Size multipartite Ramsey numbers for stripes versus small cycles
Chula Janak Jayawardene, Edy Tri Baskoro, Lilanthi Samarasekara, Syafrizal Sy
Abstract
For simple graphs $G_1$ and $G_2$, the size Ramsey multipartite number $m_j(G_1, G_2)$ is defined as the smallest natural number $s$ such that any arbitrary two coloring of the graph $K_{j \times s}$ using the colors red and blue, contains a red $G_1$ or a blue $G_2$ as subgraphs. In this paper, we obtain the exact values of the size Ramsey numbers $m_j(nK_2, C_m)$ for $j \ge 2$ and $m \in \{3,4,5,6\}$.
Keywords
graph theory, Ramsey theory
Full Text:
PDF
DOI:
http://dx.doi.org/10.5614/ejgta.2016.4.2.4
Refbacks
There are currently no refbacks.
ISSN: 2338-2287
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License .
<div class="statcounter"><a title="web analytics" href="http://statcounter.com/" target="_blank"><img class="statcounter" src="//c.statcounter.com/11284516/0/7b1b10eb/1/" alt="web analytics"></a></div> View EJGTA Stats