Some new upper bounds for the inverse sum indeg index of graphs

Akbar Ali, Marjan Matejic, Emina Milovanovic, Igor Milovanovic

Abstract


Let = (V,E) be a simple connected graph with the vertex set V = {1,2,...,n} and sequence of vertex degrees (d1,d2,...,dn) where di denotes the degree of a vertex iV. With ij, we denote the adjacency of the vertices i and j in the graph G. The inverse sum indeg (ISI) index of the graph G is defined as ISI(G)=∑ij(didj)/(di+dj). Some new upper bounds for the ISI index are obtained in this paper.


Keywords


Vertex-degree-based topological indices; inverse sum indeg index; Zagreb indices; multiplicative Zagreb indices

Full Text:

PDF

DOI: http://dx.doi.org/10.5614/ejgta.2020.8.1.5

References

A. Ali and Z. Du, On the difference between atom-bond connectivity index and Randic ́ index of binary and chemical trees, Int. J. Quantum Chem. 117(23) (2017), Art# e25446.

A. Ali, I. Gutman, E. Milovanovic and I. Milovanovic, Sum of powers of the degrees of graphs: extremal results and bounds, MATCH Commun. Math. Comput. Chem. 80 (2018), 5–84.

A. Ali, L. Zhong and I. Gutman, Harmonic index and its generalizations: extremal results and bounds, MATCH Commun. Math. Comput. Chem. 81 (2019), 249–311.

M. An and L. Xiong, Some results on the inverse sum indeg index of a graph, Inf. Process. Lett. 134 (2018), 42–46.

S. Balachandran, S. Elumalai and T. Mansour, A short note on inverse sum indeg index of graphs, Asian-Eur. J. Math., DOI: 10.1142/S1793557120501521, in press.

B. Bollobas and P. Erdos, Graphs of extremal weights, Ars Combin. 50 (1998), 225–233.

B. Borovicanin, K. C. Das, B. Furtula and I. Gutman, Bounds for Zagreb indices, MATCH Commun. Math. Comput. Chem. 78 (2017), 17–100.

H. Chen and H. Deng, The inverse sum indeg index of graphs with some given parameters, Discrete Math. Algorithm. Appl. 10(1) (2018), Art# 1850006.

H. Deng, S. Balachandran, S. Elumalai, T. Mansour, Harary index of bipartite graphs, Electron. J. Graph Theory Appl. 7 (2019), 365–372.

J. Devillers and A. T. Balaban (Eds.), Topological Indices and Related Descriptors in QSAR and QSPR, Gordon & Breach, New York, 1999.

M. Eliasi, A. Iranmanesh and I. Gutman, Multiplicative versions of first Zagreb index, MATCH Commun. Math. Comput. Chem. 68 (2012), 217–230.

S. Fajtlowicz, On conjectures on Graffiti-II, Congr. Numer. 60 (1987), 187–197.

F. Falahati-Nezhad, M. Azari and T. Dosic, Sharp bounds on the inverse sum indeg index, Discrete Appl. Math. 217 (2017), 185–195.

I. Gutman, Degree–based topological indices, Croat. Chem. Acta 86 (2013), 351–361.

I. Gutman, M.M. Matejic, E.I. Milovanovic and I.Z. Milovanovic, Lower bounds for inverse sum indeg index of graphs, Kragujevac J. Math. 44 (2020), 551–562.

I. Gutman, J. M. Rodrıguez and J. M. Sigarreta, Linear and non-linear inequalities on the inverse sum indeg index, Discrete Appl. Math. 258 (2019), 123–134.

I. Gutman and N. Trinajstic ́, Graph theory and molecular orbitals. Total ⇡-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972), 535–538.

I. Gutman, B. Rusˇcˇic ́, N. Trinajstic ́ and C. F. Wilcox, Graph theory and molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys. 62 (1975), 3399–3405.

I. Gutman, Multiplicative Zagreb indices of trees, Bull. Int. Math. Virt. Inst. 1 (2011), 13–19.

X. Li and Y. Shi, A survey on the Randic ́ index, MATCH Commun. Math. Comput. Chem. 59 (2008), 127–156.

Y. Ma, S. Cao and Y. Shi, I. Gutman, M. Dehmer, B. Furtula, From the connectivity index to various Randic ́–type descriptors, MATCH Commun. Math. Comput. Chem. 80 (2018), 85– 106.

M. M. Matejic ́, I. Zˇ. Milovanovic ́ and E. I. Milovanovic ́, Upper bounds for the inverse sum indeg index of graphs, Discrete Appl. Math. 251 (2018), 258–267

E. I. Milovanovic ́, M. M. Matejic ́ and I. Zˇ. Milovanovic ́, Some new upper bounds for the hyper-Zagreb index, Discrete Math. Lett. 1 (2019), 30–35.

I. Zˇ. Milovanovic ́, E. I. Milovanovic ́, I. Gutman and B. Furtula, Some inequalities for the forgotten topological index, Int. J. Appl. Graph Theory 1 (2017), 1–15.

D. S. Mitrinovic ́ and P. M. Vasic ́, Analytic inequalities, Springer Verlag, Berlin-Heidelberg- New York, 1970.

S. Nikolic ́, G. Kovacevic, A. Milicevic and N. Trinajstic, The Zagreb indices 30 years after, Croat. Chem. Acta 76 (2003), 113–124.

K. Pattabiraman, Inverse sum indeg index of graphs, AKCE Int. J. Graphs Comb. 15(2) (2018), 155–167.

J. Radon, Theorie und Anwendungen der absolut additiven Mengenfunktionen, Sitzungsber. Acad. Wissen. Wien 122 (1913), 1295–1438.

M. Randic ́, On characterization of molecular branching, J. Am. Chem. Soc. 97 (1975), 6609–6615.

B. C. Rennie, On a class of inequalities, J. Austral. Math. Soc. 3 (1963), 447–448.

J. Sedlar, D. Stevanovic ́ and A. Vasilyev, On the inverse sum indeg index, Discrete Appl. Math. 184 (2015), 202–212.

R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, Wiley–VCH, Wein- heim, 2000.

R. Todeschini and V. Consonni, Molecular Descriptors for Chemoinformatics, Wiley–VCH, Weinheim, 2009.

R. Todeschini and V. Consonni, New local vertex invariants and molecular descriptors based on functions of the vertex degrees, MATCH Commun. Math. Comput. Chem. 64 (2010), 359– 372.

D. Vukicevic and M. Gasperov, Bond additive modeling 1. Adriatic indices, Croat. Chem. Acta 83 (2010), 243–260.

B. Zhou and N. Trinajstic, On a novel connectivity index, J. Math. Chem. 46 (2009), 1252– 1270.


Refbacks

  • There are currently no refbacks.


ISSN: 2338-2287

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View EJGTA Stats