On distance labelings of 2-regular graphs
Abstract
Let G be a graph with |V(G)| vertices and ψ : V(G) → {1, 2, 3, ... , |V(G)|} be a bijective function. The weight of a vertex v ∈ V(G) under ψ is wψ(v) = ∑u ∈ N(v)ψ(u). The function ψ is called a distance magic labeling of G, if wψ(v) is a constant for every v ∈ V(G). The function ψ is called an (a,d)-distance antimagic labeling of G, if the set of vertex weights is a, a+d, a+2d, ... , a+(|V(G)|-1)d. A graph that admits a distance magic (resp. an (a,d)-distance antimagic) labeling is called distance magic (resp. (a,d)-distance antimagic). In this paper, we characterize distance magic 2-regular graphs and (a,d)-distance antimagic some classes of 2-regular graphs.
Keywords
Full Text:
PDFDOI: http://dx.doi.org/10.5614/ejgta.2021.9.1.3
References
S. Arumugam and N. Kamatchi, On (a,d)-distance antimagic graphs, Australas. J. Combin. 54 (2012), 279--287.
S. Beena, On $sum$ and $sum'$ labelled graphs, Discrete Math. 309 (2009), 1783--1787.
B. Freyberg and M. Keranen, Orientable Z_n-distance magic labeling of the Cartesian product of many cycles, Electron. J. Graph Theory Appl. 5 (2) (2017), 304--311.
D. Froncek, Handicap distance antimagic graphs and incomplete tournaments, AKCE Int. J. Graphs Combin., 10 (2013), 119 -- 127.
D. Froncek and A. Shepanik, Regular handicap graphs of order $n equiv 0$ (mod 8), Electron. J. Graph Theory Appl. 6 (2) (2018), 208--218.
J. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. (2019), #DS6.
A. K. Handa, A. Godinho, and T. Singh, Distance antimagic labeling of the ladder graph, Electron. Notes Discrete Math. 63 (2017), 317--322.
M. Miller, C. Rodger and R. Simanjuntak, Distance magic labelings of graphs, Australas. J. Combin. 28 (2003), 305--315.
A. O'Neal and P. Slater, An introduction to distance $D$-magic graphs, J. Indones. Math. Soc., Special Edition (2011), 89--107.
A. O'Neal and P. Slater, Uniqueness of vertex magic constants, SIAM J. Discrete Math. 27 (2013), 708--716.
K. A. Sugeng, D. Froncek, M. Miller, J. Ryan and J. Walker, On distance magic labeling of graphs, J. Combin. Math. Combin. Comput. 71 (2009), 39 -- 48.
V. Vilfred, $sum$-labelled graph and circulant graphs, Ph.D. Thesis, University of Kerala, Trivandrum, India, 1994.
Refbacks
- There are currently no refbacks.
ISSN: 2338-2287
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.