Constructing arbitrarily large graphs with a specified number of Hamiltonian cycles
Michael Haythorpe
Abstract
A constructive method is provided that outputs a directed graph which is named a broken crown graph, containing $5n-9$ vertices and $k$ Hamiltonian cycles for any choice of integers $n \geq k \geq 4$. The construction is not designed to be minimal in any sense, but rather to ensure that the graphs produced remain non-trivial instances of the Hamiltonian cycle problem even when $k$ is chosen to be much smaller than $n$.
Keywords
Hamiltonian cycles, graph construction, broken crown
Full Text:
PDF
DOI:
http://dx.doi.org/10.5614/ejgta.2016.4.1.3
Refbacks
There are currently no refbacks.
ISSN: 2338-2287
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License .
<div class="statcounter"><a title="web analytics" href="http://statcounter.com/" target="_blank"><img class="statcounter" src="//c.statcounter.com/11284516/0/7b1b10eb/1/" alt="web analytics"></a></div> View EJGTA Stats