Non-inclusive and inclusive distance irregularity strength for the join product of graphs

Faisal Susanto, Kristiana Wijaya, I Wayan Sudarsana, Slamin Slamin

Abstract


A function ϕ: V(G)→{1, 2, …, k} of a simple graph G is said to be a non-inclusive distance vertex irregular k-labeling of G if the sums of labels of vertices in the open neighborhood of every vertex are distinct and is said to be an inclusive distance vertex irregular k-labeling of G if the sums of labels of vertices in the closed neighborhood of each vertex are different. The minimum k for which G has a non-inclusive (resp. an inclusive) distance vertex irregular k-labeling is called a non-inclusive (resp. an inclusive) distance irregularity strength and is denoted by dis(G) (resp. by dis(G)). In this paper, the non-inclusive and inclusive distance irregularity strength for the join product graphs are investigated.


Keywords


vertex k-labeling, non-inclusive distance irregularity strength, inclusive distance irregularity strength, join product

Full Text:

PDF

DOI: http://dx.doi.org/10.5614/ejgta.2022.10.1.1

References

S. Arumugam and N. Kamatchi, On (a,d)-distance antimagic graphs, Australas. J. Combin. 54 (2012), 279-288.

M. Baca, Z. Kimakova, M. Lascsakova and A. Semanicova-Fenovcikova, The irregularity and modular irregularity strength of fan graphs, Symmetry 13 (2021), 605.

M. Baca, A. Semanicova-Fenovcikova, Slamin and K.A. Sugeng, On inclusive distance vertex irregular labelings, Electron. J. Graph Theory Appl. (EJGTA) 6 (2018), 61-83.

N.H. Bong, Y. Lin and Slamin, On distance-irregular labelings of cycles and wheels, Australas. J. Combin. 69 (2017), 315-322.

N.H. Bong, Y. Lin and Slamin, On inclusive and non-inclusive vertex irregular d-distance vertex labeling, J. Combin. Math. Combin. Comput. 113 (2020), 233-247.

G. Chartrand, M.S. Jacobson, J. Lehel, O.R. Oellermann, S. Ruiz and F. Saba, Irregular networks, Congr. Numer. 64 (1988), 187-192.

S. Cichacz, A. Gorlich and A. Semanicova-Fenovcikova, Upper bounds on inclusive distance vertex irregularity strength, Graphs Combin. (2021). https://doi.org/10.1007/s00373-021-02385-8

J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. 23 (2020), #DS6.

M. Miller, C. Rodger and R. Simanjuntak, Distance magic labelings of graphs, Australas. J. Combin. 28 (2017), 305-315.

A.A.G. Ngurah and R. Simanjuntak, On distance labelings of 2-regular graphs, Electron. J. Graph Theory Appl. (EJGTA) 9 (2021), 25-37.

S. Novindasari, Marjono and S. Abusini, On distance irregular labeling of ladder graph and triangular ladder graph, Pure Math. Sci. 5 (2016), 75-81.

R. Simanjuntak and P. Anuwiksa, D-magic strongly regular graphs, AKCE Int. J. Graphs Comb. 17 (2020), 995-999.

Slamin, On distance irregular labelling of graphs, Far East J. Math. Sci. 102 (2017), 919-932.

F. Susanto, C.N. Betistiyan, I. Halikin and K. Wijaya, On inclusive distance vertex irregularity strength of small identical copies of star graphs, J. Phys. Conf. Ser. 1872 (2021), 012005.

F. Susanto, K. Wijaya, P.M. Purnama and Slamin, On distance irregular labeling of disconnected graphs, Kragujevac J. Math. 46 (2022), 507-523.

F. Susanto, K. Wijaya, Slamin and A. Semanicova-Fenovcikova, Distance irregularity strength of graphs with pendant vertices, submitted.

B. Utami, K.A. Sugeng and S. Utama, Inclusive vertex irregular 1-distance labelings on triangular ladder graphs, AIP Conf. Proc. 2021 (2018), 060006.

B. Utami, K.A. Sugeng and S. Utama, On inclusive d-distance irregularity strength on triangular ladder graph and path, AKCE Int. J. Graphs Comb. 17 (2020), 810-819.

D.E. Wijayanti, N. Hidayat, D. Indriati, A.R. Alghofari and Slamin, On distance vertex irregular total k-labeling, preprint.

D.E. Wijayanti, N. Hidayat, D. Indriati and A.R. Alghofari, The total distance vertex irregularity strength of fan and wheel graphs, AIP Conf. Proc. 2326 (2021), 020043.


Refbacks

  • There are currently no refbacks.


ISSN: 2338-2287

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View EJGTA Stats