Symmetric colorings of G × Z_2
Abstract
Let G be a finite group and let r ∈ N. An r-coloring of G is any mapping χ : G → {1, …, r}. A coloring χ is symmetric if there is g ∈ G such that χ(gx−1g)=χ(x) for every x ∈ G. We show that if f(r) is the polynomial representing the number of symmetric r-colorings of G, then the number of symmetric r-colorings of G × Z2 is f(r2).
Keywords
Full Text:
PDFDOI: http://dx.doi.org/10.5614/ejgta.2023.11.2.3
References
M. Aigner, Combinatorial Theory, Springer-Verlag, Berlin-Heidelberg-New York, 1979.
E. Bender and J. Goldman, On the applications of Möbius inversion in combinatorial analysis, Amer. Math. Monthly 82 (1975), 789–803.
Y. Gryshko (Yu. Zelenyuk), Symmetric colorings of regular polygons, Ars. Combinatoria 78 (2006), 277–281.
C. Jayawardene, E. T. Baskoro, L. Samarasekara, and S. Sy, Size multipartite Ramsey numbers for stripes versus small cycles, Electron. J. Graph Theory Appl. 4 (2016), 157–170.
O. Loos, Symmetric Spaces, Benjamin: New York, NY, USA, 1969.
Yu. Zelenyuk, Symmetric colorings of finite groups, Proceedings of Groups St Andrews 2009, Bath, LMS Lecture Note Series 388 (2011), 580–590.
J. Phakathi, W. Toko, Ye. Zelenyuk, and Yu. Zelenyuk Symmetric colorings of the dihedral group, Communications in Algebra 46 (2018), 1554–1559.
J. Phakathi, S. Singh, Ye. Zelenyuk, and Yu. Zelenyuk, Counting symmetric colorings of G × Z2, Journal of Algebra and Its Applications 18 (10) (2019), 1–7.
Refbacks
- There are currently no refbacks.
ISSN: 2338-2287
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.