Connectivity of Poissonian inhomogeneous random multigraphs

Lorenzo Federico

Abstract


We introduce a model for inhomogeneous random graphs designed to have a lot of flexibility in the assignment of the degree sequence and the individual edge probabilities while remaining tractable. To achieve this we run a Poisson point process over the square [0, 1]2, with an intensity proportional to a kernel W(x, y) and identify every couple of vertices of the graph with a subset of the square, adding an edge between them if there is a point in such subset. This ensures unconditional independence among edges and makes many statements much easier to prove in this setting than in other similar models. Here we prove sharpness of the connectivity threshold under mild integrability conditions on W(x, y).

Keywords


graphons, connectivity threshold, inhomogeneous random graphs

Full Text:

PDF

DOI: http://dx.doi.org/10.5614/ejgta.2023.11.1.8

References

B. Bollobás, C. Borgs, J. Chayes, and O. Riordan, Percolation on dense graph sequences, Ann. Probab., 38(1):150–183, (2010), https://0-doi-org.pugwash.lib.warwick.ac.uk/10.1214/09-AOP478.

B. Bollobás, S. Janson, and O. Riordan, The phase transition in inhomogeneous random graphs, Random Structures Algorithms 31(1) (2007), 3–122, https://doi.org/10.1002/rsa.20168.

C. Borgs, J.T. Chayes, L. Lovász, V.T. Sós, and K. Vesztergombi, Convergent sequences of dense graphs. I. Subgraph frequencies, metric properties and testing, Adv. Math. 219(6) (2008), 1801–1851. https://0-doi-org.pugwash.lib.warwick.ac.uk/10.1016/j.aim.2008.07.008.

L. Devroye and N. Fraiman, Connectivity of inhomogeneous random graphs, Random Structures Algorithms, 45(3) (2014), 408–420, https://doi.org/10.1002/rsa.20490.

P. Erds and A.Rényi, On random graphs. I, Publ. Math. Debrecen 6 (1959), 290–297.

P. Erds and J. Spencer, Evolution of the n-cube, Comput. Math. Appl. 5(1) (1979), 33–39.

V. Falgas-Ravry, J. Larsson, and K. Markström, Speed and concentration of the covering time for structured coupon collectors, arXiv:1601.04455 (2016).

L. Federico and R. van der Hofstad, Critical window for connectivity in the configuration model, Combin. Probab. Comput., 26(5) (2017), 660–680, https://doi.org/10.1017/S0963548317000177.

J.A. Fill, E.R. Scheinerman, and K.B. Singer-Cohen, Random intersection graphs when m = ω(n): an equivalence theorem relating the evolution of the G(n, m, p) and G(n, p) models, Random Structures Algorithms 16(2) (2000), 156–176, https://doi.org/10.1002/(SICI)1098-2418(200003)16:2<156::AID-RSA3>3.3.CO;2-8.

P.W. Holland, K.B. Laskey, and S. Leinhardt, Stochastic blockmodels: first steps, Social Networks 5(2) (1983), 109–137, https://doi.org/10.1016/0378-8733(83)90021-7.

F. Joos, Random subgraphs in sparse graphs, SIAM J. Discrete Math., 29(4) (2015), 2350–2360, https://doi.org/10.1137/140976340.

I. Norros and H. Reittu, On a conditionally Poissonian graph process, Adv. in Appl. Probab., 38(1) (2006), 59–75, https://0-doi-org.pugwash.lib.warwick.ac.uk/10.1239/aap/114393614.

C. Radin and L. Sadun, Phase transitions in a complex network, J. Phys. A 46(30) (2013), 305002, 12, https://doi.org/10.1088/1751-8113/46/30/305002.

K. Rybarczyk, Diameter, connectivity, and phase transition of the uniform random intersection graph, Discrete Math. 311(17) (2011), 1998–2019, https://0-doi-org.pugwash.lib.warwick.ac.uk/10.1016/j.disc.2011.05.029.


Refbacks

  • There are currently no refbacks.


ISSN: 2338-2287

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View EJGTA Stats