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Abstract

Given a simple graphG = (V,E) with maximum degree ∆. Let (V0, V1, V2) be an ordered partition
of V , where Vi = {v ∈ V : f(v) = i} for i = 0, 1 and V2 = {v ∈ V : f(v) ≥ 2}. A function
f : V → {0, 1, . . . , d∆

2
e+1} is a strong Roman dominating function (StRDF) onG, if every v ∈ V0

has a neighbor w ∈ V2 and f(w) ≥ 1 + d1
2
|N(w)∩ V0|e. A function f : V → {0, 1, . . . , d∆

2
e+ 1}

is a unique response strong Roman function (URStRF), if w ∈ V0, then |N(w) ∩ V2| ≤ 1 and
w ∈ V1 ∪ V2 implies that |N(w) ∩ V2| = 0. A function f : V → {0, 1, . . . , d∆

2
e + 1} is a unique

response strong Roman dominating function (URStRDF) if it is both URStRF and StRDF. The
unique response strong Roman domination number of G, denoted by uStR(G), is the minimum
weight of a unique response strong Roman dominating function. In this paper we approach the
problem of a Roman domination-type defensive strategy under multiple simultaneous attacks and
begin with the study of several mathematical properties of this invariant. We obtain several bounds
on such a parameter and give some realizability results for it. Moreover, for any tree T of order
n ≥ 3 we prove the sharp bound uStR(T ) ≤ 8n

9
.
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1. Introduction

The original study of Roman domination was motivated by the defense strategies of the Roman
Empire during the reign of Emperor Constantine the Great, 274-337 A.D. Emperor Constantine
had the requirement that an army or legion could be sent from its home to defend a neighboring
location only if there was a second army which would stay and protect the home. Thus, there are
two types of armies, stationary and mobile. Each vertex with no army must have a neighboring
vertex with a mobile army. Stationary armies then dominate their own vertices, and a vertex with
two armies is dominated by its stationary army, and its open neighborhood is dominated by the
mobile armies. This part of history of the Roman Empire gave rise to the mathematical concept of
Roman domination, as originally defined and discussed by Stewart [13] in 1999, and ReVelle and
Rosing [11] in 2000. The defensive strategy of Roman domination is based on the fact that every
place in which there is established a Roman legion (a label 1 in the Roman dominating function)
is able to protect itself from external attacks; and that every unsecured (i.e., weak) place (a label
0) must have at least a stronger neighbor (a label 2). In that way, if an unsecured place is attacked,
then the stronger neighbor can send it one of the two legions to defend it.

Two examples of Roman dominating functions are depicted in Figure 1.

Figure 1. Two Roman dominating functions.

Although these two functions (Figure 1) satisfy the conditions to be Roman dominating func-
tions, they correspond to two very different real situations. The unique strong place 2 in Figure 1(b)
must defend up to 8 unsecured locations from possible external attacks. However, in Figure 1(a),
the task of defending the unsecured locations is divided between several strong locations. These
observations have let us to pose the following question: how many weak locations/places can be
defended by a strong location occupied by two legions? Taking into account that a strong place
must leave one of its legions to defend itself, the situation depicted in Figure 1(b) does not seem
to be an efficient defensive strategy: the Roman domination strategy fails against a multiple attack
situation. If several simultaneous attacks to weak places occur, then a single stronger place will be
not able to defend its neighbors efficiently. With this motivation in mind, in [1] Alvarez-Ruiz et
al., introduced the concept of strong Roman dominating function. Then in other references such as
[2, 7, 9, 15] the properties of this parameter have been studied.

Let G = (V,E) be a simple graph of order n = |V |, where V = V (G) and E = E(G). The
open neighborhood of a vertex v ∈ V is the set N(v) = {u : uv ∈ E(G)}. If S is a subset of V ,
then N(S) = ∪x∈SN(x), N [S] = ∪x∈SN [x] and the subgraph induced by S in G is denoted G[S].
LetEv be the set of all edges incident with a vertex v inG, that is,Ev = {uv ∈ E(G) : u ∈ N(v)}.
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The degree of a vertex v is dG(v) = deg(v) = |Ev|. The minimum and maximum degree of G are
denoted by δ(G) = δ and ∆(G) = ∆. A star Sn of order n ≥ 2 is the complete bipartite graph
K1, n−1. We call the center of a star to be a vertex of maximum degree. For two vertices u and v in
a connected graph G, the distance d(u, v) between u and v is the length of a shortest (u, v)-path in
G. The maximum distance among all pairs of vertices of G is the diameter of G, which is denoted
by diam(G). For notations and terminologies, are not herein, see [14]. For a real-valued function
f : V (G)→ R and S ⊆ V (G), we define f(S) =

∑
x∈S f(x).

A set S ⊆ V is a dominating set of G if N [S] = V . The domination number γ(G) is the
minimum cardinality of a dominating set G. A set S ⊆ V (G) is a 2-packing set of G if for every
pair of vertices x, y ∈ S, N [x] ∩N [y] = ∅. For more details on domination in graphs see [4], and
for other domination parameters see [5, 8].

A Roman dominating function (RDF) on a graph G is a function f : V → {0, 1, 2} such that
every vertex u for which f(u) = 0 is adjacent to at least one vertex v with f(v) = 2. The weight of
a Roman dominating function is the sum ω(f) =

∑
v∈V f(v), and the minimum weight of an RDF

of G is called the Roman domination number of G, denoted by γR(G), For further, see [6, 10].
From now on, if f : V → {0, 1, 2, . . .} is a function onG, then we let Vi = {v ∈ V : f(v) = i}

for i = 0, 1 and V2 = {v ∈ V : f(v) ≥ 2}. A strong Roman dominating function (StRDF) on a
graph G is a function f : V → {0, 1, . . . , d∆

2
e+ 1} such that if v ∈ V0 for some v ∈ V , then there

exists a vertex w ∈ N(v) such that w ∈ V2 and f(w) ≥ 1+d1
2
|N(w)∩V0|e. The minimum weight

over all strong Roman dominating functions on G is called the strong Roman domination number
of G, denoted by γStR(G). An independent strong Roman dominating function (IStRDF) of G is
an StRDF such that the set of all vertices assigned positive values is independent. The independent
strong Roman domination number iStR(G) is the minimum weight of an IStRDF of G. an StRDF
of minimum weight is called a γStR(G)-function and likewise iStR(G)-function is defined. An
example of an StRDF and an IStRDF can be seen on the graph in Figure 1 (b), by assigning a 5 to
the vertex of maximum degree, a 1 to the vertex of degree 2 and a 0 to the remaining vertices.

In [12], Rubalcaba and Slater studied Roman domination influence of parameters in which the
interest is in dominating each vertex exactly once. The authors [12] also introduced the concept of
unique response Roman functions which we will adapt the definition for strong Roman functions
as follows: A function f : V → {0, 1, . . . , d∆

2
e+ 1} with the ordered partition (V0, V1, V2) of V is

a unique response strong Roman function if w ∈ V0 then |N(w)∩V2| ≤ 1 and w ∈ V1∪V2 implies
that |N(w) ∩ V2| = 0. A function f : V → {0, 1, . . . , d∆

2
e + 1}, is a unique response strong

Roman dominating function, or just URStRDF, if it is a unique response strong Roman function
and a strong Roman dominating function. The unique response strong Roman domination number,
denoted by uStR(G), is the minimum weight of a URStRDF of G.

It is worth mentioning that every graph has a unique response strong Roman dominating func-
tion since (∅, V (G), ∅) is such a function. Moreover, if f = (V0, V1, V2) is a URStRDF on G, then
V2 is a 2-packing set. In Figure 2, the black shaded pebble represents a stationary army and the
white shaded pebble represents a traveling army. It is easy to check that an attack on any weak
vertex of the graph will have three traveling army responding to the attacks.
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Figure 2. A unique response strong Roman dominating function.

2. Preliminary results

In this section, we give some results on the unique response strong Roman domination number
of graphs. Most of these results are straightforward and so we omit the proofs.

Observation 2.1. Let f = (V0, V1, V2) be an StRDF of graph G. If V2 is independent and no edge
of G joins V1 and V2, then there is an IStRDF g of G such that ω(g) ≤ ω(f).

Observation 2.2. If G has an iStR(G)-function f = (V0, V1, V2) such that N(x) ∩ N(y) = ∅ for
any pair x, y ∈ V2, then uStR(G) = iStR(G).

Observation 2.3. If G is a graph belonging to {Pn, Cn, Kn, Km,n}, then iStR(G) = uStR(G).

Observation 2.4. For n ≥ 3, uStR(Kn) = dn−1
2
e+1 and for n ≥ m ≥ 1, uStR(Kn,m) = dn

2
e+m.

It is known that γR(Pn) = γR(Cn) = d2n/3e . Clearly any RDF on paths and cycles is strong.
Moreover, since paths and cycles have minimum RDF that are unique response, the following
result then is immediate.

Proposition 2.1. For n ≥ 3, uStR(Pn) = uStR(Cn) = d2n/3e .

The next result shows that the difference between uStR(G) and γStR(G) can be arbitrarily large.

Proposition 2.2. For every integer k ≥ 2, there is a graphG = Gk such that uStR(G)−γStR(G) =
k.

Proof. Let k ≥ 2 be an integer and let Gk be a double star in which every support vertex is of
degree 2k + 1. It can be seen that uStR(G) = 3k + 2, while γStR(G) = 2k + 2.

3. Bounds

We provide in this section some upper and lower bounds for the unique response strong Roman
domination number of a graph G in terms of maximum degree, minimum degree, the domination
number, the diameter and the order of G. Obviously, every graph of order n, uStR(G) ≤ n, with
equality if and only if each component of G has order at most two. Our next result improves the
previous upper bound.
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Theorem 3.1. For any graph G of order n, uStR(G) ≤ n − b∆
2
c, and furthermore, this bound is

sharp for all graphs of order n with ∆(G) = n− 1.

Proof. Let v be a vertex of maximum degree, and consider the URStRDF f = (N(v), V (G) −
N [v], v), where v is assigned the value d∆

2
e + 1. Clearly, ω(f) = n − ∆ + d∆

2
e = n − b∆

2
c,

implying the desired bound. The sharpness of the upper bound may be seen for all graph G of
order n with ∆(G) = n− 1. Since we have, n− b∆

2
c = n− bn−1

2
c = dn−1

2
e+ 1.

Corollary 3.1. If G is a graph of order n, then uStR(G) = n if and only if ∆(G) ≤ 1.

Proof. By pervious Theorem the proof is clear.

Theorem 3.2. Let G be a graph of order n and let v be a vertex of G with degree ∆. If uStR(G) =
n− b∆

2
c, then d(x) ≤ 1 for each x ∈ V (G)−N [N(v)].

Proof. Suppose, to the contrary, that there exists some vertex u ∈ V (G) − N [N(v)] such that
d(u) ≥ 2. Then the function f defined by f(v) = d∆

2
e + 1, f(u) = dd(u)

2
e + 1, f(x) = 0 for

x ∈ N(v) ∪N(u) and f(x) = 1 otherwise, is a URStRDF on G, and so

uStR(G) ≤ (d∆
2
e+ 1) + (dd(u)

2
e+ 1) + (n− |N [v]| − |N [u]|)

= (d∆
2
e+ 1) + (dd(u)

2
e+ 1) + (n−∆− d(u)− 2)

= n− b∆
2
c − bd(u)

2
c

≤ n− b∆
2
c − 1,

a contradiction.

We remark that the condition of Theorem 3.2 is not sufficient. For example, let t ≥ s− 1 ≥ 3
and let G be the graph of order n (= s + t) obtained from a complete graph Ks and a star St

with center v by deleting a edge u1u2 of Ks and joining v to u1. Then the function f defined by
f(u2) = d s−2

2
e+ 1, f(v) = d t

2
e+ 1 and f(x) = 0 otherwise, is a URStRDF on G, and so

uStR(G) ≤ (ds− 2

2
e+ 1) + (d t

2
e+ 1)

= ds
2
e+ d t

2
e+ 1

= s+ t− bs
2
c − b t

2
c+ 1

= n− bs
2
c − b∆

2
c+ 1

≤ n− b∆
2
c − 1.
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Lemma 3.1. LetG be a graph with maximum degree ∆ and let f = (V0, V1, V2, . . . , Vd∆
2
e+1) where

Vi = {v ∈ V : f(v) = i, 0 ≤ i ≤ d∆
2
e+ 1} be a uStR(G)-function. Then

|V2|+ 2|V3|+ . . .+ d∆
2
e|Vd∆

2
e+1| ≥ d

∆

2
e.

Proof. Let x be a vertex with deg(x) = ∆. If f(x) = d∆
2
e + 1, then the inequality is clear. Now

we assume that f(x) ∈ {0, 1}. Let f(x) = 1 and let V 1
x = V1 ∩N(x). Then N(x)− V 1

x ⊆ V0. If
N(x)−V 1

x = ∅ and N(N(x))−{x} = {v1, v2, . . . , vk}, then f(N [x]) = ∆+1 and f(N(N(x))−
{x}) ∪ (∪k

i=1N(vi)−N(x)) ≥ k. Therefore in this case f is not a minimum URStRDF respected
to f(x) = d∆

2
e + 1. Now assume that N(x) − V 1

x 6= ∅. Let N(x) ∩ V0 = N1 ∪ N2 ∪ . . . ∪ Nk,
where Ni is the vertices in N(x) ∩ V0 with common neighbor vi and vi 6= x for 1 ≤ i ≤ k.

Let N(vi) − N(x) = ∅. Then f(vi) ≥ d |Ni|
2
e + 1 and so f({x} ∪ V 1

x ∪ N(N(x) ∩ V0)) ≥
1 + |V 1

x | + k +
∑k

i=1d
|Ni|

2
e. We show that f is not a minimum unique respond strong Roman

dominating function, respected to when f(x) = d∆
2
e+ 1, f(N(x)) = 0 and f(N(N(x))−{x}) =

k. It is well known that ∆ ≤
∑k

i=1 |Ni| + |V 1
x |. Therefore d∆

2
e ≤

∑k
i=1d

|Ni|
2
e + d |V

1
x |
2
e and

1 + d∆
2
e + k ≤ 1 +

∑k
i=1d

|Ni|
2
e + k + d |V

1
x |
2
e ≤ 1 +

∑k
i=1d

|Ni|
2
e + k + |V 1

x |. Thus, if we assign
f(x) = d∆

2
e+ 1, f(N(x)) = 0 and f(u) = 1 for the vertex in N(N(x))−x, then f({x}∪N(x)∪

(N(N(x))− {x})) ≤ k + d∆
2
e+ 1 ≤ 1 +

∑k
i=1d

|Ni|
2
e+ k + |V 1

x |.
Let N(vi) − N(x) 6= ∅ for some 1 ≤ i ≤ k. Let Mi = N(vi) − N(x). It is well known

that: If f(x) = 1 and f(N(x) − V 1
x ) = 0, then we should have f(vi) = d |Ni|+|Mi|

2
e + 1 and

f(N(vi)−N(x)) = 0. If f(x) = d∆
2
e+ 1 and f(N(x)) = 0, then f(vi) = 1 and for every vertex

u ∈ N(vi) − N(x), f(u) ≤ 1. Assume that we use the URStRDF f where f(x) ∈ {0, 1}. There
are two cases.

Case 1. Let |V 1
x | ≤

∑k
i=1 |Mi|. Then

∑k
i=1(|Ni| + |Mi|) ≥

∑k
i=1 |Ni| + |V 1

x | ≥ ∆ and so∑k
i=1d

|Ni|+|Mi|
2
e ≥ d∆

2
e. So the result holds.

Case 2. Let |V 1
x | ≥

∑k
i=1 |Mi|. Since

∑k
i=1 |Ni| + |V 1

x | ≥ ∆, hence
∑k

i=1
|Ni|

2
+
∑k

i=1
|Mi|

2
+

|V 1
x | ≥ ∆

2
+
∑k

i=1 |Mi|. Therefore
∑k

i=1d
|Ni|+|Mi|

2
e + k + 1 + |V 1

x | ≥ d∆
2
e + 1 + k +

∑k
i=1 |Mi|.

This means that in this case f is not a minimum URStRDF, respected to when f(x) = d∆
2
e + 1,

f(N(x)) = 0 and f(N(N(x))− {x}) = k and f(∪ki=1N(vi)−N(x)) ≤
∑k

i=1 |Mi|.
Let f(x) = 0. Then at least one vertex of N(x) is in V2 ∪ . . . ∪ Vd∆

2
e+1. Now using similar

proof in case of f(x) = 1 we can show that f(N(x)∪N(N(x))) ≥ d∆
2
e. These show that, we can

always use the URStRDF function that assigns the vertex x with deg(x) = ∆ the value d∆
2
e + 1.

Therefore, in any case

|V2|+ 2|V3|+ · · ·+ d
∆

2
e|Vd∆

2
e+1| ≥ d

∆

2
e,

as desired.

Theorem 3.3. If G is a connected graph with ∆(G) ≥ 1, then uStR(G) ≥ γ(G) + d∆
2
e, and this

bound is sharp.

Proof. Clearly, n ≥ 2 since ∆(G) ≥ 1. If n = 2, then γ(G) = 1 and uStR(G) = 2 = γ(G) + 1 =
γ(G) + d∆

2
e. Hence, let n ≥ 3. Then ∆ ≥ 2, since G is connected. Consider an uStR(G)-function
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f = (V0, V1, V2, . . . , Vd∆
2
e+1), where Vi = {v ∈ V : f(v) = i} for every i ∈ {0, 1, . . . , d∆

2
e + 1}.

By Lemma 3.1, |V2|+ 2|V3|+ · · ·+ d∆
2
e|Vd∆

2
e+1| ≥ d∆

2
e. Therefore

uStR(G) = |V1|+ 2|V2|+ · · ·+ (d∆
2
e+ 1)|Vd∆

2
e+1| =

|V1|+ |V2|+ · · ·+ |Vd∆
2
e+1|+ |V2|+ 2|V3|+ · · ·+ d

∆

2
e|Vd∆

2
e+1|

≥ γ(G) + d∆
2
e.

For sharpness, let G be a star K1,n−1 or complete graph Kn where n ≥ 2. Then γ(G) = 1 and
d∆

2
e = dn−1

2
e and uStR(G) = 1 + dn−1

2
e = γ(G) + d∆

2
e.

The next result gives a characterization of connected graphs attaining equality in the lower
bound of Theorem 3.3.

Theorem 3.4. LetG be a connected graph of order nwith ∆(G) ≥ 1. Then uStR(G) = γ(G)+d∆
2
e

if and only if G has a vertex of degree n− γ(G).

Proof. Suppose that G has a vertex v with degree deg(v) = n− γ(G). By Theorem 3.1,

uStR(G) ≤ n−∆(G) + d∆
2
e ≤ n− (n− γ(G)) + d∆

2
e

= γ(G) + d∆
2
e,

and the equality follows from Theorem 3.3.
Conversely, assume that uStR(G) = γ(G) + d∆

2
e and let f = (V0, V1, V2, . . . , Vd∆

2
e+1) be a

uStR-function for G. It follows that

γ(G) + d∆
2
e = uStR(G) = |V1|+ 2|V2|+ · · ·+ (d∆

2
e+ 1)|Vd∆

2
e+1|

= |V1|+ |V2|+ · · ·+ |Vd∆
2
e+1|+ |V2|+ 2|V3|+ · · ·+ d

∆

2
e|Vd∆

2
e+1|

≥ γ(G) + |V2|+ 2|V3|+ · · ·+ d
∆

2
e|Vd∆

2
e+1|,

and therefore γ(G) = |V1|+ |V2|+ · · ·+ |Vd∆
2
e+1| and |V2|+2|V3|+ · · ·+(d∆

2
e)(|Vd∆

2
e+1|) = d∆

2
e.

Now using Lemma 3.1 and its proof, we have |Vd∆
2
e+1| > 0. Therefore we deduce |V2| = |V3| =

· · · = |Vd∆
2
e| = 0 and |Vd∆

2
e+1| = 1. Consequently, γ(G) + d∆

2
e = uStR(G) = |V1| + (d∆

2
e + 1),

and so |V1| = γ(G)−1. Hence |V0| = n−γ(G). Since every vertex of V0 is adjacent to the unique
vertex of Vd∆

2
e+1, say v, and no vertex of V1 is adjacent to v,we deduce that deg(v) = n−γ(G).

Theorem 3.5. Let G be a graph of order n. If G has a uStR-function f = (V0, V1, V2, . . . , Vd∆
2
e+1)

such that V1 = ∅, then uStR(G) ≤ (d∆
2
e+1)n

∆+1
, and this bound is sharp.
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Proof. Let f = (V0, V1, V2, . . . , Vd∆
2
e+1) be a uStR-function of G with V1 = ∅. Then for every

vertex v ∈ V − V0, we have f(x) ∈ Vi for i ≥ 2. Hence, if we have x ∈ V such that deg(x) = ∆,
we may at most assign label d∆

2
e + 1 to the vertex x and label 0 to its neighbors. Thus we have

f(N [x]) = d∆
2
e + 1. Therefore we conclude uStR(G) ≤ d∆

2
e+1

∆+1
n. The sharpness of the bound

may be seen for the star K1,n−1 where n ≥ 2. Clearly, uStR(G) = dn−1
2
e + 1 =

d∆
2
e+1

∆+1
n. Also

the sharpness of the bound may be seen for the other family of graphs as follows. Let G1 and
G2 be stars K1,2m where m ≥ 1 such that G is obtained from G1 and G2 where one of leaves of
G1 is adjacent to one of leaves of G2. Then n = |V (G)| = 4m + 2, uStR(G) = 2(m + 1) and

∆(G) = 2m. Therefore uStR(G) = 2(m+ 1) =
(d∆

2
e+1)n

∆+1
.

Theorem 3.6. LetG be a graph of order nwith ∆ ≥ 1. If k = min{f(v) : f = (V0, V1, V2, . . . , Vd∆
2
e+1)

is a uStR-function and v ∈ V − (V0 ∪ V1)}, then uStR(G) ≥ kn
∆+1

, and this bound is sharp.

Proof. Let f = (V0, V1, V2, . . . , Vd∆
2
e+1) be a uStR-function of G. Since |V0| ≤ ∆(|Vk| + · · · +

|Vd∆
2
e+1|) and |V1| ≤ ∆

k
|V1|, we have

kn = k(|V0|+ |V1|+ |Vk|+ · · ·+ |Vd∆
2
e+1|)

≤ k(∆|Vk|+ · · ·+ ∆|Vd∆
2
e+1|+

∆

k
|V1|+ |Vk|+ · · ·+ |Vd∆

2
e+1|)

= ∆|V1|+ (∆ + 1)(k|Vk|+ · · ·+ k|Vd∆
2
e+1|)

= (∆ + 1)(
∆

∆ + 1
|V1|+ k|Vk|+ · · ·+ k|Vd∆

2
e+1|).

Moreover, since ∆
∆+1
|V1| + k|Vk| + · · · + k|Vd∆

2
e+1| ≤ uStR(G), we deduce that kn ≤ (∆ +

1)uStR(G) yielding the desired bound. The sharpness of the bound may be seen for the star K1,n−1

with n ≥ 2. Clearly, k = dn−1
2
e+ 1 and uStR(G) = dn−1

2
e+ 1 = kn

∆+1
.

Theorem 3.7. If G is a nontrivial connected graph, then

uStR(G) = min{
d∆

2 e∑
i=1

(i+ 1) |Si|+|V (G)−N [S]| : S = ∪Si is a 2-packing set}.

Proof. Let f = (V0, . . . , Vd∆
2
e+1) be a uStR-function of G. Since V − (V0 ∪ V1) is a 2-packing, let

Si = Vi+1, 1 ≤ i ≤ d∆
2
e. Observe that V1 = V − N [S]. It follows that uStR(G) ≥ min{2|S1| +

3|S2|+ . . .+ (d∆
2
e+ 1)|Sd∆

2
e|+ |V −N [S]| : S = ∪Si is a 2-packing}.

On the other hand, let D = V2 ∪ · · · ∪ Vd∆
2
e+1 be a 2-packing of G such that

d∆
2 e+1∑
i=1

i |Vi| +

|V (G) − N [D]| is minimum. Then f = (N(D), V (G) − N [D], D) is a URStRDF, implying that
uStR(G) ≤ w(f) and the equality follows.
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Theorem 3.8. Let G be a connected graph with diam(G) ≥ 3, then

uStR(G) ≤ n− bdiam(G)− 1

3
c.

Furthermore, this bound is sharp for paths P3k+2 with k ≥ 0.

Proof. Let diam(G) = d = 3m+ t for some integers m ≥ 1 and t ∈ {0, 1, 2}. Let P = y0y1 . . . yd
be a diametral path in G, and let f : V (P ) → {0, 1, 2} be a URStRDF defined on P by assigning
a 2 to every vertex in V2 = {y0, y3, . . . , y3m}, a 0 to N(V2) and a 1 to the remaining vertices
of P. Note that V2 is a 2-packing set of P as well as of G. Define now a function g : V →
{0, 1, . . . , d∆

2
e + 1} by g(x) = f(x) for x ∈ V (P ) and g(x) = 1 otherwise. We also define a

function h : V → {0, 1, . . . , d∆
2
e + 1} by h(yi) = ddG(vi)

2
e + 1 for every i ∈ {0, 3, . . . , 3m},

h(x) = 0 for every x ∈ N(yi) such that i ∈ {0, 3, . . . , 3m} and h(y) = g(y) for any remaining
vertex y. Clearly, h is a URStRDF on G and we have ω(h) ≤ ω(g) ≤ f(P ) + n − (Diam(G) +

1). Thus ω(h) ≤ 2(Diam(G)+1)+2
3

+ n − Diam(G) − 1. Finally, by simple calculations we have
uStR(G) ≤ ω(h) ≤ 3n−diam(G)+1

3
= n− diam(G)−1

3
≤ n− bdiam(G)−1

3
c.

For sharpness, let G be a path P3k+2 with k ≥ 0. Then uStR(G) = γStR(G) = d2n
3
e = d2(3k+2)

3
e =

2k + 2. On the other hand, we have n = 3k + 2, diam(G) = 3k + 1. Thus, n − bdiam(G)−1
3

c =
3k + 2− b3k+1−1

3
c = 2k + 2.

Recall that a vertex v ∈ S is said to have a private neighbor with respect to the set S if there
exists a vertex w ∈ N(v) ∩ (V − S) for which N(w) ∩ S = {v}. Let pn[v, S] denote the set of
private neighbors of v with respect to the set S.

Theorem 3.9. If G is a graph with ∆(G) ≥ 3, then

uStR(G) ≤ iStR(G) + d
iStR(G)− d∆

2
e − 1

d∆
2
e+ 1

(∆(G)− d∆
2
e − 1)e.

Proof. Let G be a graph with ∆(G) ≥ 3. If iStR(G) ≥ uStR(G), then since iStR(G) ≥ d∆
2
e + 1,

the inequality holds. Hence, we assume that iStR(G) < uStR(G), and let f = (V f
0 , V

f
1 , V

f
2 ) be an

iStR(G)-function. Then there exist two vertices x1 and y1 ∈ V f
2 such that N(x1) ∩N(y1) 6= ∅, for

otherwise, by Observation 2.2, iStR(G) = uStR(G), a contradiction. Without loss of generality, we
assume that dG(x1) ≤ dG(y1). It follows that the function f1 defined by

f1 = (V f1

0 , V f1

1 , V f1

2 ) = (V f
0 \ pn(x1, V

f
2 ), V f

1 ∪ pn(x1, V
f

2 ) ∪ {x1}, V f
2 \ x1).

is an StRDF such that V f1

2 is independent, where no edge of G joins V f1

1 and V f1

2 . By Observation
2.1, there is an IStRDF g1 = (V g1

0 , V g1

1 , V g1

2 ) of G with weight at most ω(f1). Now using the
facts that

∣∣∣pn(x1, V
f

2 )
∣∣∣ ≤ dG(x1) − 1 (since N(x1) ∩ N(y1) 6= ∅) and dG(x1)−ddG(x1)

2
e − 1 ≤
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∆(G)− d∆
2
e − 1, we obtain

ω(f1) ≤ w(f)− (ddG(x1)

2
e+ 1) + 1 +

∣∣∣pn(x1, V
f

2 )
∣∣∣

≤ iStR(G) + dG(x1)−ddG(x1)

2
e − 1

≤ iStR(G) + (ddG(x1)

2
e+ 1)

(∆(G)− d∆
2
e − 1)

d∆
2
e+ 1

.

Thereafter, if V g1

2 is not a 2-packing, then there must exist two vertices x2 and y2 ∈ V g1

2 with
N(x2) ∩ N(y2) 6= ∅. As above, we can define a function f2 and so on. Clearly, with this process
we can get an IStRDF gk = (V gk

0 , V gk
1 , V gk

2 ) of G for some integer k ≤ |V f
2 | − 1 such that V gk

2

is a 2-packing set yielding uStR(G) ≤ iStR(G) + |Vd dG(x1)

2
e+1
|(ddG(x1)

2
e + 1)

∆(G)−d∆
2
e−1

d∆
2
e+1

+ · · · +

(|Vd dG(xk)

2
e+1
| − 1)(ddG(xk)

2
e+ 1)

∆(G)−d∆
2
e−1

d∆
2
e+1

. Moreover, since

|Vd dG(x1)

2
e+1
|(ddG(x1)

2
e+ 1) + · · ·+ |Vd dG(xk)

2
e+1
|(ddG(xk)

2
e+ 1) ≤ iStR(G)

we deduced that

uStR(G) ≤ iStR(G) + d
iStR(G)− d∆

2
e − 1

d∆
2
e+ 1

(∆(G)− d∆
2
e − 1)e.

This completes the proof.

The following corollaries are immediate consequences of Theorem 3.9 and Observation 2.2.

Corollary 3.2. If G is a graph with maximum degree three, then uStR(G) ≤ iStR(G).

Corollary 3.3. If G is a cubic graph, then uStR(G) ≤ iStR(G).

4. URStRDF of trees

In this section, we show that for any tree T of order n ≥ 3, uStR(T ) ≤ 8n
9

and then we
characterize some extremal trees which attain this upper bound. We now need to introduce some
terminologies and notations. A vertex of degree one is called a leaf and its neighbor is called a
support vertex. We denote the set of all leaves adjacent to support vertex v, by Lv. For r, s ≥ 1,
a double star S(r, s) is a tree with exactly two vertices that are not leaves, with one adjacent to
r leaves and the other to s leaves. A rooted graph is a graph in which one vertex is labeled in a
special way so as to distinguish it from other vertices. The special vertex is called the root of the
graph. For a vertex v in a rooted tree T , let C(v) denote the set of children of v, D(v) denote the
set of descendants of v and D[v] = D(v)

⋃
{v}. Also, we denote the depth of v, by depth(v) that

is the most length distance from v to a vertex in D(v). The maximal subtree at v is the subtree of
T induced by D(v)

⋃
{v}, and is denoted by Tv.

Now, we present a result on the unique response strong Roman domination number of double
stars. Let T = S(r, s) be a double star. For s = r = 2, uStR(T ) = 5 = 5n

6
. Here we characterise

the uStR(T ) of any double star T .
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Observation 4.1. Let r, s be integers with 1 ≤ r ≤ s and s 6= 2 or r 6= 2. Then any double star
T = S(r, s) of order n = r + s + 2, uStR(T ) ≤ b4n

5
c and equality holds if and only if one of the

following cases is satisfied.
(i) r = s and s ∈ {1, 3, 4, 5, 6, 7, 8, 10, 12}, or
(ii) r = s− 1 and s ∈ {2, 3, 4, 5, 6, 8, 10}, or
(iii) r = s− 2 and s ∈ {3, 4, 6, 8}, or
(iv) r = s− 3 and s ∈ {4, 6}.

Proof. Let u, v be two support vertices of T such that deg(u) = r + 1 and deg(v) = s + 1. We
define URStRDF function f on V (T ) as follows: f(v) = 1+d s+1

2
e, f(u) = 0, f(x) = 0 for every

vertex x adjacent to v and f(y) = 1 for every vertex y adjacent to u. Then ω(f) = 1 + d s+1
2
e+ r.

Now there are two cases. Let s be odd. Then ω(f) = s+2r+3
2
≤ b4

5
(s+ r + 2)c.

Let s be even and s 6= 2, r 6= 2. Then ω(f) = s+2r+4
2
≤ b4

5
(s + r + 2)c. A simple calculation

shows that each condition of (i)-(iv) yields uStR(S(r, s)) = b4n
5
c. Now suppose that for T =

S(r, s), we have uStR(S(r, s)) = b4n
5
c. We consider some cases.

Case 1. Let r = s.
Let s be an odd integers. Then s+2r+3

2
= uStR(S(r, s)) = b4n

5
c = b4(r+s+2)

5
c. Therefore 3s+3

2
=

b8s+8
5
c = s + 1 + b3s+3

5
c and then s+1

2
= b3s+3

5
c = s+1

2
+ b s+1

10
c. Thus b s+1

10
c = 0 and s is one of

the odd integers in {1, 3, 5, 7}.
Let s be an even integer. Then 3s+4

2
= b4

5
(2s + 2)c. Therefore 3s+4

2
= b s−4

10
c + 3s+4

2
. Thus

b s−4
10
c = 0 and s is one of the even integers in {4, 6, 8, 10, 12}.

Case 2. Let r = s− 1.
Let s be an odd integer. Then 3s+1

2
= b4(2s+1)

5
c = s+ b s+1

2
+ s+3

10
c. Thus b s+3

10
c = 0 and s ∈ {3, 5}

since the value 1 for s is not acceptable.
Let r = s−1. Let s be an even integer. Then 3s+2

2
= b4(2s+1)

5
c = s+b s+2

2
+ s−2

10
c. Thus b s−2

10
c = 0

and s ∈ {2, 4, 6, 8, 10}.
Case 3. Let r = s− 2.

Let s be an odd integer. Then 3s−1
2

= b8s
5
c = s+ b s−1

2
+ s+5

10
c. Thus b s+5

10
c = 0 and s ∈ {3} since

the value 1 for s is not acceptable.
Let r = s − 2. Let s be an even integer. Then 3s

2
= b8s

5
c = 3s

2
+ b s

10
c. Thus b s

10
c = 0 and

s ∈ {4, 6, 8} since the value 1 for s is not acceptable.
Case 4. Let r = s− 3.

Let s be an odd integer. Then 3s−3
2

= b8s−4
5
c = 3s−3

2
+ b s+7

10
c. Thus b s+7

10
c = 0 and s cannot

achieve any odd integer, since the value 1 for s is not acceptable.
Let r = s − 3. Let s be an even integer. Then 3s−2

2
= b8s

5
c = 3s−2

2
+ b s+2

10
c. Thus b s+2

10
c = 0 and

s ∈ {4, 6} since the value 2 for s is not acceptable.
Let r = s − k where 4 ≤ k ≤ s − 1. In this case uStR(S(r, s)) = 3s+3−2k

2
for odd s and

uStR(S(r, s)) = 3s+4−2k
2

for even s. On the other hand b4
5
(n)c = b4

5
(2s− k + 2)c = b8s−4k+8)

5
c.

Let s be an odd integer. Then b8s−4k+8)
5
c = b s+1+2k

10
c+ 3s+3−2k

2
. Since k ≥ 4, b s+1+2k

10
c ≥ 1.

Let s be an even integer. Then b8s−4k+8)
5
c = b s−4+2k

10
c+ 3s+4−2k

2
. Since k ≥ 4, and value 4 for s is

not acceptable b s−4+2k
10
c ≥ 1.

Therefore, for any value of s other than of value stated in the parts (i)-(iv) uStR(S(r, s)) < b4
5
(n)c

where n = r + s+ 2.
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The proof of Observation 4.1, uStR(S(r, s)), and definition of iStR(G) we deduce:

Corollary 4.1. iStR(S(r, s)) = uStR(S(r, s)) for positive integers r, s where r ≤ s.

The following sharp bound is the main result in this section, where we bound the unique re-
sponse strong Roman domination number of trees in terms of their orders.

Theorem 4.1. If T is a tree of order n ≥ 3, then uStR(T ) ≤ 8n
9

.

Proof. By induction on the order of T we prove the theorem. Clearly, theorem holds for all trees
of order n ≤ 5. Let n ≥ 6 and for every tree T of order at least 3 and less than n the result is
true. Let T be a tree of order n ≥ 6. If Diam(T ) = 2, then T is a star, which yields uStR(T ) =
1 + dn−1

2
e < 8n

9
. If Diam(T ) = 3, then T is a double star and the result follows from Observation

4.1. Thus, we can assume that Diam(T ) ≥ 4. But in Observation 9 we have seen for the infinite
number of natural numbers n and the infinite number of trees T of order n, uStR(T ) ≤ 8n

9
. Now we

will continue to prove the Theorem for every tree T such that |T | = n, with the help of backward
induction. Suppose for any tree T of order n ≥ 3, we have iStR(T ) ≤ 8n

9
. Now let T ′ be an

arbitrary tree of order n− 1. Also, we take the diametral path P = v0v1 . . . vl of among diametral
paths in T ′ so that t = degT (v1) is the maximum. We put s = deg(v2). Now we have four cases.

Case 1. t is an even number.
In this case we put T = T ′

⋃
{u} such that u ∈ N(v1). Under the assumption of induction, for this

tree T , there exists a URStRDF f such that ω(f) < 8n
9

. But we must have f(u) = 0 or f(u) = 1.
If f(u) = 1 then we have f(v1) = 0 or f(v1) = 1. If f(v1) = 0, then for any x ∈ Lv1 , f(x) = 1
and f(v2) = d s

2
e + 1. So if we define the URStRDF f ′ on T ′ by f ′(x) = f(x) for every vertex

x ∈ V (T ′), then we conclude ω(f ′) = ω(f) − 1 < 8n
9
− 1 = 8n−9

9
= 8(n−1)−1

9
< 8(n−1)

9
. If

f(v1) = 1 then similarly, the assertion of the proposition is proved.
Now if f(u) = 0, then we must have f(v1) = d t+1

2
e + 1. So we define URStRDF f ′ on T ′ by

f ′(v1) = d t
2
e + 1 and for the other vertices of z, f ′(z) = f(z). Since t + 1 is an odd number

then we have ω(f ′) = ω(f) − 1 < 8(n−1)
9

. Similarly, if the vertices v2, v3, . . . , vl−1 are of an even
degree, the proof is complete in the same way. Therefore, it can be assumed that the vertices of
v1, v2, v3, . . . , vl−1 are of odd degrees.

Case 2. t is an odd number and s ≥ 3. Then we have two following cases.
Case 2.1. The vertex v2 has an adjacent vertex, such as u, which is either a leaf or an end-

support of even degree. If u ∈ N(v2) is a leaf, then we put T = T ′
⋃
{w′} such that w′ ∈ N(u) is

a leaf. If f(w′) = 0, then we must have f(u) = 2, f(v2) = 0, f(v1) = 1 and for any x ∈ N(v1),
f(x) = 1. Now we define URStRDF f ′ on T ′ by f ′(u) = 1, f ′(v2) = 0, f ′(v1) = d t

2
e + 1,

for any x ∈ N(v1), f ′(x) = 0 and for the other vertices of z ∈ V (T ′), f ′(z) = f(z). So, we
have ω(f ′) ≤ ω(f) − 1 < 8(n−1)

9
. If f(w′) = 1, then f(u) = 0 or f(u) = 1. If f(u) = 0,

then f(v2) = d s
2
e + 1. So, we can define URStRDF f ′ on T ′ by f ′(x) = f(x) which we have

ω(f ′) ≤ ω(f)− 1 < 8(n−1)
9

. If f(u) = 1, then similarly, the assertion of the proposition is proved.
If u ∈ N(v2) is an end-support of even degree, then we put T = T ′

⋃
{w′} such that w′ ∈ N(u)

is a leaf. If f(w′) = 0, then we must have f(u) = ddegu+1
2
e + 1. Now we define the function

G on T by letting g(u) = 1, g(v1) = d t
2
e + 1 and for any x ∈ N(v1), g(x) = 0 and for any

y ∈ N(u)− {v2}, g(y) = 1. Thus we have ω(g) ≤ ω(f). We define f ′ on T ′ by f ′(z) = g(z) for
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any z ∈ V (T ′). Hence, we have ω(f ′) ≤ ω(g)− 1 ≤ ω(f)− 1 < 8(n−1)
9

.
If f(w′) = 1, then similarly, the assertion of the proposition is proved.

Case 2.2. The vertex v2 has not an adjacent vertex which is either a leaf or an end-support of
even degree. Therefore, each neighboring end-support from vertex v2 will be of an odd degree. We
have two following cases.

Case 2.2.1. t > s. We put T = T ′
⋃
{u, u′, u′′} such that P3 = u′uu′′ is a three vertex path

and the vertex u is connected to vertex v2. If f(v1) = d t
2
e + 1 then we have f(v2) = 0 and

f(u) = f(u′) = f(u′′) = 1. Now we define the function f ′ on T ′ by f ′(z) = f(z). Hence, we
have ω(f ′) = ω(f)− 3 < 8(n+2)

9
− 3 = 8n+16−27

9
= 8n−11

9
= 8(n−1)−3

9
< 8(n−1)

9
.

If f(v1) = 0, then f(v2) = 0 or f(v2) = 1 or f(v2) = d s
2
e + 1. If f(v2) = 1, then there exists

w ∈ Lv1 such that f(w) = 2. In this case we must have f(u) = f(u′) = f(u′′) = 1. Hence,
similar to the previous one, the result is achieved. If f(v2) = 0, then there exist w ∈ Lv1 and
x ∈ N(v2) such that f(w) = 2 and f(x) = ddegx

2
e + 1. Since, s + 1 ≥ 4 then we can suppose

x 6= u. Thus, we have f(u) = f(u′) = f(u′′) = 1. Hence, similar to the previous one, the result
is achieved. Finally, if f(v2) = d s+1

2
e + 1, then we have f(v1) = 0 = f(v3) and for any x ∈ Lv1 ,

f(x) = 1. Now we define URStRDF g on T by letting g(v2) = 0, g(v1) = d t
2
e + 1, g(v3) = 1

and for any y ∈ Lv1 and for any z ∈ N(v2) − {v1, v3} g(y) = 0, g(z) = 1. Clearly, we have
ω(g) ≤ ω(f) < 8(n+2)

9
. Now we define URStRDF f ′ on T ′ by f ′(z) = g(z). Thus, we have

ω(f ′) = ω(f)− 3 < 8(n+2)
9
− 3 = 8n+16−27

9
= 8n−11

9
= 8(n−1)−3

9
< 8(n−1)

9
.

Case 2.2.2. t ≤ s. We put degv3 = s′. If t ≥ s′, then s′ < s. In this case, we suppose that
T = T ′

⋃
{u, u′, u′′} such that P3 = u′uu′′ is a three vertex path and the vertex u is connected to

vertex v3. Now we continue the argument in the same way as before. But if t < s′, then we put
T ′ = T

⋃
{u} such that u ∈ N(v1). Thus, f(v1) = 0 or f(v1) = 1. Now we continue the argument

in the same way as before.
This completes the proof.

Theorem 4.2. If T is a tree of order n ≥ 3, then, iStR(T ) ≤ 8n
9

.

Proof. We prove this theorem by induction on n ≥ 3. Clearly, the theorem holds for all trees of
order n ≤ 5. By the inductive hypothesis, let n ≥ 6 and suppose that for every tree T of order at
least 3 and less than n the result is true. Let T be a tree of order n ≥ 6. If Diam(T ) = 2, then T is
a star, which yields iStR(T ) = 1 + dn−1

2
e < 8n

9
. If Diam(T ) = 3, then T is a double star and the

result follows from pervious lemma. Thus, we can assume that Diam(T ) ≥ 4. For a subtree T ′

with n′ ≥ 3, the induction hypothesis yields a IStRDF f ′ of T ′ with weight at most 8n′

9
. We shall

find a subtree T ′ such that adding a bit more weight to f ′ will yield a small enough IStRDF f for
T . We take the diametral path P = v0v1 . . . vl of among diametral paths in T so that t = degT (v1)
is the maximum. Also, suppose that among paths with this property we choose a path such that
|Lv2| is as large as possible. Root T at vl.

If t = 3, s = deg(v2), s = 3 and the vertex v2 has only one neighboring support vertex of
degree three, for example u, except for vertex v1. We put T ′ = T − Tv2 . Therefore, the induction
hypothesis yields a IStRDF f ′ of T ′ weight at most 8n′

9
. Now we define a function f on T by

f(u) = f(v1) = 3, for any x ∈ N(v1), f(x) = 0, for every y ∈ N(u), f(y) = 0 and for every
other vertex z, f(z) = f ′(z). So, we have ω(f) ≤ ω(f ′) + 6 < 8n′

9
+ 6 ≤ 8(n−7)

9
+ 6 = 8n−2

9
< 8n

9
.
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Thus, for every n ≥ 3 and for any tree T of order n such that the tree T applies to the conditions
of the previous state, we have iStR(T ) ≤ 8n

9
. Now we will continue to prove the theorem for every

tree T such that |T | = n, with the help of backward induction. Suppose for any tree T of order
n ≥ 3, we have iStR(T ) ≤ 8n

9
. Now let T ′ be an arbitrary tree of order n − 1. Also, we take

the diametral path P = v0v1 . . . vl of among diametral paths in T ′ so that t = degT (v1) is the
maximum. We put s = deg(v2). Now we have four cases.

Case 1. t is an even number. In this case we put T = T ′
⋃
{u} such that u ∈ N(v1). Under

the assumption of induction, for this tree T , there exists a IStRDF f such that ω(f) < 8n
9

. But we
must have f(u) = 0 or f(u) = 1. If f(u) = 1, then we have f(v1) = 0 and for any x ∈ Lv1 ,
f(x) = 1 and f(v2) = d s

2
e + 1. So if we define the IStRDF f ′ on T ′ by f ′(x) = f(x) for every

vertex x ∈ V (T ′), then we conclude ω(f ′) = ω(f) − 1 < 8n
9
− 1 = 8n−9

9
= 8(n−1)−1

9
< 8(n−1)

9
.

Now if f(u) = 0, then we must have f(v1) = d t+1
2
e + 1. So we define IStRDF f ′ on T ′ by

f ′(v1) = d t
2
e + 1 and for the other vertices of z, f ′(z) = f(z). Since t + 1 is an odd number

then we have ω(f ′) = ω(f) − 1 < 8(n−1)
9

. Similarly, if the vertices v2, v3, . . . , vl−1 are of an even
degree, the proof is complete in the same way. Therefore, it can be assumed that the vertices of
v1, v2, v3, . . . , vl−1 are of odd degrees.

Case 2. t is an odd number and s ≥ 3. Then we have two following cases. Case 2.1.
The vertex v2 has an adjacent vertex, such as u, which is either a leaf or an end-support of even
degree. If u ∈ N(v2) is a leaf, then we put T = T ′

⋃
{w′} such that w′ ∈ N(u) is a leaf. If

f(v2) = 0, then we must have f(u) = 2, f(w′) = 0 and f(v1) = d t
2
e + 1. Now we define

IStRDF f ′ on T ′ by f ′(u) = 1 and for the other vertices of x ∈ V (T ′), f ′(x) = f(x). So, we have
ω(f ′) = ω(f)− 1 < 8(n−1)

9
. If f(v2) = d s

2
e+ 1, then we must have f(u) = 0 and f(w′) = 1. We

define IStRDF f ′ on T ′ by f ′(u) = 0 and for the other vertices of x ∈ V (T ′), f ′(x) = f(x). So,
we have ω(f ′) = ω(f) − 1 < 8(n−1)

9
. If u ∈ N(v2) is an end-support of even degree, then we put

T = T ′
⋃
{w′} such that w′ ∈ N(u) is a leaf. Now the proof is complete in the same way.

Case 2.2. The vertex v2 has not an adjacent vertex which is either a leaf or an end-support of
even degree. Therefore, each neighboring end-support from vertex v2 will be of an odd degree. We
have two following cases.

Case 2.2.1. t ≥ 5. We put T = T ′
⋃
{u, u′} such that u, u′ ∈ N(v0) are leaves. If f(v0) = 0,

then we must have f(v1) = d t
2
e + 1 and f(u) = f(u′) = 0. Now we define IStRDF f ′ on T ′ by

f ′(x) = f(x) for every x ∈ V (T ′). So, we have ω(f ′) = ω(f)− 2 < 8(n+1)
9
− 2 = 8(n−1)−2

9
< 8n

9
.

If f(v0) = 3 the we must have f(vl) = f(u) = f(u′) = 0 and for any vertex x ∈ Lv1 , f(x) = 0.
Now if f(v2) = d s

2
e+1, then we define a function f ′ on T ′ by f ′(v0) = 1 and for any other vertices

z ∈ V (T ′) f ′(z) = f(z). Thus, we have ω(f ′) = ω(f)− 2 ≤ 8(n+1)
9
− 2 < 8n

9
. But if f(v2) = 0,

then we define a function g on T by g(v1) = d t
2
e + 1, for any vertex x ∈ N(v1), g(x) = 0 and

g(u) = g(u′) = 1. So, we have ω(g) ≤ ω(f). Now we define a function f ′ on T ′ by f ′(x) = g(x).
Then we have ω(f ′) = ω(g)− 2 < 8n

9
.

Case 2.2.2. t = 3 and the vertex v2 has at least two neighboring vertices, which are end-support
vertices of degree three. We denote those vertices by u1, . . . , uk−1. Now we consider a subtree T ′′

such that T ′′ ' Tv2 . We put T = T ′
⋃
T ′′ such that if w is the central vertex of T ′′, then w is

connected by an edge to the vertex v1. So, for every function f ′ on T ′ we have
ω(f ′) ≤ ω(f) − 3k < 8(n−1+3k+1)

9
− 3k = 8n−3k

9
< 8(n−1)−3k+8

9
< 8(n−1)

9
. This completes the
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proof.

Following we show that this bound is sharp. Let G be a labeled graph on n vertices and let H
be a rooted graph with root v. The rooted product graph G ◦v H is the graph obtained from G and
n copies of H , say H1 · · ·Hn, by identifying the root of the copy Hi of H with the ith vertex of
G, Godsil and McKay [3]. If H is a vertex transitive graph, then G ◦v H does not depend on the
choice of v, up to isomorphism. In such a case we will just write G ◦H .
Let S(K1,4)(the star K1,4 with all its edges subdivided) be rooted in its center v and let F p

m consist
of all the rooted product graphs TovS(K1,4), where T is any tree on m ≥ 2 vertices (see Figure 3
for an example).

Figure 3. A member of F p
4 .

Theorem 4.3. Let T be an n-vertex tree. If T ∈ F p
m and m ≥ 2, then uStR(T ) = 8n

9
.

Proof. Firstly, we notice that if the graph H = S(K1,4) is an induced subgraph H of G, and its
noncentral vertices have no neighbors outside H in G, then any URStRDF must put total weight at
least 8 on the vertices of H . For the case of trees T ∈ F p

m, m ≥ 2, they contain m disjoint induced
subgraphs isomorphic to S(K1,4) satisfying the situation mentioned above. So, uStR(T ) ≥ 16n

18
=

8n
9

for each T ∈ F p
m, m ≥ 2. But since every tree T ∈ F p

m has a vertex partition of m ≥ 2
sets including such subgraphs, a weight of at least 16 is needed on every set of such partition.
Moreover, it is easy to find a uStR-function of weight 8n

9
, which leads to the equality.
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