2/2. By Case 2
of Lemma 1.3, F(G?) is the maximum subgraph on |V (G7)| = (2"~"%); vertices in G. Thus the
edge cut SJ fulfil all the conditions of Lemma 1.1. Therefore

. 227" 2r;—p 7 _ 1 -2
BOy(s)) = 2o -y -2 (2
= (Y )2 - )

isminimum for 1 <i<nand1 < j <2" — 1.
Then by Lemma 1.2,

n 2"i—1
WL(G,H) = Y Y ECH(S))

i=1 j=1

n 2Ti—1

= 2 D T -2t )

i=1 j=1

22r7P(2P — 1) 11 1

I S N0 e e L ST L RN N .
5 {( +27 4 2™) < o Togm Tt 2)}

Case2.5=0
It is clear that, the graph H becomes an n-dimensional torus Cyr OCyr, O - - - OCY,. For all ¢, 7,
l1<i<nandl < j <29 ! let Tf be the edge cut of Cory OC5 O - - - OCy, consisting of the
edges between the (277! —i+ )" & (2771 —i+j+ 1) and (27 —i+j)" & (27 —i+ 5+ 1)
copies of Cor OC 0 -+ - OC, ;-1 DPgri_IDCgmm O..-0Cy+. Then {Tf 1 < ¢ < nand
1 < j < 2"~ '} is an edge-partition of Cyry OCor, 0+ - - OCys,.

Forall i,j, 1 < i < nand1 < j < 2!, E(H)\T/ has two components H] and H;,
where |V (H))| = V(H )| — 271, Let G7 and G be the induced subgraph of the inverse images
of V(H]) and V(H) under f respectively. By Lemma 2.1, degg(v) = 27P~1(2P — 1), for all
v € V(G?) and hence I(27~1) = 227~2r=22r(2? — 1) /2. By Case 2 of Lemma 1.3, E(G?) is the
maximum subgraph on |V (G?)| = 27! vertices in G. Thus the edge cut 77 fulfil all the conditions
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of Lemma 1.1. Therefore

. 2r—=2p—=29p(9op _
ECH(T)) = 272 —1)2' =2 <2 2(2 1)>

2
22 TPT2(2P 1)

is minimum for 1 < i <mnand1 < j < 2ri 1,
Then by Lemma 1.2,

WL(G.H) = Y S EC/T))

= 2TPTR(P —1)(27 427 4 27,

Case3.n>s>0
In this case, we describe H as the Cartesian product of n > 3 factors of respective order 2%, i € [n]
where ¢ € [n], where r; < ry < --- <., 7 +1ry+---+ 1, = r and each factor is a path or a
cycle, r >3, 1 <p<r.
Let s > 0 factors of H are paths and the other (n — s) factors are cycles, then obtained by using
the associativity of the Cartesian product and writing that,

Py O+ Pyr,OCyra18 - - - OChrm = (Pyri O - - 0Py )O(Coragr O - - - OChmm)

LetSf,l <i<s51<I<2i—1landT™, s+1<i<n,1<m <2 !bethe edge cuts of
paths and cycles of H respectively.

By similar arguments in Case 1 and Case 2, we get
EC(S = 277 2ip(2P — 1)(2" — )]
isminimum for 1 <¢<sand1 <[ <2" —1 and
EC/(T") = 277722 — 1)

isminimum for s + 1 <i<nand1 <m < 2ni 1,
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Then by Lemma 1.2,

s 2ri—1 n  2ni!
WL(G, H) = Y Y EC;SH)+ > Y EC/(T")
i=1 =1 t=s+1 m=1
s 2ni—1 n 207!

= D) e oD+ Y Y 2P - 1)(27 — 1)

=1 =1 i=s+1 m=1

1 S n
— 62 QTTIIR(P — 1)(27 = 1)(27 1) 4 Y 2o — 1)
i=1

i=s5+1
22 P(2P — 1) 11 1
e S A O e - B T LER R -
5 {( +27 4 27) (27“1 tog Tt 2”

FOUTTI(QP 1 )(27HY 2742 Ly 2T,
0

Corollary 2.1. If Gy is a path on 2" vertices and G; is a cycle on 2" vertices, 2 < i < n, then
the host graph becomes an n-dimensional cylinder Pyri OCor, O - - - OCy, and the wirelength of
an embedding f from G into H is given by

22rP (2P — 1)

1
WL(G’ H) — T |:27"1 . 271:| + 22r—p—3(2p . 1)(27“2 + T3 4+ 4 27‘n)

3. Conclusion and Future Work

In this manuscript, we found the wirelength (exact and minimum) of an embedding complete
multi-partite graphs into Cartesian product of paths and/or cycles. Computing the dilation [4] and
the edge congestion of embedding complete multi-partite graphs into Cartesian product and other
product of graphs are under investigation.
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Annexure I

Python program for labeling of the guest graph

def printline(num, boxes, boxesinrow):
1=0;
string ="’
for i in range(0, boxesinrow):
for j in range(0, 4):
string = string + ”{:< 3d} ”.format(num + boxes * j) + "’
string = string + *’
num = num + 1
print(string)
def printbox(num, boxes, elements_ per_box, boxres_ in_row):
value=num
temp = elements_ per_ box // 4
while temp > O:
printline(num, boxes, boxes_ in_ row)
temp = temp - 1
num = num + boxes * 4
print(’\n")
return (value+boxes_ in_ row)
def printpattern(numl):
boxes = len(numl)
elements_ Per_ box = numl[0]
num = 1
temp = boxes
while temp > 0:

if temp >= 4:
num = printbox(num, boxes, elements_ Per_ box, 4)
else:

num = printbox(num, boxes, elements_ Per_ box, temp)
temp = temp - 4
printpattern([32,32,...,32])
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Implementation of the above Python program

Output 1:

1 11 I v
1 9 17 25 2 10 18 26 3 11 19 27 4 12 20 28
33 41 49 57 34 42 50 58 35 43 51 59 36 44 52 60
65 73 81 89 66 74 82 90 67 75 83 91 68 76 84 92
97 105 113 121 98 106 114 122 99 107 115 123 100 108 116 124
129 137 145 153 130 138 146 154 131 139 147 155 132 140 148 156
161 169 177 185 162 170 178 186 163 171 179 187 164 172 180 188
193 201 209 217 194 202 210 218 195 203 211 219 196 204 212 220
225 233 241 249 226 234 242 250 227 235 243 251 228 236 244 252

v VI VII VIII
5 13 21 29 6 14 22 30 7 15 23 31 8 16 24 32
37 45 53 61 38 46 54 62 39 47 55 63 40 48 56 64
69 77 85 93 70 78 86 94 71 79 87 95 72 80 88 96
101 109 117 125 102 110 118 126 103 111 119 127 104 112 120 128
133 141 149 157 134 142 150 158 135 143 151 159 136 144 152 160
165 173 181 189 166 174 182 190 167 175 183 191 168 176 184 192
197 205 213 221 198 206 214 222 199 207 215 223 200 208 216 224
229 237 245 253 230 238 246 254 231 239 247 255 232 240 248 256

Figure 3: Complete 8-partite graph Kz232 32
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Output 2:
1 11 11 v
1 33 65 97 2 34 66 98 3 35 67 99 4 36 68 100
129 161 193 225 130 162 194 226 131 163 195 227 132 164 196 228
\% VI VII VIII
5 37 69 101 6 38 70 102 7 39 71 103 8 40 72 104
133 197 101 229 134 166 198 230 135 167 199 231 136 168 200 232
IX X XI XII
9 41 73 105 10 42 74 106 11 43 75 107 12 44 76 108
137 169 201 233 138 170 202 234 139 171 203 235 140 172 204 236
XIII X1V XV XVI
13 45 77 109 14 46 78 110 15 47 79 111 16 48 80 112
141 173 205 237 142 174 206 238 143 175 207 239 144 176 208 240
XVII XVIII XIX XX
17 49 81 113 18 50 82 114 19 51 83 115 20 52 84 116
145 177 209 241 146 178 210 242 147 179 211 243 148 180 212 244
XXI XXII XXIII XXIV
21 53 85 117 22 54 86 118 23 55 87 119 24 56 88 120
149 181 213 245 150 182 214 246 151 183 215 247 152 184 216 248
XXV XXVI XXVII XXVIIT
25 57 89 121 26 58 90 122 27 59 91 123 28 60 92 124
153 185 217 249 154 186 218 250 155 187 219 251 156 188 220 252
XXIX XXXX XXXT XXXIT
29 61 93 125 30 62 94 126 31 63 95 127 32 64 96 128
157 189 221 253 158 190 222 254 159 191 223 255 160 192 224 256

Figure 4: Complete 32-partite graph Kgg g
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Annexure 11

Python program for labeling of the host graph

n=0
def disp_3nr(numl, n, irange):
for i in irange:
string = str(i+n)
for j in range(1, numl[1]):
string=string+’ *+str(i+n+numl[0]*j)
for k in range(1, numl[2]):
string=string+’ ’
for j in range(0, numl[1]):
string = string + * * + str(i+ n + numl[0] * j+ k*numlI[0]*numl[1])
print(string)
def disp_ n(numl):
base=numl[0]*numl[1]*numl[2]
para— num=len(numl)
order=numl[3:]
global n
n = -base
tnum1=numl[:3]
loopri(order, tnum1, base)
def rotate(irange):
temp=irange[0]
for i in range(0, len(irange)-1):
irange[i] = irange[i+1]
irange[len(irange)-1]=temp
return(irange)
def loopri(order, tnuml, base):
irange = list(range(1, tnuml[0]+1))
if len(order) == 1:
for i in range(0, order[0]):
global n
print(i+1)
n=n + base
disp— 3nr(tnuml, n, irange)
irange=rotate(irange)
print(’ *)
else:
for i in range(0, order[-1]):
print(i)
loopr(order[:-1], tnuml, base, irange)
irange=rotate(irange)
def loopr(order, tnuml, base, irange):
if len(order) == 1:
for i in range(0, order[0]):
global n
n=n + base
disp— 3nr(tnuml, n, irange)
print(’ *)
else:
for i in range(0, order[-1]):
print(i)
loopr(order[:-1], tnuml, base, irange)
disp— n([4,8,16])
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Implementation of the above Python program

Output 1:
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Figure 5: 3-dimensional grid P,0Fs0 P4
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Output 2:
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Figure 6: 4-dimensional cylinder C,0P,0P,0F;
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