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Abstract
A k-regular d-handicap tournament is an incomplete tournament in which n teams, ranked accord-
ing to the natural numbers, play exactly k < n − 1 different teams exactly once and the strength
of schedule of the ith ranked team is d more than the (i − 1)st ranked team for some d ≥ 1. That
is, strength of schedules increase arithmetically by d with strength of team. A d-handicap distance
antimagic labeling of a graph G = (V,E) of order n is a bijection ℓ : V → {1, 2, . . . , n} with
induced weight function w(xi) =

∑
xj∈N(xi)

l(xj) such that ℓ(xi) = i and the sequence of weights

w(x1), w(x2), . . . , w(xn) forms an arithmetic sequence with difference d ≥ 1. A graph G which
admits such a labeling is called a d-handicap graph.

Constructing a k-regular d-handicap tournament on n teams is equivalent to finding a k-regular
d-handicap graph of order n. For d = 1 and n even, the existence has recently been completely
settled for all pairs (n, k), and some results are known for d = 2. For d > 2, the only known result
is restricted to the case where n is divisible by 2d+2. In this paper, we construct infinite families of
d-handicap graphs where the order is not restricted to a power of 2.
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1. Motivation

When scheduling a tournament, it is a common practice to use the rankings of the teams from
the previous season, or some other source to determine the list of opponents for each team. A
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tournament may be modeled with a graph in the most natural way; each team is represented with a
vertex and two vertices are adjacent if and only if the corresponding two teams play each other.

Suppose we have n teams ranked with the first n natural numbers and let i be the team ranked
i. For i ∈ {1, 2, . . . , n}, let w(i) represent the sum of the rankings of all opponents of team i. We
call w the strength of schedule. In a round-robin tournament (a tournament in which every team
plays all other teams), w(i) = n(n+1)

2
− i for each i. This means the strengths of schedules form

an arithmetic progression with difference −1 in a round-robin tournament. Therefore, the weakest
team has the most difficult strength of schedule while the strongest team has the weakest strength
of schedule. Clearly, the strongest team is most likely to benefit from this kind of tournament. This
motivates the following questions that are of interest for both tournament scheduling reasons and
purely graph theoretic reasons.

• Can we design a tournament with less games, but maintain the same weight structure as the
round-robin tournament?

• Can we design a tournament so each team has the same strength of schedule?

• Can we turn things around so that the weakest team has the weakest strength of schedule?

Clearly, to address these questions, one must consider only incomplete tournaments, that is tour-
naments in which each team plays exactly k < n − 1 other teams (unless otherwise noted, it
is assumed that all the tournaments discussed here are regular tournaments). A fair incomplete
tournament is an incomplete tournament where the weights form an arithmetic progression with
difference −1 as in a round-robin tournament. These tournaments address the first question above.
See [7, 11] for results regarding fair incomplete tournaments.

Equalized incomplete tournaments address the second question above. An equalized incom-
plete tournament is an incomplete tournament such that w(i) = µ, for some constant µ, for every
team i. The corresponding graph is called a distance magic graph. A distance magic labeling of
a simple graph G = (V,E) of order n is a bijection f : V → {1, 2, . . . , n} such that there exists
an integer µ called the magic constant, so that w(x) =

∑
y∈N(x)

f(y) = µ for all x ∈ V . Here

N(x) = {y|xy ∈ E} represents the open neighborhood of x.
The last question is addressed by a d-handicap tournament. A d-handicap distance antimagic

labeling (or d-handicap labeling for short) of a graph G = (V,E) of order n is a bijection ℓ : V →
{1, 2, . . . , n} with induced weight function

w(xi) =
∑

xj∈N(xi)

ℓ(xj),

such that ℓ(xi) = i and the sequence of weights w(x1), w(x2), . . . , w(xn) forms an arithmetic
sequence with constant difference d ≥ 1. If a graph G admits a d-handicap labeling, we say G
is a d-handicap graph. If G is k-regular, then we say G corresponds to a k-regular d-handicap
tournament, and we denote it by H (n, k, d).

A similar but less restrictive labeling has been considered by Arumugam and Kamatchi in
[4]. An (a, d)-distance antimagic labeling of a graph G = (V,E) of order n is a bijection l :
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V → {1, 2, . . . , n} such that the weights form the set {a, a+ d, a+ 2d, . . . , a+ (n− 1)d} for
some fixed integers a and d ≥ 0. Therefore, a d-handicap distance antimagic labeling is an (a, d)-
distance antimagic labeling, but the converse is not necessarily true. For a survey of distance
magic and distance antimagic labelings, see [3]. The survey also provides a summary of the results
regarding the tournaments we have discussed in this section.

In this paper we provide necessary conditions for the existence of d-handicap tournaments,
H(n, k, d), and construct such tournaments for large classes of n and a wide range of regularities
k, for every d ≥ 1. Our results subsume the complete characterizations of 1-handicap tournaments
with n ≡ 0 (mod 8) and 2-handicap tournaments with n ≡ 0 (mod 16), which were proved
respectively in [12, 8]. For larger d, our construction provides a nearly complete characterization
for appropriate classes of n.

2. Tools

All graphs in this paper are simple, finite graphs. We use the notation V (G) to denote the
vertex set of G and the notation E (G) to denote the edge set of G. If |V (G)| = n, we say the graph
G has order n. The neighborhood of a vertex x ∈ V (G), denoted N(x) or NG(x), is the set of all
vertices in V (G) adjacent to x. In order to simplify notation, we may sometimes refer to a vertex
by its label. This should not cause any confusion since the labelings considered in this paper are
bijections.

We use the notation xy to denote an edge between vertex x and vertex y and the notation x ∼ y
to mean x is adjacent to y. Let Kn,m = [x1, x2, . . . , xn | y1, y2,. . . , ym] denote the complete
bipartite graph Kn,m with partite sets {x1, x2, . . . , xn} and {y1, y2, . . . , ym} . For two graphs G and
H, we use the notation G + H to denote the union of graphs G and H. That is, V (G+H) =
V (G) ∪ V (H) and E (G+H) = E(G) ∪ E(H). The complement of G is denoted by G.

The constructions used in this paper utilize two graph products. Given two graphs G and H,
both products, the lexicographic product, G ◦ H , and the Cartesian product, G□H , have vertex
set V (G)× V (H) and two vertices (g1, h1) and (g2, h2) are adjacent in

• G ◦H if and only if g1 ∼ g2 in G or g1 = g2 and h1 ∼ h2 in H,

• G□H if and only if g1 = g2 and h1 ∼ h2 in H, or h1 = h2 and g1 ∼ g2 in G.

The lexicographic product G ◦H has sometimes been called graph composition and has also been
denoted G[H]. To construct the graph G ◦H , the following informal description may be helpful.
First, replace each vertex of G with an isomorphic copy of H. Then for every xy ∈ E(G), construct
the complete bipartite graph K|V (H)|,|V (H)| between the corresponding copies of H. For the graph
G ◦ K2, we will refer to each pair of isolated vertices which replace a vertex of G as blown-up
vertices. For a fixed vertex g of G, the subgraph of either of the above products induced by the set
{(g, h) : h ∈ V (H)} is called an H-layer and is denoted Hg. Similarly, if h ∈ V (H) is fixed, then
Gh, the subgraph induced by {(g, h) : g ∈ V (G)}, is a G-layer.

Circulant graphs are nice candidates for constructing tournaments since they are vertex-
transitive, regular, and can easily be manipulated to be more or less dense. Let S =
{d1, d2, . . . , dm} and 1 ≤ d1 < d2 < · · · < dm ≤

⌊
m
2

⌋
. We call S the connection set. Then
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the circulant graph G = Cn (S) is a graph with vertex set V (G) = {x0, x1, . . . , xn−1} and two
vertices xi and xj are adjacent in G if and only if i− j ≡ dk (mod n) for some k ∈ {1, 2, . . . ,m}.
Froncek and Cichacz in [5] showed certain classes of circulant graphs are distance magic. Figure
1 shows a distance magic labeling of C6(1, 2).

1

2

36

5

4

Figure 1. Distance magic labeling of C6(1, 2).

A 1-factor or perfect matching of a graph G is a union of disjoint edges xy ∈ E(G) such that
every vertex v ∈ V (G) appears exactly once in the union. If for a graph G the edge set E (G) can
be partitioned into a disjoint union of 1-factors, then we say G is 1-factorable or class 1.

Let S = {a, a+1, a+2, . . . , b} be a set of consecutive integers for integers a, b such that a ≤ b.
If α, β ∈ S such that α + β = a + b, we will refer to the numbers α and β as S-complements, or
simply complements if the set is clear from the context. It is obvious that if |S| is even, then S can
be partitioned into complement pairs.

One of the primary ingredients for the constructions given in this paper are distance magic
graphs. In particular, we are interested in regular distance magic graphs.

Theorem 2.1. (Vilfred [15]) Let d ≥ 1 be an odd integer. No d-regular graph is distance magic.

Froncek et al. proved the following in [11].

Theorem 2.2. (Froncek et al. [11]) For n even, an r-regular distance magic graph of order n exists
if and only if 2 ≤ r ≤ n− 2, r ≡ 0 (mod 2), and either n ≡ 0 (mod 4) or r ≡ 0 (mod 4).

For regular graphs of odd order, the existence question is partially answered by the following
result proved by Froncek in [7].

Theorem 2.3. (Froncek [7]) Let n be an odd integer and r = 2sq with q > 1 odd and s ≥ 1. Then
an r-regular distance magic graph of order n exists whenever r ≤ 2

7
(n− 2).

3. Necessary Conditions and Known Results

We begin this section by stating some necessary conditions.

Theorem 3.1. If a k-regular d-handicap graph of order n exists, then all of the following are true.

(1) w(xi) = di+ (k−d)(n+1)
2

, for all i ∈ {1, 2, . . . , n}.

(2) If n is even, then k ≡ d (mod 2).
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(3) If n is odd, then k is even.

(4) n ≥ 4d+ 3.

(5) d+ 1 ≤ k ≤ n− d− 4, if n and d are odd and d ≥ 3.

(6) d+ 2 ≤ k ≤ n− d− 3, if n is odd and d is even.

(7) d+ 2 ≤ k ≤ n− d− 4, if n is even or d = 1.

Proof. Let G ∼= H (n, k, d) be given for some n, k, and d with d-handicap distance antimagic
labeling l(xi) = i. Then w(xi) = µ + di for all i ∈ {1, 2, . . . , n} and some integer µ. Summing
the weights, we have

w(G) =
n∑

i=1

w(xi) = µn+ d
n∑

i=1

i

and

w(G) = k
n∑

i=1

i,

since G is k-regular. Therefore,

µ =
k − d

n

n∑
i=1

i =
(k − d)(n+ 1)

2
.

If n is even, then k − d must be even (recall µ is an integer), which implies k ≡ d (mod 2). If n is
odd, then k must be even by the handshaking lemma, so we have proven (1), (2), and (3).

To obtain the bounds (4) through (7), observe the weight of the vertex labeled 1 is at least as
large as the sum of the smallest k possible neighbors. Therefore,

w(x1) = d+
(k − d)(n+ 1)

2
≥

k∑
i=1

(i+ 1) =
k(k + 3)

2
.

Hence,
k2 − (n− 2)k + d(n− 1) ≤ 0,

which implies ⌈
n− 2−

√
D

2

⌉
≤ k ≤

⌊
n− 2 +

√
D

2

⌋
by the quadratic formula and letting D = (n− 2)2 − 4d(n− 1) . Then D ≥ 0 implies

n ≥ 2d+ 2 + ⌈2
√

d(d+ 1)⌉ = 4d+ 3,
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again by the quadratic formula, proving (4). To prove (5), (6), and (7) observe D < (n− 2d− 2)2

since D − (n− 2d− 2)2 = −4d(d+ 1) < 0. Therefore,

k ≥

⌈
n− 2−

√
D

2

⌉
>

⌈
n− 2− (n− 2d− 2)

2

⌉
= d,

which implies k ≥ d+ 1. However, k may only equal d+ 1 when n and d are both odd and d ≥ 3
by (2), (3), and Theorem 3.2. Similarly,

k ≤

⌈
n− 2 +

√
D

2

⌉
<

⌈
n− 2 + (n− 2d− 2)

2

⌉
= n− d− 2,

which implies k ≤ n − d − 3. But k may equal n − d − 3 only when n is odd and d is even.
Therefore, (5), (6), and (7) are true and we are done.

1-Handicap graphs have been studied extensively. For n even, the question of when an
H (n, k, 1) exists has recently been completely settled for every pair (n, k) [14]. For n odd, an
H (n, k, 1) is known to exist for every feasible n and some k [10]. These results are summarized in
the following two theorems.

Theorem 3.2. (Froncek [14]) An H(n, k, 1) exists when n ≥ 8 and

i. n ≡ 0 (mod 4) if and only if 3 ≤ k ≤ n− 5 and k is odd

ii. n ≡ 2 (mod 4) if and only if 3 ≤ k ≤ n− 7 and k ≡ 3 (mod 4),

except when k = 3 and n ∈ {10, 12, 14, 18, 22, 26}.

Theorem 3.3. (Froncek [10]) Let n be an odd positive integer. Then an H (n, k, 1) exists for at
least one value of k if and only if n = 9 or n ≥ 13.

In 2016, Froncek extended the notion of 1-handicap graphs (previously refered to as handicap
graphs) to 2-handicap graphs and obtained the following results.

Theorem 3.4. (Froncek [8]) If n ≡ 0 (mod 16), then an H (n, k, 2) exists if and only if k is even
and 4 ≤ k ≤ n− 6.

Theorem 3.5. (Froncek [9]) If n ≡ 8 (mod 16) and n ≥ 56, then an H (n, k, 2) exists if k is even
and 6 ≤ k ≤ n− 50.

Freyberg further generalized 1- and 2-handicap graphs to d-handicap graphs for any d ≥ 1
and settled the existence question for graphs with order divisible by 2d+2 by proving the following
theorem in [6].

Theorem 3.6. (Freyberg [6]) If n ≡ 0 (mod 2d+2), then an H (n, k, d) exists if and only if k ≡ d
(mod 2) and d+ 2 ≤ k ≤ n− d− 4.
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4. New Results for Even d

The first construction in this section uses distance magic graphs to produce classes of 2d-regular
d-handicap graphs for every even d ≥ 2.

Theorem 4.1. If there exists a d-regular distance magic graph of order n, then there exists a
H(nt, 2d, d) whenever t ≥ n and t ≡ 0 (mod 4) or d ≡ 0 (mod 4).

Proof. Let G be a d-regular distance magic graph on n vertices with vertex set V (G) =
{g0, g1, . . . , gn−1} and distance magic labeling f (gi) = i+ 1 for i = 0, 1, . . . , n− 1. By Theorem
2.1, d must be even, and since the complete graph is not distance magic, we have n ≥ d+2. Since
G is distance magic and d-regular,∑

gp∈N(gi)

f(gp) =
∑

gp∈N(gi)

(p+ 1)

= d+
∑

gp∈N(gi)

p

= µ,

where µ is the magic constant of G. In particular, we will use the identity
∑

gp∈N(gi)

p = µ − d later.

Then ∑
g∈V (G)

w(g) = nµ

and ∑
g∈V (G)

w(g) = d
n∑
i

i=1

= dn(n+1)
2

,

so µ = d(n+1)
2

.

Let H = C t
2
(1, 2, . . . , d

4
) ◦ K2 if d ≡ 0 (mod 4) , otherwise let H = C t

2
(1, 2, . . . , d−2

4
, t
4
) ◦

K2. Let the vertex set of H be V (H) = {h0, h1, . . . , ht−1} where each pair (hj, hj+1) for j =
0, 2, . . . , t − 2 forms the blown-up vertices of H. Let G be the Cartesian product G = G□H . For
ease of notation, let xj

i = (gi, hj) ∈ V (G) for i = 0, 1, . . . , n− 1, j = 0, 1, . . . , t− 1.
Let l : V (G) → {1, 2, . . . , nt} be defined as

l(xj
i ) = ti+ j

2
+ 1,

l(xj+1
i ) = t(i+ 1)− j

2
,

for all i = 0, 1, . . . , n−1, j = 0, 2, . . . , t−2. Clearly, l is a bijection. Notice that l(xj
i )+ l(xj+1

i ) =
t(2i+ 1)+ 1. Therefore, since H is d-regular, the weight induced on every vertex by each H-layer
is

wH(x
j
i ) =

d

2
(t(2i+ 1) + 1) ,

for all xj
i ∈ V (G). Now for j = 0, 2, . . . , t− d, we have

NGhj

(
xj
i

)
=

{
xj
p : gp ∈ NG(gi)

}
.

87



www.ejgta.org

On regular d-handicap tournaments | B. Freyberg and M. Keranen

Then for i = 0, 1, . . . , n− 1, the weight induced on every vertex by each G-layer is

wG

(
xj
i

)
=

∑
xj
p∈NG(x

j
i )

l(xj
p)

= d
(
j
2
+ 1

)
+ t

∑
gp∈NG(gi)

p

= d
(
j
2
+ 1

)
+ t(µ− d)

= d
(
j
2
+ 1− t

)
+ tµ,

and
wG

(
xj+1
i

)
=

∑
xj+1
p ∈NG(x

j+1
i )

l(xj+1
p )

= d
(
t− j

2

)
+ t

∑
gp∈NG(gi)

p

= − jd
2
+ tµ.

Summing the weights, we express the weight of every vertex v ∈ V (G) by

w(xj
i ) = wG(x

j
i ) + wH(x

j
i )

= d(j+t(2i−1)+3)
2

+ tµ,

and
w(xj+1

i ) = wG(x
j+1
i ) + wH(x

j
i )

= d(−j+t(2i+1)+1)
2

+ tµ,

for i = 0, 1, . . . , n− 1 and j = 0, 2, . . . , t− 2. Now we will show that l is a d-handicap labeling.
Let xj

i ∈ V (G) be given.
Case 1. j = 0, 2, . . . , t − 4. Then l(xj+2

i ) − l(xj
i ) = [ti + j+2

2
+ 1] − [ti + j

2
+ 1] = 1, and

w(xj+2
i )− w(xj

i ) =
d(j+2+t(2i−1)+3)

2
+ tµ−

(
d(j+t(2i−1)+3)

2
+ tµ

)
= d.

Case 2. j = t − 2. Then l(xt−1
i ) − l(xt−2

i ) = [t(i + 1) − t−2
2
] − [ti + t−2

2
+ 1] = 1, and

w(xt−1
i )− w(xt−2

i ) = d(−(t−2)+t(2i+1)+1)
2

+ tµ−
(

d(t−2+t(2i−1)+3)
2

+ tµ
)
= d.

Case 3. j = 3, 5, . . . , t− 1. Then l(xj−2
i )− l(xj

i ) = t(i+1)− j−3
2

− [t(i+1)− j−1
2
] = 1, and

w(xj−2
i )− w(xj

i ) =
d(−(j−3)+t(2i+1)+1)

2
+ tµ− (d(−(j−1)+t(2i+1)+1)

2

+ tµ) = d.
Therefore, the sequence

si = l(x0
i ), l(x

2
i ), . . . , l(x

t−2
i ), l(xt−1

i ), l(xt−3
i ), . . . , l(x3

i ), l(x
1
i )

is 1-arithmetic and the corresponding sequence of weights

wi = w(x0
i ), w(x

2
i ), . . . , w(x

t−2
i ), w(xt−1

i ), w(xt−3
i ), . . . , w(x3

i ), w(x
1
i )

is d-arithmetic. Now consider the set S =
{
w(x0

0), w(x
0
1), . . . , w(x

0
v−1)

}
. We have w(x0

i ) =
d(t(2i−1)+3)

2
+ tµ. Therefore S = {w(x0

0), w(x
0
0) + td, . . . , w(x0

0) + (d− 1)td} since i ∈
{0, 1, . . . , n− 1}. Hence, l is a d-handicap labeling and we have proven the theorem.
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If we choose the distance magic graph G from the previous theorem wisely, we can provide a
large range of regularities for each class of d-handicap graphs produced. We accomplish this by
adding distance magic 2-factors to the graph in the following way. Let G be an H(n, k, d) with
d-handicap labeling l. Define the Gamma graph of G, denoted Γ (G) as the simple graph with
vertex set

V (Γ(G)) = {(a,A) : a,A ∈ V (G), l(a) + l(A) = n+ 1, l(a) < l(A)}

and (a,A) (b, B) ∈ E(Γ(G)) if and only if {ab, aB,Ab,AB} ∩ E(G) is non-empty.
Observe that every edge (a,A) (b, B) ∈ E(Γ(G)) represents the K2,2 = [a,A | b, B] which

may be added to E (G) so that degG (i) is increased by 2 and wG (i) is increased by n + 1, for all
i ∈ {a,A, b, B}. Therefore, each 1-factor of Γ(G) gives rise to a 2-regular distance magic factor
which may be added to G increasing the regularity of G by two while adding the same weight to
every vertex.

Before we can apply this tool, we establish some results on the 1-factorability of the ingredient
graphs for the main construction. The following theorem was proved by Anderson and Lipman in
[2].

Theorem 4.2. (Anderson et al. [2]) Let G be a graph which is 1-factorable and let H be any graph.
Then the lexicographic product G ◦H is 1-factorable.

Lemma 4.1. For every integer n ≥ 2, the graph Cn ◦K2 is 1-factorable.

Proof. Let G = Cn ◦K2 with vertex set V (G) =
{
xj
i : i = 0, 1, . . . , n− 1, j = 0, 1

}
and edge set

E(G) =
{
xj
ix

p
i+1 : i = 0, 1, . . . , n− 1, j, p ∈ {0, 1}

}
, where the arithmetic is performed modulo

n in the subscript. If n is even, then Cn is obviously 1-factorable, so we are done by Theorem 4.2.
If n is odd, let

F0 =
{
x1
ix

1
i+1, x

0
i+1x

0
i+2 : i = 0, 2, . . . , n− 3

}
∪
{
x1
n−1x

0
0

}
,

F1 =
{
x1
ix

1
i+1, x

0
i+1x

0
i+2 : i = 1, 3, . . . , n− 2

}
∪ {x1

0x
0
1} ,

F2 =
{
x1
ix

0
i+1 : i = 1, . . . , n− 2

}
∪
{
x0
0x

0
1, x

1
n−1x

1
0

}
,

F3 =
{
x0
ix

1
i+1 : i = 0, . . . , n− 1

}
.

Then it is easy to see that each Fi is a 1-factor. Since it is also clear that the 1-factors are disjoint
and partition E (G), we have found a 1-factorization of G, proving the lemma.

Lemma 4.2. For every integer n ≥ 2, the graph Cn (S) ◦ K2 is 1-factorable for any connection
set S.

Proof. Let n ≥ 2 and let G ∼= Cn (S) ◦K2 for some connection set S. Let d ∈ S. Then it is easy
to see that d induces the spanning subgraph n

m

(
Cm ◦K2

)
of G where m = ordZn(d) =

n
gcd(d,n)

is
the order of d in the group Zn. Therefore, it suffices to show that for any m ≥ 2, the graph Cm ◦K2

is 1-factorable, so Lemma 4.1 gives the result.

The next lemma follows easily from the previous, so we omit the proof.
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Lemma 4.3. For every integer n ≥ 2, the graph Cn (S) ◦ K2 is 1-factorable for any connection
set S.

An equipartite graph is a multipartite graph in which all partite sets have the same cardinality.
It is well known that both the even-ordered complete graph, K2n and every regular bipartite graph
allow 1-factorizations. Thus we have the following result.

Lemma 4.4. Let G be an equipartite graph with an even number of partite sets. If the edges
between every pair of partite sets form an r-regular subgraph of G for some fixed r, then G is
1-factorable.

Alspach and Gavlas proved that the graph K2n − I , where I is a 1-factor, may be decomposed
into cycles of length m when m divides the number of edges in G [1]. The next theorem follows
easily since K2n − I contains m(n− 1) edges where m = 2n.

Theorem 4.3. (Alspach et al. [1]) Let G = K2n − I where I is any 1-factor. The graph G allows
a 1-factorization.

The next result follows in the same way as Lemma 4.4.

Lemma 4.5. Let positive integers n, r be given and let G be an equipartite graph with partite sets
P1, P2, . . . , P2n. If for each Pi, there exists exactly one Pj , i ̸= j, such that there are no edges
between Pi and Pj and the edges between Pi and Pk, k ̸= j form an r-regular graph, then G is
1-factorable.

We conclude this section by proving the main theorem for even-handicap graphs.

Theorem 4.4. Let d ≥ 2 and t, v ≥ d + 2 be even integers and let n = vt. If d ≡ 0 (mod 4) or
v ≡ t ≡ 0 (mod 4), then there exists an H (n, k, d) for all even k such that 2d ≤ k ≤ n− 2d− 2.

Proof. Let G = C v
2
(S) ◦ K2 where S = {1, 2, . . . , d

4
} when d ≡ 0 (mod 4), and S =

{1, 2, . . . , d−2
4
, v
4
} otherwise. Label the vertices of G so that every blown up pair of vertices i, j are

labeled so that their labels sum to v+1. This is possible since v is even. It is easy to check that we
have just described a distance magic labeling of G. Since G is d-regular, it satisfies the hypothesis
of Theorem 4.1. Therefore, let G = G□H be the H(n, 2d, d) with d-handicap labeling l given by
Theorem 4.1. Observe that l(xj

i )+ l(xj+1
v−1−i) = l(xj+1

i )+ l(xj
v−1−i) = n+1 for i = 0, 1, . . . , v

2
−1

and j = 0, 2, . . . , t− 2.
Consider the Gamma graph Γ (G) . We have

V (Γ(G)) =
{(

xj
i , x

j+1
v−1−i

)
,
(
xj+1
i , xj

v−1−i

)
, 0 ≤ i ≤ v

2
− 1, j = 0, 2, . . . , t− 2

}
.

For ease of notation, let uj
i =

(
xj
i , x

j+1
v−i−1

)
and uj+1

i =
(
xj+1
i , xj

v−i−1

)
for 0 ≤ i ≤ v

2
− 1,

and j = 0, 2, . . . , t − 2. In G, every pair of H-layers, (Hgi , Hgv−1−i) forms a subgraph of Γ(G)
isomorphic to Hgi for all i = 0, 1, . . . , v−1

2
. Indeed, let

[
xj
i , x

j+1
i | xj+2s

i , xj+1+2s
i

]
⊆ Hgi for

some s belonging to the connection set of H. Then [xj
v−1−i, x

j+1
v−1−i | x

j+2s
v−1−i, x

j+1+2s
v−1−i ] ⊆ Hgv−1−i .
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Therefore,
[
uj
i , u

j+1
i | uj+2s

i , uj+1+2s
i

]
⊆ Γ(G). Hence, the H-layers of G induce a subgraph of

Γ(G) isomorphic to v
2
H.

Similarly, every pair of G-layers
(
Ghj , Ghj+1

)
forms a subgraph of Γ(G) isomorphic to Ghj

for all j = 0, 2, . . . , t − 2. To see this is true, let xj
ix

j
i+s ∈ Ghj for j even and some s. Then

because gigi+s ∈ E(G) if and only if gv−1−igv−1−(i+s) ∈ E(G) (recall G is a circulant graph), we
obtain that xj+1

v−1−ix
j+1
v−1−(i+s) ∈ Ghj+1 . Therefore, if s ≤ v

2
− 1 − i, then uj

iu
j
i+s ∈ E(Γ(G)) and if

s > v
2
− 1− i, then uj

iu
j+1
v−1−(i+s) ∈ E(Γ(G)). Hence, the G-layers of G induce a subgraph of Γ(G)

isomorphic to t
2
G.

We have shown that Γ(G) is 2d-regular (and consequently Γ(G) is n
2
− 1 − 2d-regular) and

Γ(G) ∼= v
2
H + t

2
G. We proceed to find 1-factors of Γ(G), the complement of Γ (G). Edges of

the form uj
iu

j
p or uj

iu
j+1
q (with i = q if and only if q = v − 1 − i) in Γ(G) form the graph t

2
G

which is 1-factorable by Lemma 4.3 since G ∼= C v
2
(S) ◦K2, where S = {d

4
+ 1, . . . , ⌊v

4
⌋} when

d ≡ 0 (mod 4), and S = {d−2
4

+ 1, . . . , v
4
− 1} otherwise. So far, we count v − 1− d 1-factors of

Γ(G). Observe that H contains only edges of the form uj
iu

p
i . Let S = {d

4
+ 1, d

4
+ 2, . . . , t

4
} when

d ≡ 0 (mod 4), otherwise let S = {d−2
4

+ 1, d−2
4

+ 2, . . . , t
4
− 1}. Then C t

2
(S) ◦K2 is a spanning

subgraph of H and it allows a 1-factorization by Lemma 4.2. We have counted t − d − 2 more
1-factors of Γ(G).

The remaining edges of Γ(G) form an equipartite graph with partite sets Pj = {uj
i , u

j+1
i :

0 ≤ i ≤ v
2
− 1} for j = 0, 2, . . . , t − 2, and edge set {uj

iu
s
p, u

j+1
i us

p, u
j
iu

s+1
p , uj+1

i us+1
p : i ̸= p}

between any two partite sets Pj and Ps. If t ≡ 0 (mod 4), these edges allow a 1-factorization (into
( t
2
− 1)(v − 2) 1-factors) by Lemma 4.4. Otherwise, if t ≡ 2 (mod 4), we may partition each Pj

into two partite sets P 1
j = {uj

i : 0 ≤ i ≤ v
2
− 1} and P 2

j = {uj+1
i : 0 ≤ i ≤ v

2
− 1}, so these edges

form an equipartite graph of the type from Lemma 4.5. Thus, these edges allow a 1-factorization
into (v

2
− 1)(t− 2) 1-factors. Since ( t

2
− 1)(v− 2) = (v

2
− 1)(t− 2), Γ(G) allows a 1-factorization

into (v − 1− d) + (t− d− 2) + ( tv
2
− t− v + 2) = n

2
− 2d− 1 1-factors.

Let Γ(G) have 1-factorization, Γ(G) ∼= I1 + I2 + · · · + In
2
−2d−1. Every edge (u, v)(x, y) in

Ii corresponds to a K2,2 = [u, v|x, y] which can be added to G so that the degrees of u, v, x, and
y each increase by 2, while the weight of each of these vertices increases by n + 1. In this way,
each 1-factor Ii can be used to increase the regularity of G by 2 while preserving the d-arithmetic
progression of weights. Therefore, we have proven that an H (n, k, d) exists for all even k such
that 2d ≤ k ≤ 2d+ 2(n

2
− 2d− 1) = n− 2d− 2.

We pause here to make an observation about the construction in Theorem 4.4. Notice that if
d = 2c for some nonnegative integer c, then we have constructed a k-regular d-handicap graph for
every feasible regularity except the c− 1 smallest and the c− 1 largest possible regularities for any
number of vertices n satisfying the hypothesis of the theorem.

Example 4.1. A 10-regular, 4-handicap tournament with 36 teams.

We use the construction from 4.4. Figure 1 shows a graph G = C6(1, 2) and its distance magic
labeling which we will use in the construction given in Theorem 4.4. The 8-regular graph is shown
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in separate Figures 2 and 4 for clarity. Figures 3 and 5 show the corresponding layers in Γ(G). To
obtain the 10-regular tournament, we need only add one distance magic K2,2-factor to complete the
construction. We leave it to the reader to accomplish this by finding a 1-factor in the complement
of the Gamma graph.
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Figure 2. G-layers of an H (36, 8, 4).
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Figure 3. Edges of the Gamma graph induced by the G-layers.
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Figure 4. H-layers of an H (36, 8, 4).

1,36 6,31 2,35 5,32 3,34 4,33
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13,24 18,19 14,23 17,20 15,22 16,21

Figure 5. Edges of the Gamma graph induced by the H-layers.

5. New Results for Odd d

The construction in this section is a generalization of the class of 1-handicap graphs constructed
by Froncek and Shepanik in [12] and [13]. As was the case for even d, our approach will be to first
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construct a class of d-handicap graphs for a small regularity k, and then use the Gamma graph to
add distance magic layers to increase k until the bound is met.

Theorem 5.1. For every odd positive integer d, there exists an H (n, 2d+ 1, d) whenever

• n ≡ 0 (mod 4d+ 4), n ≥ (d+ 1)(d+ 3), and d ≡ 1 (mod 4) or

• n ≡ 0 (mod 4d+ 4), n ≥ (d+ 1)(d+ 5), and d ≡ 3 (mod 4) or

• n ≡ 2d+ 2 (mod 4d+ 4), n ≥ (d+ 1)(d+ 3), and d ≡ 3 (mod 4).

Proof. Let G = Kd+1 with vertex set V (G) = {g0, g1, . . . , gd}. Define t = n
d+1

and if d ≡
1 (mod 4), let H = C t

2

(
t
4
, 1, 2, . . . , d−1

4

)
◦ K2 , otherwise let H = C t

2

(
1, 2, . . . , d+1

4

)
◦ K2. Let

V (H) = {h0, h1, . . . , ht−1} where each pair of isolated vertices, (hj, hj+1) for j = 0, 2, . . . , t− 2,
corresponds to the blown-up vertices in H . Notice that if d ≡ 1 (mod 4), then n ≥ (d+ 1)(d+ 3)
implies d−1

4
< t

4
. If d ≡ 3 (mod 4) and n ≡ 0 (mod 4d + 4), then n ≥ (d + 1)(d + 5) implies

d+1
4

< t
4
. Finally, if d ≡ 3 (mod 4) and n ≡ 2d+ 2 (mod 4d+ 4), then n ≥ (d+ 1)(d+ 3) implies

d+1
4

≤ t−2
4

. Let G = G□H and denote by xj
i each vertex (gi, hj) ∈ V (G) for all i = 0, 1, . . . , d

and j = 0, 1, . . . , t− 1. Define l : V (G) → {1, 2, . . . , n} by

l(xj
i ) =

{
ti+ j+2

2
, j = 0, 2, . . . , t− 2,

t(i+ 1)− j−1
2
, j = 1, 3, . . . , t− 1.

for all i = 0, 1, . . . , d. Clearly, l is a bijection.
Notice that l(xj

i )+ l(xj+1
i ) = t(2i+1)+1 for j = 0, 2, . . . , t− 2, so each pair

(
l(xj

i ), l(x
j+1
i )

)
is Si+1-complements. For every vertex xj

i ∈ V (G), we have

w(xj
i ) =

∑
p ̸=i

l(xj
p) +

d+1
2
[t(2i+ 1) + 1]

=
∑

p=0,1,...,d

l(xj
p)− l(xj

i ) +
d+1
2
[t(2i+ 1) + 1]

=

{
n(d+2i+1)+(d+1)(j+3)

2
− l(xj

i ), j = 0, 2, . . . , t− 2,
n(d+2i+3)−(d+1)(j−2)

2
− l(xj

i ), j = 1, 3, . . . , t− 1.
.

For every i = 0, 1, . . . , d, define the sequences

si = l(x0
i ), l(x

2
i ), . . . , l(x

t−2
i ), l(xt−1

i ), l(xt−3
i ), . . . , l(x3

i ), l(x
1
i )

and
wi = w(x0

i ), w(x
2
i ), . . . , w(x

t−2
i ), w(xt−1

i ), w(xt−3
i ), . . . , w(x3

i ), w(x
1
i ).

Observe that l(xj+2
i )− l(xj

i ) = 1 for j = 0, 2, . . . , t−4, l(xj
i )− l(xj+2

i ) = 1 for j = 1, 3, . . . , t−3,
and l(xt−1

i ) − l(xt−2
i ) = 1. Similarly, we have w(xj+2

i ) − w(xj
i ) = d for j = 0, 2, . . . , t − 4,

w(xj
i ) − w(xj+2

i ) = d for j = 1, 3, . . . , t − 3, and w(xt−1
i ) − w(xt−2

i ) = d. Therefore, si =
ti+1, ti+2, . . . , ti+ t and wi = w(x0

i ), d+w(x0
i ), 2d+w(x0

i ), . . . , (t− 1)d+w(x0
i ). Then since

l(xj
i+1) = l(xj

i ) + t and w(xj
i+1) = w(xj

i ) + td, for all i = 0, 2, . . . , d − 1, j = 0, 1, . . . , t − 1,
we conclude that the sequence s0, s1, . . . , sd = 1, 2, 3, . . . , n and the sequence w0, w1, . . . , wd =
w0, d+ w0, 2d+ w0, . . . , (n− 1)d+ w0, proving that G is a d-handicap graph. Since G is 2d+ 1-
regular, we have constructed an H (n, 2d+ 1, d).
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We will now employ the Gamma graph to give a wide range of possible densities given n and
d.

Theorem 5.2. For every odd d, there exists an H (n, k, d) for every odd k such that 2d+ 1 ≤ k ≤
n− (2d+ 3) whenever

• n ≡ 0 (mod 4d+ 4), n ≥ (d+ 1)(d+ 3), and d ≡ 1 (mod 4) or

• n ≡ 0 (mod 4d+ 4), n ≥ (d+ 1)(d+ 5), and d ≡ 3 (mod 4) or

• n ≡ 2d+ 2 (mod 4d+ 4), n ≥ (d+ 1)(d+ 3), and d ≡ 3 (mod 4).

Proof. Let G = G□H be the H (n, 2d+ 1, d) produced in Theorem 5.1 with d-handicap labeling
l and recall that t = n

d+1
. Observe that l(xj

i ) + l(xj+1
d−i ) = l(xj

d−i) + l(xj+1
i ) = n + 1 for i =

0, 1, . . . , d−1
2

and j = 0, 2, . . . , t − 2. So the pairs
(
l(xj

i ), l(x
j+1
d−i )

)
,
(
l(xj

d−i), l(x
j+1
i )

)
partition

{1, 2, . . . , n} into complements. Consider now Γ (G). For i = 0, 1, . . . , d−1
2
, j = 0, 2, . . . , t − 2,

we see that
V (Γ(G)) =

{
uj
i = (xj

i , x
j+1
d−i ), u

j+1
i = (xj+1

i , xj
d−i)

}
.

From here, the proof is essentially the same as the proof of Theorem 4.4 since the graphs G and H
in this proof enjoy the same 1-factorability and symmetry properties as the graphs G and H from
Theorem 4.4. Therefore, we omit the details.

Observe that if d = 2c+1 for some nonnegative integer c, then we have constructed a k-regular
d-handicap graph for every feasible regularity except the c smallest and the c largest possible
regularities for any number of vertices n satisfying the hypothesis of the theorem. For example, if
d = 3, Theorem 5.2 provides a graph of every feasible regularity other than the single most sparse
and single most dense graphs when n ≡ 0 (mod 8). Combined with Theorem 3.6, we obtain the
following corollary for 3-handicap regular graphs.

Corollary 5.1. If n ≡ 0 (mod 8) and n ≥ 24, then there exists an H(n, k, 3) if and only if k is
odd and 5 ≤ k ≤ n− 7, except possibly when n ≡ 8, 16, or 24 (mod 32) and k ∈ {5, n− 7}.

6. Conclusion

We have constructed many classes of k-regular d-handicap tournaments for every d ≥ 1, ad-
dressing the spectrum question for all three parameters; number of teams, number of games, and
handicap number. Also, it is an easy observation that the complement of a d-handicap graph is
a distance antimagic graph in which the weights form an arithmetic progression with difference
−1 − d. Therefore, in combination with results on distance magic graphs (“d = 0”), we have
provided infinite classes of graphs which can be labeled f(xi) = i with the first n natural numbers
such that the induced weights w(x1), w(x2), . . . , w(xn) form a d-arithmetic progression for any
integer d.

One direction forward is to find constructions for the extreme values of k missed by Theorem
5.2 for d ≥ 3 or Theorem 4.4 for d ≥ 4. We conjecture that d-handicap graphs can be found for
these missing parameters, but it will take a new approach perhaps not considered here. Another
direction forward is to find classes of d-handicap graphs for the missing classes of n, for example
d = 2 and n ≡ 4 (mod 8).
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