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Abstract

The second smallest eigenvalue of the Laplacian matrix of a graph G is called the algebraic con-
nectivity and denoted by a(G). We prove that

a(G) >
π2

3

(
p
12g(n1, n2, . . . , np)

2 − π2

4g(n1, n2, . . . , np)4
+ 4(q − p)3g(np+1, np+2, . . . , nq)

2 − π2

g(np+1, np+2, . . . , nq)4

)
,

holds for every non-trivial graph G which contains edge-disjoint spanning subgraphs G1, G2, . . . ,
Gq such that, for 1 ≤ i ≤ p, a(Gi) ≥ a(Pni), with ni ≥ 2, and, for p+1 ≤ i ≤ q, a(Gi) ≥ a(Cni),
where Pni and Cni denote the path and the cycle of the corresponding order, respectively, and g
denotes the geometric mean of given arguments. Among certain consequences, we emphasize the
following lower bound

a(G) > π212(4q − 3p)n2 − (16q − 15p)π2

12n4
,

referring toGwhich has n (n ≥ 2) vertices and contains pHamiltonian paths and q−pHamiltonian
cycles, such that all of them are edge-disjoint. We also discuss the quality of the obtained lower
bounds.
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1. Introduction

The Laplacian of a graph G is the positive semidefinite matrix L(G) = D(G) − A(G),
where D(G) is the diagonal matrix of vertex degrees and A(G) is the standard adjacency ma-
trix. Among all eigenvalues of the Laplacian of a graph, one of the most popular is the second
smallest called, by Fiedler [5], the algebraic connectivity of a graph. The algebraic connectivity
is usually denoted by a(G). Its significance is due to the fact that it measures (to a certain extent)
how well a graph is connected. For example, a graph G is connected if and only if a(G) > 0.

The number of vertices (also known as the order) and the number of edges of a graph G are
denoted by n and m (or m(G)), respectively. We also use d for the diameter of a graph. A path and
a cycle of order n are denoted by Pn and Cn, respectively. A graph is Hamiltonian if it contains a
spanning subgraph which is a cycle, while every such cycle is referred to as a Hamiltonian cycle.
Similarly, every spanning path is referred to as a Hamiltonian path.

There is a significantly large number of bounds for the algebraic connectivity expressed in
terms of other graph invariants. One of them is a classical result of Mohar [8] stating that

a(G) ≥ 4

dn
, (1)

where, as said above, d is the diameter of G. Some others can be found in [1, 4, 10]. In this
study we obtain a lower bound for a(G) which relies on the assumption that G contains edge-
disjoint spanning subgraphs such that the algebraic connectivity of each of them is not less than
the algebraic connectivity of either a fixed path or a fixed cycle. This result yields the lower bound
for a(G) expressed in terms of orders of the longest paths or cycles contained in the corresponding
spanning subgraphs. In particular, we establish a lower bound when G contains the set of edge-
disjoint Hamiltonian paths and cycles.

Our contribution is reported in the forthcoming sections. Precisely, theoretical results are given
in Section 2, a concluding discussion is given in Section 3, while in the Appendix we observe the
existence of an upper bound for the algebraic connectivity (which is implicitly proved in [2]).

2. Results

We use the following lemma referred to Fiedler.

Lemma 2.1. [5] Let G1, G2, . . . , Gk be edge-disjoint spanning subgraphs of a non-trivial signed
graph G such that m(G) =

∑k
i=1m(Gi). Then

a(G) ≥
k∑
i=1

a(Gi).

We also use the following limit point without reference:

lim
x→0

(∑k
i=1 t

x
i

k

) 1
x

=

( k∏
i=1

ti

) 1
k

, (2)

for positive t1, t2, . . . , tk.
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Theorem 2.1. Assume that a graph G with n (n ≥ 2) vertices contains edge-disjoint spanning
subgraphs G1, G2, . . . , Gq such that for 1 ≤ i ≤ p it holds a(Gi) ≥ a(Pni) with ni ≥ 2 and for
p+ 1 ≤ i ≤ q it holds a(Gi) ≥ a(Cni). Then

a(G) >
π2

3

(
p
12g(n1, n2, . . . , np)

2 − π2

4g(n1, n2, . . . , np)4
+ 4(q − p)3g(np+1, np+2, . . . , nq)

2 − π2

g(np+1, np+2, . . . , nq)4

)
, (3)

where g denotes the geometric mean of given arguments.

Proof. By Lemma 2.1, a(G) ≥
∑q

i=1 a(Gi), i.e., a(G) ≥
∑p

i=1 a(Pni) +
∑q

i=p+1 a(Cni). It holds
a(Pni) = 2

(
1− cos( π

ni
)
)

and a(Cni) = 2
(
1− cos(2π

ni
)
)
; see, for example, [1].

Using the Taylor series, we get

a(Pni) > 2

(
1− 1 +

π2

2n2
i

− π4

24n4
i

)
=

π2

12n4
i

(12n2
i − π2)

and

a(Cni) > 2

(
1− 1 +

4π2

2n2
i

− 16π4

24n4
i

)
=

4π2

3n4
i

(3n2
i − π2)

that gives

a(G) >
π2

3

(
1

4

p∑
i=1

12n2
i − π2

n4
i

+ 4

q∑
i=p+1

3n2
i − π2

n4
i

)
. (4)

We consider the first sum of (4). For α ≥ 2, we define the function

fα(x) =
12xα − π2

x2α
.

It holds f ′′α(x) =
2a

x2(α+1)

(
6(α + 1)xα − π2(2α + 1)

)
, and so, for x ≥ 2, fα is convex. Using the

Jensen’s inequality, we get

p∑
i=1

12n2
i − π2

n4
i

≥ pfα

(∑p
i=1 n

2/α
i

p

)
= p

12

(∑p
i=1 n

2/α
i

p

)α
− π2

(∑p
i=1 n

2/α
i

p

)2α
.

If α→∞, by (2), we have

p∑
i=1

12n2
i − π2

n4
i

≥ p
12g(n1, n2, . . . , np)

2 − π2

g(n1, n2, . . . , np)4
. (5)

The second sum of (4) is considered in a similar way. For α ≥ 3, we define the function

hα(x) =
3xα − π2

x2α
,
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which is convex for x ≥ 3 (as h′′α(x) =
a

x2(α+1)

(
3(α + 1)xα − 2π2(2α + 1)

)
). This leads to

q∑
i=p+1

3n2
i − π2

n4
i

≥ (q − p)hα
(∑q

i=p+1 n
2/α
i

q − p

)
= (q − p)

3

(∑q
i=p+1 n

2/α
i

(q − p)

)α
− π2

(∑q
i=p+1 n

2/α
i

q − p

)2α
.

Letting α→∞, we get

q∑
i=p+1

3n2
i − π2

n4
i

≥ (q − p)3g(np+1, np+2, . . . , nq)
2 − π2

g(np+1, np+2, . . . , nq)4
. (6)

The inequality (4), in conjunction with (5) and (6), gives (3).

Here are some consequences.

Corollary 2.1. Under the assumptions of Theorem 2.1, we have

a(G) >
π2

3

(
p
12a(n1, n2, . . . , np)

2 − π2

4a(n1, n2, . . . , np)4
+ 4(q − p)3a(np+1, np+2, . . . , nq)

2 − π2

a(np+1, np+2, . . . , nq)4

)
, (7)

where a denotes the arithmetic mean of given arguments.

Proof. The function 12x2−π2

4x2
decreases for x ≥ 2, and so

12g(n1, n2, . . . , np)
2 − π2

4g(n1, n2, . . . , np)4
≥ 12a(n1, n2, . . . , np)

2 − π2

4a(n1, n2, . . . , np)4
.

Similarly, as 3x2−π2

x2
decreases for x ≥ 3, we have

3g(np+1, np+2, . . . , nq)
2 − π2

g(np+1, np+2, . . . , nq)4
≥ 3a(np+1, np+2, . . . , nq)

2 − π2

a(np+1, np+2, . . . , nq)4
,

and the proof follows.

Corollary 2.2. Under the assumptions of Theorem 2.1, we have

a(G) > qπ212g(n1, n2, . . . , nq)
2 − π2

12g(n1, n2, . . . , nq)4
≥ qπ212a(n1, n2, . . . , nq)

2 − π2

12a(n1, n2, . . . , nq)4
, (8)

where g and a denote the geometric mean and the arithmetic mean of given arguments, respectively.

Proof. In the notation of Theorem 2.1, since a(Cni) > a(Pni), we have a(Gi) ≥ a(Pni), for
1 ≤ i ≤ q. The first inequality follows by setting p = q in (3), and then the second follows by the
previous corollary.

We proceed with the following particular result.
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Theorem 2.2. If a non-trivial graphG contains pHamiltonian paths and q−pHamiltonian cycles,
such that all of them are edge disjoint, then

a(G) > π212(4q − 3p)n2 − (16q − 15p)π2

12n4
. (9)

Proof. Obviously,G contains edge-disjoint spanning subgraphsG1, G2, . . . , Gq such that the first p
of them contain a Hamiltonian path and the remaining ones contain a Hamiltonian cycle. By
Lemma 2.1, the algebraic connectivity of Gi is at least the algebraic connectivity of its spanning
subgraph, i.e., all the assumptions of Theorem 2.1 are satisfied (with ni = n, for 1 ≤ i ≤ q).
By (3), we compute

a(G) >
π2

3

(
p
12n2 − π2

4n4
+ 4(q − p)3n

2 − π2

n4

)
,

giving the desired inequality.

Since, for a connected graph G, we have a(G) ≥ 2ε(1 − cos π
n
) (see [5]), where ε denotes the

edge connectivity of G, it follows that Theorem 2.1 can be applied to any connected non-trivial
graph with itself in the role of the unique spanning subgraph. Here is another criterion concerning
graphs with small diameter.

Theorem 2.3. If a connected graph G with n (n ≥ 2) vertices and diameter d contains a path Pk
(resp. a cycle Ck) such that 4k2 ≥ dnπ2 (resp. k2 ≥ dnπ2), then a(G) > a(Pk) (resp. a(G) >
a(Ck)).

Proof. We use the inequality (1). Considering the existence of a path Pk, we get

a(G) ≥ 4

dn
≥ 4

4k2

π2

=
π2

k2
= 2

(
1− 1 +

π2

2k2

)
> 2

(
1− cos

π

k

)
.

The existence of a cycle satisfying the assumption of the theorem is considered in the same
way.

3. Remarks

The bound (3) and its consequences (7)–(9) are always non-trivial, in the sense that they are
never negative. An easy consequence of (9) is the following lower bound

a(G) > 4qπ23n
2 − π2

3n4
, (10)

where q stands for the number of edge-disjoint Hamiltonian cycles. In general, the bound (10) is
incomparable with (1), but it gives a better estimate whenever

q ≥ 3n3

dπ2(n2 − π2)
. (11)

In particular, this occurs for every Hamiltonian graph with d ≥ 3n3

π2(3n2−π2)
, as then the right hand

side of (11) is at most 1; this lower bound for d is asymptotically n/π2.
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Example 1. Consider the graph G obtained by inserting an edge between every pair of vertices
at distance 2 of a cycle C2k+1, for k ≥ 2. Obviously, G has exactly 2 edge-disjoint Hamiltonian
cycles, and thus due to (10) we have a(G) > 8π2 3(2k+1)2−π2

3(2k+1)4
. Say, for k = 4, we get 2.12 ≈

a(G) > 0.94.

As the right hand side of (10) increases with the number of edge-disjoint Hamiltonian cycles, it
would be natural to consider it in conjunction with a lower bound for the number of such cycles. In
this context, we recall that Nash-Williams proved that the assumptions of the well-known Dirac’s
theorem guarantee the existence of many edge-disjoint Hamiltonian cycles. Precisely, every graph
with n vertices and minimum vertex degree at least n/2 contains at least b5n/224c edge-disjoint
Hamiltonian cycles [9]. It is conjectured in the same reference that every r-regular graph with at
most 2r vertices contains r/2 Hamiltonian cycles. This conjecture is still open; an approximate
version stating that every r-regular graph with n (14 ≤ n ≤ 2r + 1) vertices contains b(3r − n+
1)/6c edge-disjoint Hamiltonian cycles is proved by Jackson [7]. For some asymptotic results, we
refer to Christofides, Kühn and Osthus [3]. Particular constructions of arbitrarily large graphs with
a specified number of Hamiltonian cycles can be found in Haythorpe’s [6].
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Appendix

We recall an interesting upper bound, obtained by Bollobás and Nikiforov [2], for the sum of
the k − 1 least eigenvalues of a Hermitian matrix. Namely, if N1 tN2 · · · tNk is a partition of a
Hermitian matrix M = (mij) with eigenvalues ν1 ≥ ν2 ≥ · · · ≥ νn, then

n∑
p=n−k+2

νp ≤
k∑
p=1

1

|Np|
∑

(i,j) : i,j∈Np

mij −
1

n
sum(M), (12)

where sum(M) denotes the sum of the entries of M .
By considering the Laplacian matrix of a graph in the role of M and inserting k = 3 in (12),

we get

a(G) ≤
3∑
p=1

c(Np)

|Np|
, (13)

where, clearly N1 t N2 t N3 is a vertex set partition, while c(Np) denotes the cut of Np, i.e.,
the number of edges with exactly one end in Np. Indeed, if L = (lij) is the Laplacian matrix,
then

∑
(i,j) : i,j∈Np lij = c(Np) and sum(L) = 0, so we get (13). This upper bound can be used to

estimate the algebraic connectivity of graphs with given tripartition of a vertex set. For example,
if G contains at least two cut-edges, then we have

a(G) ≤ 1

|N1|
+

2

|N2|
+

1

|N3|
,

where cut-edges are located between N1 and N2, and N2 and N3.
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