On cycle-irregularity strength of ladders and fan graphs

Faraha Ashraf, Martin Baca, Andrea Semanicova-Fenovcikova, Suhadi Wido Saputro

Abstract


A simple graph G = (V(G),E(G)) admits an H-covering if every edge in E(G) belongs to at least one subgraph of G isomorphic to a given graph H. A total k-labeling φ : V(G) ∪ E(G) → {1,2,..., k} is called to be an H-irregular total k-labeling of the graph G admitting an H-covering if for every two different subgraphs H' and H" isomorphic to H there is wtφ(H') ≠ wtφ(H"), where wtφ(H)= ∑vV(H)φ(v) + ∑e ∈ E(H)φ(e). The total H-irregularity strength of a graph G, denoted by ths(G,H), is the smallest integer k such that G has an H-irregular total k-labeling. In this paper we determine the exact value of the cycle-irregularity strength of ladders and fan graphs.


Keywords


total $H$-irregular labeling, total cycle-irregularity strength, ladder, fan graph

Full Text:

PDF

DOI: http://dx.doi.org/10.5614/ejgta.2020.8.1.13

References

A. Ahmad, O.B.S. Al-Mushayt and M. Baca, On edge irregularity strength of graphs, Appl. Math. Comput. 243 (2014), 607–610.

A. Ahmad and M. Baca, Total edge irregularity strength of a categorical product of two paths, Ars Combin. 114 (2014), 203–212.

A. Ahmad, M. Baca, Y. Bashir and M. K. Siddiqui, Total edge irregularity strength of strong product of two paths, Ars Combin. 106 (2012), 449–459.

A. Ahmad, M. Baca and M.K. Siddiqui, On edge irregular total labeling of categorical product of two cycles, Theory Comp. Systems 54 (1) (2014), 1–12.

A. Ahmad, A. Gupta and R. Simanjuntak, Computing the edge irregularity strengths of chain graphs and the join of two graphs, Electron. J. Graph Theory Appl. 6 (1) (2018), 201–207.

F. Ashraf, M. Baca, Z. Kimakova and A. Semanicova-Fenovcıkova, On vertex and edge H- irregularity strengths of graphs, Discrete Math. Algorithms Appl. 8 (4) (2016), 13 pages.

F. Ashraf, M. Baca, M. Lascsakova and A. Semanicova-Fenovcıkova, On H-irregularity strength of graphs, Discuss. Math. Graph Theory 37 (2017), 1067–1078.

F. Ashraf, M. Baca, A. Semanicova-Fenovcıkova and A. Shabbir, On H-irregularity strengths of G-amalgamation of graphs, Electron. J. Graph Theory Appl. 5 (2) (2017), 325–334.

M. Baca, S. Jendrol’, M. Miller and, J. Ryan, On irregular total labellings, Discrete Math. 307 (2007), 1378–1388.

M. Baca and M.K. Siddiqui, Total edge irregularity strength of generalized prism, Applied Math. Comput. 235 (2014), 168–173.

S. Brandt, J. Miskuf and D. Rautenbach, On a conjecture about edge irregular total labellings, J. Graph Theory 57 (2008), 333–343.

J. A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. (2019), #DS6.

K.M.M. Haque, Irregular total labellings of generalized Petersen graphs, Theory Comp. Systems 50 (2012), 537–544.

J. Ivanco and S.Jendrol’, Total edge irregularity strength of trees, Discussiones Math. Graph Theory 26 (2006), 449–456.

S. Jendrol’, J.Miskuf and R. Sotak, Total edge irregularity strength of complete and complete bipartite graphs, Electron. Notes Discrete Math. 28 (2007), 281–285.

S. Jendrol’, J. Miskuf and R. Sotak, Total edge irregularity strength of complete graphs and complete bipartite graphs, Discrete Math. 310 (2010), 400–407.

J. Miskuf and S. Jendrol’, On total edge irregularity strength of the grids, Tatra Mt. Math. Publ. 36 (2007), 147–151.

Nurdin, E.T. Baskoro, A.N.M. Salman and N.N. Gaos, On total vertex irregularity strength of trees, Discrete Math. 310 (2010), 3043–3048.

Nurdin, A.N.M. Salman and E.T. Baskoro, The total edge-irregular strengths of the corona product of paths with some graphs, J. Combin. Math. Combin. Comput. 65 (2008), 163–175.

Susilawati, E.T. Baskoro and R. Simanjuntak, Total vertex irregularity strength of trees with maximum degree five, Electron. J. Graph Theory Appl. 6 (2) (2018), 250-257.


Refbacks

  • There are currently no refbacks.


ISSN: 2338-2287

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View EJGTA Stats