The bondage number b(G) of a graph G is the smallest number of edges whose removal from G results in a graph with larger domination number. We obtain sufficient conditions for the validity of the inequality b(G) ≤ 2s − 2, provided G has degree s vertices. We also present upper bounds for the bondage number of graphs in terms of the girth, domination number and Euler characteristic. As a corollary we give a stronger bound than the known constant upper bounds for the bondage number of graphs having domination number at least four. Several unanswered questions are posed.
Keywords
bondage number, domination number, Euler's formula, girth, average degree