On twin edge colorings in m-ary trees
Abstract
Keywords
Full Text:
PDFDOI: http://dx.doi.org/10.5614/ejgta.2022.10.1.8
References
S. Anantharaman, Twin edge coloring of total graph and graphs with twin chromatic index ∆ + 2, Appl. Appl. Math., 15 (2020), 314 – 336.
E. Andrews, L. Helenius, D. Johnston, J. VerWys, and P. Zhang, On twin edge colorings of graphs, Discuss. Math. Graph Theory, 34 (2014), 613 – 627.
E. Andrews, D. Johnston, and P. Zhang, A twin edge coloring conjecture, Bull. Inst. Combin. Appl., 70 (2014), 28 – 44.
E. Andrews, D. Johnston, and P. Zhang, On twin edge colorings in trees, J. Combin. Math. Combin. Comput., 94 (2015), 115 – 131.
S. Lakshmi and V. Kowsalya, Twin edge colourings of wheel graphs, IOSR J. Math., 12 (2016), 71 – 73.
R. Rajarajachozhan and R. Sampathkumar, Twin edge colorings of certain square graphs and product graphs, Electron. J. Graph Theory Appl., 4 (1) (2016), 79 – 93.
J. Tolentino, R. Marcelo, and M.A. Tolentino, Twin chromatic indices of some graphs with maximum degree 3, J. Phys.: Conf. Ser., 1538 (2020).
H. Yang, S.L. Tian, and L.W.Q. Suo, On twin edge colorings of the direct product of paths, J. Phys.: Conf. Ser., 1087 (2018).
P. Zhang, Color Induced Graph Colorings, Springer, New York, 2015.
Refbacks
- There are currently no refbacks.
ISSN: 2338-2287
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.